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Mesoscale models of fluid flow

Most computations of fluid flows use a continuum representation
(density, pressure, etc.) for the fluid.

Dynamics described by set of PDEs – Navier Stokes equations

Mass
Momentum
Energy
Any additional phenomena

Well-established numerical methods (finite difference, finite
elements, etc.) for solving these PDEs.

Hydrodynamic PDEs are accurate over a broad range of length
and time scales.

But at some scales the continuum representation breaks down a
different description is needed
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Giant fluctuations

Box width is 5 mm

Experiments show significant concentration fluctuations in zero gravity

Fluctuations are reduced by gravity; cut-off wavelength proportional to g−1/4

Vailati, et al., Nature Comm., 2:290 (2011)
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Thermal Fluctuations
The structures seen in experiments arise because of thermal fluctuations

At microscopic scales, fluids are particle systems
Hydrodynamic variables, mass, momentum, energy, etc., correspond to
averages of particle representation over representative volumes
Hydrodynamic variables naturally fluctuate

In non-equilibrium settings, fluctuations lead to long-range correlations in
hydrodynamic variables

Particle schemes (DSMC, MD, ... ) capture statistical structure of fluctuations in
macroscopic variables

Variance of fluctuations
Time-correlations
Non-equilibrium behavior

But that are too expensive to use to study problems at these scales
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Modeling fluctuations at the continuum level

Can / should we capture fluctuations at the continuum level?
Important part of dynamics at mesoscale
Essential ingredient of hybrid multiscale algorithms
(coupled continuum and atomistic)

Landau and Lifshitz proposed model for fluctuations at the
continuum level

Incorporate stochastic fluxes into compressible Navier
Stokes equations
Magnitudes set by fluctuation dissipation balance

Generalized formulation for binary mixtures by Cohen and
Law and Nieuwoudt.

Want to extend fluctuating Navier Stokes to general
multicomponent systems.
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Landau-Lifshitz fluctuating Navier Stokes

Incorporate stochastic fluxes into compressible Navier Stokes equations

Equilibrium fluctuations known from statistical mechanics

Magnitudes set by fluctuation dissipation balance

∂U/∂t +∇ · F = ∇ · D +∇ · S where U =

 ρ
ρv
ρE



F =

 ρv
ρvv + PI
(ρE + P)v

 D =

 0
τ

λ∇T + τ · v

 S =

 0
S

Q+ v · S

 ,

〈Sij(r, t)Sk`(r′, t ′)〉 = 2kBηT
(
δK

ik δ
K
j` + δK

i`δ
K
jk − 2

3δ
K
ij δ

K
k`

)
δ(r− r′)δ(t − t ′),

〈Qi(r, t)Qj(r′, t ′)〉 = 2kBλT 2δK
ij δ(r− r′)δ(t − t ′),

τ = η(∇v + (∇v)T )− 2
3
η I ∇ · v

Bell, et al. FNS



Stochastic PDE’s

Consider system of the form
dU = LUdt +KdB

where B a cylindrical Weiner process (dB is Gaussian random field)

We can characterize the solution of these types of equations in terms of the invariant
distribution, given by the covariance

S(k , ω) =< Û(k , ω), Û∗(k , ω) >

known as the dynamic structure factor

Fourier transform to obtain
iω dÛ = L̂Ûdω + K̂dB̂

Then
S(k , ω) = (L̂− iω)−1(K̂ K̂∗)(L̂∗ + iω)−1

We can also define the static structure factor

S(k) =

∫ ∞
−∞

S(k , ω)dω

Static structure factor characterizes fluctuation dissipation of SPDE system
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Fluctuation dissipation relation – discrete form

For
∂t U = AU + LU + KZ where A = −A∗ and L = L∗

if
2γL = −KK∗

then the equation satisfies a fluctuation dissipation relation with

S(k) = 2γI ,

which mimics the analytical form γ(L+ L∗) = −KK∗

Would like to construct numerics so that

Snum(k) = 2γ(1 + αk2p)

for small k and
Snum(k) ≤ 2γ(1+???) forall k .

Want approximations to differential operators with these properties discretely.
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Spatial approximation
Consider finite volume discretizations where un

j represents average value of solution
on the j th cell at time tn.

Define a discrete divergence that approximates cell-center divergence of a field defined
at cell edges

(DF )j =
Fj+1/2

− Fj−1/2

∆x

The adjoint to D then defines a discrete gradient at cell edges from values defined a
cell centers

−(Gv)j+1/2
= (DT v)j+1/2

=
vj+1 − vj

∆x

Then DG defines a cell-centered Laplacian L with 2L = −
√

2D(
√

(2)D)T .

Centered approximation of advection

We will also approximate the noise by

Z =
Z n

j+1/2√
∆tVc

where Z n
j+1/2

is a normally distributed random variable and the scale approximates a δ
function in space and time
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RK3

We consider an alternative Runge Kutta scheme for stochastic systems Ut = R(U,W )

Un+1/3
i,j,k = Un

i,j,k + ∆tR(Un,W1)

Un+2/3
i,j,k =

3
4

Un
i,j,k +

1
4

[
Un+1/3

i,j,k + ∆tR(Un+ 1
3 ,W2)

]
Un+1

i,j,k =
1
3

Un
i,j,k +

2
3

[
Un+2/3

i,j,k + ∆tR(Un+ 2
3 ,W3)

]
Wi denote the random fields used in each stage of the integration.

We generate two sets of normally distributed independent Gaussian fields, W A and
W B , and set

W1 = Z A + β1Z B

W2 = Z A + β2Z B

W3 = Z A + β3Z B

where β1 = (2
√

2 +
√

3)/5, β2 = (−4
√

2 + 3
√

3)/5, and β3 = (
√

2− 2
√

3)/10.

The RK3 scheme has good stability properties, is weakly second-order accurate.
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Multidimensional considerations
Standard discretizations of stress tensor in fully cell-centered finite volume
approach leads to velocity correlations – can’t compute divergence of
stochastics stress in a way that is consistent with symmetrized gradient of
velocity

τ = η(∇U + (∇U)T )− 2
3
ηI∇ · U

Rewrite stress tensor as

∇·(η(∇U+(∇U)T )− 2
3
∇·(η∇·U I) = ∇·η∇U+

1
3
∇·(ηI ∇·U)+cross− terms

Generate noise for first term at edges and noise for second term at corners

Cross terms included in deterministic discretization but no corresponding
noise.

Alternative approach based on staggered grid approximation

Easier to construct scheme with desired discrete fluctuation dissipation
relation

Harder to construct a hybrid discretization

Balboa et al.
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Multicomponent flow equations

Starting point is deterministic multicomponent flow equations

∂

∂t
(ρk ) +∇ · (ρkv) +∇ ·Fk = 0

∂

∂t
(ρv) +∇ ·

[
ρvvT + pI

]
+∇ ·Π = ρg,

∂

∂t
(ρE) +∇ · [(ρE + p)v] +∇ · [Q + Π · v] = ρv · g,

Augment deterministic fluxes with stochastic fluxes to represent
fluctuations

Curie priniciple→ stochastic stress tensor unchanged from
single component equations

What is the noise in the energy and species equations?

Bell, et al. FNS



Entropy production
Entropy production given by

v = −
1

T 2
Q · ∇T −

1
T

Ns∑
i=1

F i · ∇µi

= −
1

T 2
Q′ · ∇T −

1
T

Ns∑
i=1

F i · ∇Tµi

where

∇T µi (p,T ,Xi ) = ∇µi −
(
∂µi

∂T

)
p,Xi

∇T

and

Q′ = Q−
Ns∑

k=1

hkFk

General form of the phenomenological laws writes fluxes as sums of thermodynamics
forces

J = LX where v = JT X = XTLT X.

with

J =

[
F
Q′
]

and X =

[
− 1

T∇Tµi
− 1

T 2∇T

]
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Fluctuation dissipation

Onsager reciprocity says L is symmetric so

L =

[
L Lξ
ξT L ζ + ξT Lξ

]
.

Here L is rank deficient of the form

L =

[
L̂ −L̂e
−eT L̂ eT L̂e

]

Similarly, eT ξ = 0. If we define the stochastic fluxes

J̃α =

[
F̃α

Q̃
′
α

]

then from fluctuation dissipation balance, the fluxes are white in space and
time with a correlation matrix given by

〈J̃α(r, t)J̃T
β(r
′, t ′)〉 = 2kB L δαβ δ(xα − x ′β)δ(t − t ′)
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Stochastic fluxes

Stochastic fluxes are not uniquely determined. Require noise terms with correct
covariance

Use Cholesky factorization of L; i.e., BBT = 2kbL

J̃α = BW(α) where W(α) =

[
W (F ;α)

W(Q′;α)

]

where the noise amplitude matrix B can be written as,

B =

[
B 0
ξT B

√
ζ

]

For B to have the correct covariance, we require that BBT = 2kBL
Stochastic fluxes are then

F̃α = BZF ;α Q̃α =
√
ζZQ′;α + (hT + ξT )F̃α
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Ideal gas mixtures
For an ideal gas mixture, chemical potential is of the form

µi =
RuT
Wi

ln(
Xip
pst

) + f (T )

Substituting into above general formalism establishes correspondence
between transport model used in continuum modeling and nonequilibrium
thermodynamic framework

Link to EGLIB package of Ern and Giovangigli

Direct correspondence with GENERIC framework of Ottinger

For systems written in terms of matrix of diffusion coefficients D × gradients
of mole fractions and pressure

L ≈ D
[
∂µ

∂X

]−1

and
L
∂µ

∂p
is the barodiffusion coefficient

Bell, et al. FNS



Equilibrium fluctuations

Hard sphere model of noble gases

k Species Molecular Weight Diameter (cm) Yk Xk

1 Helium 4.0026 2.18 ×10−8 0.25 0.7428
2 Neon 20.1797 2.58 ×10−8 0.25 0.1473
3 Argon 39.9480 3.63 ×10−8 0.25 0.0744
4 Krypton 83.8000 4.16 ×10−8 0.25 0.0355

p = 1atm, T = 300K

643 mesh with h = 8× 10−6cm, ∆t = 10−12
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Static structure factors – Variances

〈(δρ̂)(δρ̂∗)〉 〈(δĴx )(δĴx
∗

)〉 〈(δρ̂E)(δρ̂E
∗

)〉

〈(δρ̂1)(δρ̂1
∗)〉 〈(δρ̂4)(δρ̂4

∗)〉 〈(δT̂ )(δT̂∗)〉
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Static structure factors – Correlations

|〈(δρ̂)(δĴx
∗

)〉| |〈(δρ̂)(δT̂∗)〉| |〈(δĴx )(δĴy
∗

)〉|

|〈(δĴx )(δρ̂E
∗

)〉| |〈(δρ̂1)(δρ̂∗4 )〉| |〈(δv̂x )(δT̂∗)〉|
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Nonequilibrium – diffusion barrier

Mole fraction of red particle

Fluctuations obtained by subtracting
horizontal average

Equal mass particles, R, B, G. G has large
diameter

dYR/dy = 28.935, dYB/dy = 90.760 and
dYG/dy = −119.695

Deterministic flux of red particles is zero.

Theory for spectrum of long-range correla-
tions due to nonequilibrium conditions

1000 10000
1e-26

1e-25

1e-24

1e-23

1e-22

<rho_R, rho_R> Theory
<rho_B, rho_B> Theory
<rho_R, rho_B> Theory
<rho_R, rho_R> Simulation
<rho_B, rho_B> Simulation
<rho_R, rho_B> Simulation

Structure factor for giant fluctuations
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Current research directions

Physics
Reactions
Phase transition phenomena
Non-ideal fluid effects

Numerical models
Incompressible flow models
Generalized low Mach number models
Semi-implicit time-stepping schemes
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Reacting systems

Extend multicomponent FNS solver to reacting systems

Species equations are given by

∂

∂t
(ρYk ) +∇ · (ρUYk ) +∇ ·

[
Fk + F̃k

]
= ρ [ωk + ω̃k ]

Stochastic reaction models
“Standard” chemical Langevin model
Master equation approach
Alternative forms of chemical Langevin better suited for
systems far from equilibrium
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Reactions in fluctuating systems

Investigate effect of fluctuations on Turing instability
pattern formation resulting

A
k1→ C,

2A + B
k2→ 3A,

B
k3→ D,

D
k4→ B,

with D held fixed

System admits homogeneous steady states

(A0,B0,C0,D0) , (A+,B+,C+,D+) , (A−,B−,C−,D−)

A small region at the state +, when exposed to a surrounding large region at state 0,
gives rise to an evolving chemical wave front.

Turing instability ensues, giving rise to pattern formation
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Gas-liquid phase transitions

van der Waals model

Mean-field theory for hard spheres with
long-range attractive interaction

Simple model for liquid-gas transitions in
one-component fluids

Add gradient term for Helmholtz free energy
κ

2
|∇ρ|2

Results in a regularizing stress term added to the con-
tinuum equations representing interfacial tension

κ[ρ∇2ρ+
|∇ρ|2

2
−
ρ

T
∇ρ · ∇T ]I− κ∇ρ⊗∇ρ

Fluctuating terms unchanged . . . no entropy produc-
tion associated with interfacial tension

Higher noise accelerates
merger events
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Low Mach number systems

Isothermal, low Mach number systems: incompressible fluids of different densities with
no volume change on mixing

EOS :
1
ρ

=
c
ρ1

+
1− c
ρ2

Gives system of the form
ρt +∇ · ρU = 0

(ρU)t = −∇π −∇ · (ρUU) + ν∆U +∇ ·
√

2νρkBTWv

(ρc)t = −∇ · (ρUc) +∇ · ρχ∇c +∇ ·
√

2χρMc(1− c)Wc

Differentiation of equation of state gives

∇ · U = −
1
ρ

∂ρ

∂c
(∇ · ρχ∇c +∇ ·

√
2χρMc(1− c)Wc)

Structure factor modified by projection

Numerics based on method of lines approach using gauge ideas

Need discretely idempotent projection – staggered grid

Need to avoid commuting projection with diffusion – Stokes solver
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Comparison to MD simulation

Models can be validated
against theory in a vari-
ety of equilibrium and non-
equilibrium settings

Direct comparison with par-
ticle models

Molecular dynamics

Two-dimensional
hard-disk fluid

128 x 128
hydrodynamics cells

1.25 million disks

Average ensemble to
compute effective
mixing

Molecular Dynamics Fluctuating Navier Stokes

0 100 200 300 400 500 600
y

0

0.2

0.4

0.6

0.8

r
1

Determ. hydro t=0
t=928
t=2842
t=5800
HDMD t=928
Fluct. hydro t=928

Essemble / horizontal average
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Low Mach number solver

No gravity

ρ2/ρ1 = 5/3

Gravity

ρ2/ρ1 = 5/3

No gravity

ρ2/ρ1 = 10
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Summary

Numerical methodology for multicomponent fluctuating
hydrodynamics

Generic FNS formulation
Specialized to ideal gas mixtures
RK3 centered scheme
Designed to satisfy discrete fluctuation dissipation balance
Give correct equilibrium fluctuations

Future / current directions
Reacting systems
Complex fluids
Low Mach number versions
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