

Reduction Modeling of Batteries in Electric Vehicle Cooling System Simulation

A. Hochman, M. Tsuk, S. Asgari, J. White Cecil H. Green Professor of EECS, MIT

Battery Cooling Systems Not Yet An Application for MOR

Two Challenges for MOR in Cooling Systems

- Distributed Interfaces
 - -Thermal Transport
 - -Will NOT Discuss
- MOR for Battery Nonlinearities

 Thermal-Electrical Coupling
 Will Discuss "sort of"

"Killer Ap" for MOR – Electronic Systems

Electronic System (ICs on boards with connectors).

- Electronic system needs models for:
 - Connectors, PCB interconnect, IC drivers and receivers.

Every IC design, Almost every board design, is simulated using MOR

Emerging Applications for Model Reduction

- ABS system needs state-space models for:
 - Master cylinder, disc brake, actuators, control electronics, pipes, etc
- Circulatory system needs models for:
 - Arterial and venous sections, heart

Typical Reduced "Components"

- Disc Brake
 - Input: Hydraulic Pressure, wheel torque
 - Output: disc rotational velocity

- Interconnect Model
 - Input/Outputs
 - Terminal Currents and Voltages

- Artery
 - Input/Outputs
 - Terminal flows and pressures

Clear Interface Points!!

Extracting Component Models

PDE plus boundary conditions \rightarrow Low Order I/O Differential Equations

- For Electronic Interconnect
 - Maxwell's Equation
 - PDE is Linear
 - Constitutive eqns linear but frequency dependent.
- For Fluid Flow or Mechanical Deformation
 - Continuum Mech (CM) or N-Stokes Eqn (CFD).
 - PDE is nonlinear (geometric nonlinearity or convective term)
 - Constitutive equations often nonlinear
- NOTE: Mech. Dynamics are typically second-order
 Consistency between velocity and displacement can impact extraction strategies

LTI: Rational Fit of Frequency Response

What we have now

DAE Integrator (SPICE, DASSL, Matlab)

Typical E-M Examples

Response Magnitude vs. Frequency

- Left:
 - Mixed power-signal integrity structure: 12 ports, 390 frequencies
- Right:

- Interconnect structure: 6 ports, 1201 frequencies

Linearized PDE ineffective, but I/O behavior near linear (2nd Easiest case)

Stretching of artery walls may compensate for nonlinearity in interior flow patterns to preserve linearity at "terminals".

Inputs and Outputs at "Terminals" of the artery

- Terminal Pressure/Flow Relations may be near linear, even if interior dynamics quite nonlinear.
- May not be that common a case.

Linearized PDE Case (Easiest)

- Linearized CFD or CM equations acceptably accurate.
- Two reduction options:

Easier

Compute I/O Frequency response by solving linearized equations with $d/dt \rightarrow iomega$

Use our fitting strategy as a black box to generate state-space models.

More Efficient Compute projection vectors by solving linearized system for selected frequencies or timesteps and inputs.

Use projection methods to generate state-space models.

Linearized Systems

Fluids (descriptor)
 – Pressure-Velocity

$$\frac{d}{dt}M\vec{x}(t) = A\vec{x}(t) + B\vec{u}(t)$$
$$y(t) = C\vec{x}(t) + D\vec{u}(t)$$

Mech (2nd Order)

 Force-Displacement

$$M\frac{d^2}{dt^2}\vec{x}(t) = F\frac{d}{dt}\vec{x}(t) + K\vec{x}(t) + B \vec{u}(t)$$
$$y(t) = C\vec{x}(t) + D\vec{u}(t)$$

Electromag (frequency dependent)
 – Currents-Voltages

$$\begin{split} \omega^2 A(j\omega)\vec{x}(j\omega) &= j\omega F(j\omega)\vec{x}(j\omega) + K(j\omega)\vec{x}(j\omega) + B(j\omega) \ \vec{u}(j\omega) \\ y(j\omega) &= C(j\omega)\vec{x}(j\omega) + D(j\omega)\vec{u}(j\omega) \end{split}$$

Projection Methods: State-Space Description

- Original Dynamical System Single Input/Output $\frac{dx(t)}{dt} = A x(t) + b u(t) \quad y(t) = c^{T} x(t)$ $\frac{dt}{dt} = A x(t) + b u(t) \quad y(t) = c^{T} x(t)$
- Reduced Dynamical System q << N, but I/O preserved

$$\frac{dx_{r}(t)}{dt} = A_{r} x(t) + b_{r} u(t) \quad y_{r}(t) = c_{r}^{T} x_{r}(t)$$

$$qxq \qquad qx1 \ scalar \qquad scalar \qquad qx1 \ input \qquad output$$

Projection Framework

Forming the Reduced Matrix

• No explicit A need, Only Matrix-vector products For each column of U_q Multiply by A, then dot result with columns of V_q

Picking U and V

- Use Eigenvectors (Modes)
- Use Time Series Data (Snapshot Method, POD)
 - Use the SVD to pick q < k important vectors

$$x(t_0), x(t_1), \cdots, x(t_k)$$

Use Frequency Domain Data (Freq. Domain POD, PMTBR)
 Use the SVD to pick q < k important vectors

$$X(s_1), X(s_2), \cdots, X(s_k)$$

- Krylov subspace Vectors
 - Again use SVD to pick q < k important vectors
- Use Singular Vectors of System Grammians (Too Costly)

Projection For Fluids (Descriptor)

Krylov For Fluids and Mech

Standard Krylov Subspace span{A⁻¹B, A⁻²B, A⁻³B, ..., A^{-k}B} – Must back orthogonalize at each step

• Krylov for Descriptor Systems with Singular M $span\{A^{-1}MA^{-1}B, (A^{-1}M)^2A^{-1}B, (A^{-1}M)^3A^{-1}B, ... (A^{-1}M)^kA^{-1}B\}$ - Still must back orthogonalize at each step • Krylov for Mech $M \leftarrow \begin{pmatrix} I & 0 \\ 0 & M \end{pmatrix} A \leftarrow \begin{pmatrix} 0 & I \\ K & F \end{pmatrix}$

 $span \{A^{-1}MA^{-1}B, \left(A^{-1}M\right)^2 A^{-1}B, \left(A^{-1}M\right)^3 A^{-1}B, \dots \left(A^{-1}M\right)^k A^{-1}B\}$

– Only Keep Top Half of the vectors

Thermal Expansion of Cylinder

- Example VM33 from ANSYS Verification Manual
- Outer radius of cylinder has temperature ramped up.

Thermal Expansion: MOR

• Temperature versus time

MOR (Matlab)

ANSYS

Thermal Expansion: MOR

• Displacement versus time

MOR (Matlab)

ANSYS

Rotor-bearing system

- Example VM247 from ANSYS Verification
 Manual
- Problem: only Rayleigh damping can be included in modal analysis
 - Damping proportional to mass and stiffness
 - Non-physical (losses only at bearings)

Rotor-bearing system: MOR

- Realistic loss included (hard to do with modes)
- Reduction from 184 states to 32
- Perfect agreement!

ANSYS

MOR (Matlab)

Tuning Fork

Vibrartion affected by rotation: Coriolis force

Multiphysics Example – Battery Packs

A Distributed Interface

Simplified Single Cell

NTGK Electrochemistry model

 $i = f(\phi_+ - \phi_-, DOD)$ $\frac{d}{dt}DOD = f(\phi_+ - \phi_-, DOD)$

- Electrical Conductivity Model $\sigma_e \nabla^2 \phi_+ = i$ $\sigma_e \nabla^2 \phi_- = -i$
- Thermal Conductivity Model

$$\sigma \nabla^2 T = (\phi_+ - \phi_-) * i$$

Sheet Flow Model

 $\sigma_s \nabla^2 T_s + MFR \cdot \nabla T_s = \alpha \cdot (T_s - T)$

Nonlinear MOR – Representation Problem

Nonlinear dynamical systems:

$$\frac{dx}{dt} = f(x) + Bu \qquad y = C^T x \quad x \in R^n$$

• Projection of the nonlinear operator f(x):

• How to find $f_r(x_r)$?

Problems with MOR for nonlinear

Substitute:
$$x = U_q x_r$$
 in $\frac{dx}{dt} = f(x) + Bu$
Reduced system: $\frac{dx_r}{dt} = V_q^T f(U_q x_r) + V_q^T Bu$
Problem: $V_q^T f(U_q x_r)$: $\underset{\text{small}}{R^q} \rightarrow \underset{\text{large}}{R^N} \rightarrow \underset{\text{large}}{R^N} \rightarrow \underset{\text{large}}{R^q} \rightarrow \underset{\text{large}}{R^{N-10^4}} \rightarrow \underset{\text{small}}{R^{-10^4}} = 10^4$
Using $V_q^T f(U_q x_r)$ is too expensive!

Volterra Approach

• Use Taylor's expansions to approximate f(x): $f(x) = f(x_0) + J(x - x_0) + W((x - x_0) \otimes (x - x_0)) + \dots$ Linear, quadratic reduced order models [Chen, Phillips 2000]: W $\frac{dz}{dt} = \widetilde{V^T} \widetilde{J} \widetilde{V} (z - z_0) + \widetilde{V^T} \widetilde{W} \widetilde{V} \otimes V (z - z_0) \otimes (z - z_0)$ $+V^T f(x_0) + V^T B u$ quadratic model <u>X</u>0 linear model

Convection-Diffusion Example

$$\frac{\partial C}{\partial t} = -\mu F \cdot \nabla C + D \nabla^2 C$$

Easy Problem, nearly 3000 states to 13 states

Nonlinear Convection-Diffusion

$$\frac{\partial C}{\partial t} = -(F \cdot \nabla C)(C\frac{d\mu}{dC} + \mu) + D\nabla^2 C + \frac{dD}{dC} \|\nabla C\|^2$$

Linearization ineffective, because of propagating wave.

Consider a <u>quadratic problem</u>: μ and D linearly dependent on C:

 $\mu(C) = \mu_1 C + \mu_0$ $D(C) = D_1 C + D_0$

Kronecker Form

Quadratic Convection-Diffusion:

$$\begin{cases} \frac{dx}{dt} = \underbrace{Ax(t) + Bu(t)}_{\text{linear}} + \\ +T(x(t) \otimes x(t)) + K(x(t) \otimes u(t)) + L(u(t) \otimes u(t)), \\ y(t) = Cx(t) \end{cases}$$

- Matrices T, K, L, contain coefficients of the quadratic terms x_ix_j, x_iu_j, u_iu_j.
- Reduction can be performed by projection.

Projecting the Quadratic Form

$$\frac{dx}{dt} = \underbrace{Ax(t) + Bu(t)}_{\substack{\text{linear} \\ +T(x(t) \otimes x(t)) + K(x(t) \otimes u(t)) + L(u(t) \otimes u(t)),}$$

$$y(t) = Cx(t)$$

Substituting $x(t) \approx Ux_r(t)$ and projecting residual using V^T :

 $\begin{cases} \frac{dx_r}{dt} = V^T A U x_r(t) + V^T B u(t) + \\ + V^T T (U x_r(t) \otimes U x_r(t)) + V^T K (U x_r(t) \otimes u(t)) + V^T L (u(t) \otimes u(t)), \\ y(t) = C U x_r(t) \end{cases}$

Therefore, for the reduced system matrices, we have: $A^r = V^T A U, \quad B^r = V^T B, \quad C^r = C U,$ (as for any linear system)

 $T^r = V^T T(U \otimes U), \quad K^r = V^T K U, \quad L^r = V^T L,$ (projection rules for quadratic terms)

Example Results

 $\frac{\partial C}{\partial t} = (\nabla \Phi \cdot \nabla C) (C\mu_1 + \mu_0) - D_0 \nabla^2 C - D_1 \|\nabla C\|^2$

Trajectory Piecewise Linear approximation of *f*.

Projection and TPWL approximation yields efficient f^r

TPWL approximation of *f*. Extraction algorithm

1. Compute A_1 **2.** Obtain W_1 and V_1 using linear reduction for A_{1} 3. Simulate training input, collect and reduce linearizations $A_i^r = W_I^T A_i V_I$ $f^r(x_i) = W_I^T f(x_i)$

Non-reduced state space

Example problem

RLC line

Linearized system has nonsymmetric, indefinite Jacobian

Numerical results – nonlinear RLC transmission line

U's could be generated from

- SVD of time series data,
- Krylov subspaces from linearizations, etc.

Reminder: Projection Assumption 2 • There is a space: $\mathbf{V} = \{\vec{V_1}, ..., \vec{V_q}\}$ such that:

• If the residual is forced orthogonal to \mathbf{V} $\vec{r}(t) \equiv \frac{d}{dt} \mathbf{U} \vec{x}_r(t) - \left(f \left(\mathbf{U} \vec{x}_r(t) \right) + \vec{b} u(t) \right)$ with $\vec{x}_r(t)$ such that $\mathbf{V}^T \vec{r}(t) = 0$

• Then the U-restricted DE is almost satisfied $\vec{r}(t) \equiv \frac{d}{dt} \mathbf{U} \vec{x}_r(t) - \left(f \left(\mathbf{U} \vec{x}_r(t) \right) + \vec{b} u(t) \right) \approx 0$

U = V a common choice

In General $\mathbf{V}^T \mathbf{U} \frac{d}{dt} \vec{x}_r(t) = \mathbf{V}^T f \left(\mathbf{U} \vec{x}_r(t) \right) + \mathbf{V}^T \vec{b} z(t)$ If U = V and U^T U = I

$$\frac{d}{dt}\vec{x}_r(t) = \mathbf{U}^T f\left(\mathbf{U}\vec{x}_r(t)\right) + \mathbf{U}^T \vec{b} \ z(t)$$

Good for systems from self-adoint PDE's:
Spatial discretization of nonlinear heat conduction $\frac{\partial}{\partial t}\vec{x}(t) = \nabla \cdot f(\nabla \vec{x}(t)) + \vec{b} \ z(t)$ Spatial discretization of the Poisson-Boltzmann $\frac{\partial}{\partial t}\vec{x}(t) = \nabla^2 x(\vec{t}) + f(\vec{x}(t)) + \vec{b} \ z(t)$

Reminder: Nonlinear MOR problem

Substitute:
$$x = U_q x_r$$
 in $\frac{dx}{dt} = f(x) + Bu$
Reduced system: $\frac{dx_r}{dt} = V_q^T f(U_q x_r) + V_q^T Bu$
Problem: $V_q^T f(U_q x_r)$: $R_{\text{small}}^q \rightarrow R_{\text{large}}^N \rightarrow R_{\text{large}}^N \rightarrow R_{\text{small}}^q$
Using $V_q^T f(U_q x_r)$ is too expensive!

....

Assumption 3 (For DEIM) • For x's generated by all inputs of interest $f(x(t)) \approx \in span\{\vec{U}_1^f \ \vec{U}_2^f \dots \vec{U}_q^f\} \ q << n$

Assumption 4 (For DEIM) • We can replace "Galerkin" $f_r = \left(\mathbf{U}^f\right)^T f\left(\mathbf{U}\vec{x}_r\right)$

- With "Gappy Collocation" $P^{T}\mathbf{U}^{f}f_{r} = P^{T}f(\mathbf{U}\vec{x})$
- Where P selects:
 - A few rows of U
 - a few elements of f
 - S. Chaturantabut and D. C. Sorensen, several publications
 - Empirical interpolation method: M. Barrault *et al., Comp. Rend. Math.,* 2004.
 - **Missing point estimation:** P. Astrid and A. Verhoeven, Int. Symp. MTNS, 2006.

•Evaluate f at approximately q points (black)

•To eval f, need values for x at more points (red)

Discrete Empirical Interpolation Method

Micromachined switch

* First analyzed by Hung et al., Int. Conf. on Solid State Sensors and Actuators, 1997

Modeling pull-in

- Parameter of interest: pull-in voltage.
- ROM *should* become unstable.
- Make ROM stable at equilibrium and maximum deflection.
- A single (bellow pull-in) training input is used:

$$V_{\rm in} = 8.5 \sin(2\pi f_{\rm train} t) \text{ (V)}$$
$$f_{\rm train} = f_{\rm test}/2$$

Simplified Single Cell

NTGK Electrochemistry model

 $i = f(\phi_+ - \phi_-, DOD)$ $\frac{d}{dt}DOD = f(\phi_+ - \phi_-, DOD)$

- Electrical Conductivity Model $\sigma_e \nabla^2 \phi_+ = i$ $\sigma_e \nabla^2 \phi_- = -i$
- Thermal Conductivity Model

$$\sigma \nabla^2 T = (\phi_+ - \phi_-) * i$$

Sheet Flow Model

 $\sigma_s \nabla^2 T_s + MFR \cdot \nabla T_s = \alpha \cdot (T_s - T)$

Transient Results for Fluid Cooled Battery

- Inputs are terminal currents and mass flow rate
- Output is average temperature of fluid out

Summary

- Template Examples
 - Need for component models for system analysis
 - Typical input/output descriptions
- Differences between electromagnetics, fluids and continuum mechanics
 - EM is linear, CFD and CM aren't.
- Linear Problems are easy
 - Fitting and Projection methods for linearizable problems.
- Nonlinear problems are much harder
 - Volterra Series (beyond quadratic, very expensive)
 - Trajectory Methods (Counts on "tube" of paths)
 - DEIM effective ignoring T->Electrochem coupling.