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Battery Cooling Systems Not Yet An 

Application for MOR 

Extract  

Repeated 

Structure 

Extract 

Battery 

Cell 

Volume  Heat = 

f(Terminal Power) 

Repeated Structure ROM 

Inputs/Outputs 

•Pipe Velocities and Pressures 

•Surface Temperatures and 

heat fluxes 

 

 

 



Two Challenges for MOR in Cooling Systems 

• Distributed Interfaces 

–Thermal Transport 

–Will NOT Discuss 

• MOR for Battery Nonlinearities 

–Thermal-Electrical Coupling 

–Will Discuss “sort of” 



“Killer Ap” for MOR – Electronic Systems 

• Electronic system needs models for: 
– Connectors, PCB interconnect, IC drivers and receivers. 

Electronic System (ICs on boards with connectors). 

L. Daniel et al., UC Berkeley and MIT. 

Every IC design, Almost every board design, is 

simulated using MOR 

 



Emerging Applications for Model Reduction 

• ABS system needs state-space models for: 
– Master cylinder, disc brake, actuators, control electronics, pipes, etc 

• Circulatory system needs models for: 
– Arterial and venous sections, heart 

http://goodyeartacoma.com/uploads/images/absbrakes.jpg http://en.wikipedia.org/wiki/File:Circulatory_System_en.svg 

Anti-lock Brake System Circulatory System 

http://goodyeartacoma.com/uploads/images/absbrakes.jpg


Typical Reduced “Components” 

• Disc Brake 

– Input: Hydraulic Pressure, 

wheel torque 

– Output: disc rotational velocity 

• Artery 

– Input/Outputs 

• Terminal flows and pressures 

• Interconnect Model 

– Input/Outputs 

• Terminal Currents and Voltages 

http://www.surgcare.net/Surgery/carotid_artery_disease.jpg 

Clear Interface Points!! 



Extracting Component Models 

• For Electronic Interconnect 

– Maxwell’s Equation 

– PDE is Linear 

– Constitutive eqns linear but frequency dependent. 

• For Fluid Flow or Mechanical Deformation 

– Continuum Mech (CM) or N-Stokes Eqn (CFD). 

– PDE is nonlinear (geometric nonlinearity or 
convective term) 

– Constitutive equations often nonlinear 

• NOTE: Mech. Dynamics are typically second-order 

– Consistency between velocity and displacement 
can impact extraction strategies 

PDE plus boundary conditions   Low Order I/O Differential Equations 

 



LTI: Rational Fit of Frequency Response 

http://www.ansys.com/staticassets/ANSYS/staticassets/

product/DesignerRF-1.jpg 

www.edn.com – SI wave 
Ansys HFSS group  
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What we have now 

dx
Ax Bu

dt
 

y Cx Du 

r
r r r

dx
A x B u

dt
 

r r r ry C x D u 

Frequency Domain I/O data 

Fitting Algorithm 

“Medium-sized” State-

Space Model where A 

is “diagonal” by 

construction. 

Passivity Enforcer  

. 

DAE Integrator (SPICE, DASSL, Matlab) 

Reduced-order 

passive model. 



Typical E-M Examples 

• Left:  

– Mixed power-signal integrity structure: 12 ports, 390 

frequencies 

• Right:  

– Interconnect structure: 6 ports, 1201 frequencies 

Response Magnitude vs. Frequency 



Linearized PDE ineffective, but I/O 

behavior near linear (2
nd

 Easiest case) 

• Terminal Pressure/Flow Relations may be near linear, 
even if interior dynamics quite nonlinear. 

• May not be that common a case. 

Inputs and Outputs at “Terminals” of the artery 

Stretching of artery walls may compensate 

for nonlinearity in interior flow patterns to 

preserve linearity at “terminals”. 



Linearized PDE Case (Easiest) 

• Linearized CFD or CM equations acceptably 

accurate. 

• Two reduction options: 

Compute I/O Frequency 

response by solving 

linearized equations with 

d/dt  iomega 

Use our fitting strategy 

as a black box to 

generate state-space 

models. 

Compute projection vectors 

by solving linearized system 

for selected frequencies or 

timesteps and inputs. 

Use projection methods 

to generate state-space 

models. 

E
a
s
ie

r 
M

o
re

 

E
ffic

ie
n
t 



Linearized Systems    

• Fluids (descriptor) 

– Pressure-Velocity 

 

• Mech (2nd Order) 

– Force-Displacement  

 

• Electromag (frequency dependent) 

– Currents-Voltages 

 

 

 

 

 

 

 

 



• Original Dynamical System - Single Input/Output 

 

 

 

 

• Reduced Dynamical System q << N, but I/O 

preserved 

Projection Methods: State-Space Description 
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T

qV

• No explicit A need, Only Matrix-vector products 

 

 

For each column of qU

Multiply by ,  then dot result with columns of qA V

qU

rA

qxq 

A = 

NxN 

Forming the Reduced Matrix 



• Use Eigenvectors (Modes) 

• Use Time Series Data (Snapshot Method, POD) 

– Use the SVD to pick q < k important vectors 

 

 

• Use Frequency Domain Data (Freq. Domain POD, PMTBR) 

– Use the SVD to pick q < k important vectors 

 

 

• Krylov subspace Vectors 

– Again use SVD to pick q < k important vectors 

• Use Singular Vectors of System Grammians (Too Costly) 

Picking U and V 

     0 1, , , kx t x t x t

     1 2, , , kX s X s X s



Projection For Fluids (Descriptor) 
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• Standard Krylov Subspace 

 

–  Must back orthogonalize at each step 

• Krylov for Descriptor Systems with Singular M 

 

– Still must back orthogonalize at each step 

• Krylov for Mech 

 

 

– Only Keep Top Half of the vectors 

 

 

Krylov For Fluids and Mech 



Thermal Expansion of Cylinder 

• Example VM33 from ANSYS Verification Manual 

• Outer radius of cylinder has temperature ramped 

up. 

 



Thermal Expansion: MOR 

• Temperature versus time 

ANSYS MOR (Matlab) 



Thermal Expansion: MOR 

• Displacement versus time 

ANSYS MOR (Matlab) 



Rotor-bearing system 

• Example VM247 from ANSYS Verification 

Manual 

• Problem: only Rayleigh damping can be 

included in modal analysis 

– Damping proportional to mass and stiffness 

– Non-physical (losses only at bearings) 



Rotor-bearing system: MOR 

• Realistic loss included (hard to do with modes) 

• Reduction from 184 states to 32 

• Perfect agreement! 

ANSYS MOR (Matlab) 



Tuning Fork 

Vibrartion affected by rotation: Coriolis force 





Multiphysics Example – Battery Packs 

Extract  

Repeated 

Structure 

Extract 

Battery 

Cell 

Volume  Heat = 

f(Terminal Power) 

Repeated Structure ROM 

Inputs/Outputs 

•Pipe Velocities and Pressures 

•Surface Temperatures and 

heat fluxes 

 

 

 



A Distributed Interface  



Simplified Single Cell 

• NTGK Electrochemistry model  

 

 

 

• Electrical Conductivity Model 

 

 

• Thermal Conductivity Model 

 

 

• Sheet Flow Model 

 



 Projection of the nonlinear operator f(x): 

U space 

x f(x) 
f(.) 

 How to find            ?  

nRx

 Nonlinear dynamical systems: 

Nonlinear MOR – Representation Problem 

xCyBuxf
dt

dx T )(

xr 
fr(x) 



 Substitute:                   in  rqxUx  Buxf
dt

dx
 )(
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x0 

linear model 

quadratic model 

Volterra Approach 

 Use Taylor’s expansions to approximate f(x): 
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Convection-Diffusion Example 

• Easy Problem, nearly 3000 states to 13 states 



34 

Linearization ineffective, because of propagating wave. 

Consider a quadratic problem: 

        μ and D linearly dependent on C: 

     μ(C) = μ1C+ μ0 

     D(C) = D1C+ D0 

 

Nonlinear Convection-Diffusion 
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Kronecker Form  

• Matrices T, K, L, contain coefficients of the quadratic terms xixj, 
xiuj, uiuj.  

 

• Reduction can be performed by projection. 

Quadratic Convection-Diffusion: 



36 

Substituting x(t) ≈ Uxr(t) and projecting residual using VT: 

Therefore, for the reduced system matrices, we have: 
(as for any linear system) 

(projection rules for quadratic terms) 

Projecting the Quadratic Form 
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Example Results 
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Trajectory Piecewise Linear approximation of  f. 

Training 
trajectory 

x0 

x1 
x2 

xn 

… 

Simulating 
trajectory 

wi(x) is zero 

outside circle 

0
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Projection and  TPWL approximation 
yields efficient f r 

q x 1 Ai
r 

VT Ai = U Ai
r q 

q 

n 

n 

2Evaluating  only order  operationsr

TPWLf q



1.Compute A1 
2.Obtain W1 and V1 using 

linear reduction for A1 
3.Simulate training input, 

collect and reduce 
linearizations  
 Ai

r =  W1
TAiV1  

f r (xi)=W1
Tf(xi)  

 

TPWL approximation of f.  
Extraction algorithm 

Non-reduced state space 

Initial system 
position 

Training 
trajectory 

x0 

x1 
x2 

xn 

… 



Example problem 

Linearized system has  

nonsymmetric, indefinite Jacobian 

RLC line 



0 2 4 6 8 10
0

0.005

0.01

0.015

0.02

0.025
Full linearized model, N=800
Full nonlinear model, N=800
TPWL model, q=4, TBR basis
TPWL model, q=30, Krylov basis

 Input: 

training 

input 

testing 

input 

Numerical results  
– nonlinear RLC transmission line   

System response for input current i(t) = (sin(2π/10)+1)/2 
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Reminder: Projection Assumption 1 
 For all inputs of interest 

 

 

 

 

 

 

 U’s could be generated from 

 SVD of time series data,  

 Krylov subspaces from linearizations, etc. 

 

 

 

 



Reminder: Projection Assumption 2 

 There is a space:                             such that: 

 

  If  the residual is forced orthogonal to 

            

 

              with           such that  

 

 Then  the U-restricted DE is almost satisfied 

 

 

 

 

 

 

 



 In General 

 

 If U = V and UT U = I 

 

 

 Good for systems from self-adoint PDE’s: 

 Spatial discretization of nonlinear heat conduction 

 

 Spatial discretization of the Poisson-Boltzmann 

U = V a common choice 



 Substitute:                 in  
rqxUx  Buxf

dt

dx
 )(

 Using                    is too expensive! 

Reminder: Nonlinear MOR problem  
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Assumption 3 (For DEIM) 
 For x’s generated by all inputs of interest 

 

 

 

 

 

 

 

 

 



Assumption 4 (For DEIM) 
 We can replace “Galerkin” 

 

 

 With “Gappy Collocation” 

 

 Where P selects: 

 A few rows of U 

 a few elements of f 
 S. Chaturantabut and D. C. Sorensen, several publications 

 Empirical interpolation method: M. Barrault et al., Comp. Rend. Math., 2004. 

 Missing point estimation: P. Astrid and A. Verhoeven,  Int. Symp. MTNS, 2006. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Picture for a 2-D PDE 
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•Evaluate f at approximately q points (black) 
•To eval f, need values for x at more points (red) 
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Micromachined switch 

Young modulus 
149 GPa Euler beam equation: 

Reynolds squeeze film damping: 

Moment of inertia 
wh3/12 

Stress coefficient 
-3.7hw MPa∙m2 

Knudsen number 
λair/z0 = 0.028 

Height and  
width of beam 

 Popular benchmark* 

 Coupled PDEs are 
discretized by FD 
scheme. 

Pressure beneath beam 
p(x,y,t)  

Air viscosity 
1.82×105 Kg/(m∙s)  

Density (1D) 
2330hw Kg/m 

Beam height u(x,t) 

Electrostatic force per unit length 
 2 2

0elecF w V u 

* First analyzed by Hung et al., Int. Conf. on Solid State Sensors and Actuators, 1997 



Modeling pull-in 

 Parameter of interest: 
pull-in voltage. 

 ROM should become 
unstable. 

 Make ROM stable at 
equilibrium and 
maximum deflection. 

 A single (bellow pull-in) 
training input is used: 

Test inputs of 
increasing amplitude 

trainin

train test
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Early pull-in 

Corrected 
pull-in 

N=300, q=8 



Simplified Single Cell 

• NTGK Electrochemistry model  

 

 

 

• Electrical Conductivity Model 

 

 

• Thermal Conductivity Model 

 

 

• Sheet Flow Model 

 



Transient Results for Fluid Cooled Battery 

 Inputs are terminal currents and mass flow rate 

 Output is average temperature of fluid out 

Discharging 

Charging 

Discharging 

Fluid speedup 



Summary 

• Template Examples 

– Need for component models for system analysis 

– Typical input/output descriptions 

• Differences between electromagnetics, fluids and 
continuum mechanics 

– EM is linear, CFD and CM aren’t. 

• Linear Problems are easy 

– Fitting and Projection methods for linearizable 
problems. 

• Nonlinear problems are much harder 

– Volterra Series (beyond quadratic, very expensive) 

– Trajectory Methods (Counts on “tube” of paths) 

– DEIM effective ignoring T->Electrochem coupling. 

 

 

 


