Morphology and electronic alignment of the Poly(3-hexylthiophene)/ZnO interface Photovoltaics No catalysis

Switchable surface chemistry on ferroelectric surfaces Catalysis no photons

Sohrab Ismail-Beigi Applied Physics Yale University

Collaborators

Photovoltaics

Dr. Jie Jiang Applied Physics, Yale

> Experimental collaborators: Lisa Pfefferle, Chinedum Osuji, Andre Taylor Chemical Engineering, Yale

Funding: NSF SOLAR program

Catalysis

Arvin Kakekhani
 Physics, Yale

Experimental collaborators: Matt Herdiech & Eric Altman Chemical Engineering, Yale

Funding: Toyota Motor Engineering & Manufacturing North America, Inc.

Some materials configurations

Conventional planar

- High efficiency
- Expensive & fragile
- Limited active interface

Bulk heterojunction

- Modest efficiency (~5 %)
- Cheap & easy to manufacture
- Carrier transport issues

Ordered heterojunction

- Good efficiency
- Great carrier transport
- Difficult to realize: nm scale alignment

Self-assembly of polymer/nanowire

ZnO nanowires (NW): hexagonal facets, well-defined (1010) surfaces P3HT polymers

Small diameter NW:

- polymer well ordered
- coaxial with nanowire

S. Zhang et al., Advanced Materials 24, 82 (2012)

P3HT/ZnO interface

ZnO nanowire surface: $(10\overline{1}0)$

Side view

nanowire axis

Top view

Which surface direction does P3HT prefer?

P3HT binding & strain energies

Frenkel-Kontorova model

1D competition of strain & periodic binding potential

Dynamics of this model is very hard...

But (despite what I learned in grad school), the ground state of this model is solved with a simple efficient algorithm.

Chou & Griffiths, Phys. Rev. B (1986)

Frenkel-Kontorova model

Search possible directions

Red is optimum distance for P3HT

Within 25% strain: only matches are x, y & xy directions

Alignments for flat ZnO surface

if curvature energy > 0.4 eV, can change alignment

Fixed morphology versus binding

1.5

0.5

FK-E_{total} [eV]

Can curvature make for coaxial?

Curvature effect 1

Elementary elastic effect: curving polymer backbone costs energy

Curvature effect 2

Curved polymer makes binding ends closer :

 \rightarrow effective change of periodicity of potential \rightarrow has significant energetic effect

Easy to model: change lattice constant in Frenkel-Kontorova

Final morphology prediction

Helical \rightarrow coaxial transition predicted Seems to agree with experiment

Electronic structure (PBE0)

Electronic structure

Structure, stability, and alignment

 μ_0 : H chemical potential at T=0,P=0 μ_0 -0.26 eV: T=373K and P=1 atm μ_0 -1.45 eV: T=1773K and P=1 atm

Structure, stability and band alignment

Summary 1

- Curvature effects can align polymer/nanowire coaxially
- FK model a cheap and useful model for these systems
- Covalent tethering of polymer makes interfacial chemistry and passivation critical --- difficult extra materials problem to deal with...
- Open circuit voltage for good alignments are ~ 1.0 eV which is as good or better than physisorbed P3HT (0.4-0.8 eV)

Catalysis on ferroelectrics: outline

- Overview of precious metal catalysts & problems
- Overview of ferroelectrics
- Theoretical approach: DFT, NEB
- Sampling of results
- Proposed NO_x reduction cycle
- Preliminary results on key energy barriers
- What's next

Current Methods for NO_x Reduction

(Primary focus is on automotive applications)

- Precious metals catalysts -- expensive
- Some key reactions
 - oxidize CO \rightarrow CO₂
 - reduce $NO_x \rightarrow N_2 + O_2$
- Current catalysts bind O too strongly
 - Air:fuel ratio must be \approx stoichiometric (no excess O₂)
 - Some fuel/CO used to remove O from catalyst

Sabatier Principle

Catalyst-molecule interaction must be "just right": not too strong, not too weak

Standard volcano plot

Strong atomic adsorption: → Barrier low, fast dissociation

 \rightarrow But atoms never come off!

Weak atomic adsorption:

 \rightarrow Barrier high, very slow reaction

Compromise situation

Outline

- Overview of precious metal catalysts & problems
- Overview of ferroelectrics
- Theoretical approach: DFT, NEB
- Sampling of results
- Proposed NO_x reduction cycle
- Preliminary results on key energy barriers
- What's next

What is a ferroelectric?

- Two stable polarization states.
- Switch with Electric field.

What is a ferroelectric?

- Two stable polarization states.
- Switch with Electric field.

A ferroelectric: PbTiO₃

- Perovskite Structure
- Ferroelectric
- Strong Polarization

Ferroelectrics & surface chemistry

- 2 polarizations \rightarrow 2 surfaces (for the price of 1)
- Control with E field
- Possible Uses:
 - Bind/Release Molecule
 - Change surface electronic states \rightarrow affect catalysis
 - Chemical Sensing

Ferroelectrics & surface chemistry

- 2 polarizations \rightarrow 2 surfaces (for the price of 1)
- Control with E field
- Possible Uses:
 - Bind/Release Molecule
 - Change surface electronic states \rightarrow affect catalysis
 - Chemical Sensing

Ferroelectrics & surface chemistry

- 2 polarizations \rightarrow 2 surfaces (for the price of 1)
- Control with E field
- Possible Uses:
 - Bind/Release Molecule
 - − Change surface electronic states → affect catalysis
 - Chemical Sensing

Outline

- Overview of precious metal catalysts & problems
- Overview of ferroelectrics
- Theoretical approach: DFT, NEB
- Sampling of results
- Proposed NO_x reduction cycle
- Preliminary results on key energy barriers
- What's next

DFT modeling

- Plane wave basis
- Ultrasoft (Vanderbilt) pseudopotentials
- 15 Å vacuum
- Dipole Correction
- \rightarrow Converge binding energies to ~ 0.01 eV

PWSCF (Quantum Espresso) Cold smearing 8x8 k-point sampling per 1x1 cell PW91 GGA 30 Ryd cutoff

DFT modeling

- Plane wave basis
- Ultrasoft (Vanderbilt) pseudopotentials
- 15 Å vacuum
- Dipole Correction
- \rightarrow Converge binding energies to ~ 0.01 eV

PWSCF (Quantum Espresso) Cold smearing 8x8 k-point sampling per 1x1 cell PW91 GGA 30 Ryd cutoff

Outline

- Overview of precious metal catalysts & problems
- Overview of ferroelectrics
- Theoretical approach: DFT, NEB
- Sampling of results
- Proposed NO_x reduction cycle
- Preliminary results on key energy barriers
- What's next

What we calculated (so far)

	NO	NO dis.	0 ₂	O ₂ dis.	N ₂	N ₂ dis.	Ν	0
PbTiO ₃ (PbO term.)								
$PbTiO_3$ (TiO ₂ term.)								
PbTiO ₃ (Stable)								
$RuO_2 / PbTiO_3$	\bigcirc	\bigcirc						
RuO ₂ /(SrTiO ₃) ₁ / PbTiO ₃								
$RuO_2/(SrTiO_3)_2/PbTiO_3$								
$RuO_2/(SrTiO_3)_3/PbTiO_3$								
SrTiO ₃ (SrO term)								
$SrTiO_3$ (TiO ₂ term.)								
SrRuO ₃ (SrO term.)								
SrRuO ₃ (RuO ₂ term.)								

NO on RuO₂ / PbTiO₃

Positive

1.2 eV

Paraelectric

0.3 eV

Negative

-1.4 eV

2.0 eV

1.8 eV

1.4 eV

O₂ on RuO₂ / PbTiO₃

Paraelectric

0.88 eV

1.98 eV

1.14 eV

O₂ on RuO₂ / PbTiO₃

0.88 eV

Neg. polarization:

- weak interactions
- $0 + 0 \rightarrow 0_2$ favored
- O₂ weakly physisorbed

0 0 ٢ ٥ C O Ru о Рь 0 0

-0.73 eV

1.98 eV

2 N or N₂?

Surface	N ₂ binding	N + N binding	$N+N \rightarrow N_2$?		
Positive	0.14	-2.02	Yes		
Paraelectric	0.62	-3.13	Yes		
Negative	0.26	-4.38	Yes		

- N+N \rightarrow N₂ always favored
- N₂ is weakly physisorbed

Outline

- Overview of precious metal catalysts & problems
- Overview of ferroelectrics
- Theoretical approach: DFT, NEB
- Sampling of results
- Proposed NO_x reduction cycle
- Preliminary results on key energy barriers
- What's next

Outline

- Overview of precious metal catalysts & problems
- Overview of ferroelectrics
- Theoretical approach: DFT, NEB
- Sampling of results
- Proposed NO_x reduction cycle
- Some key energy barriers
- What's next

NO dissociation: positive RuO₂/PbTiO₃

- Barrier = 1.3 eV
- Like transition metals: transition state is ≈ 2 separate atoms

Is 1.3 eV big or small? Ru (0001) is active for NO dissociation and has barrier of 1.2-1.3 eV

Polarization dependent barriers

NO dissociation process on RuO₂ / PbTiO₃

	Pos.	Para.	Neg.
$NO \rightarrow N + O$ barrier	1.31	2.25	3.04
Adsorption energy of N + O	-1.2	-0.3	1.4

$N + N \rightarrow N_2$ process

	Pos.	Para.	Neg.
Barrier	0.51		

Outline

- Overview of precious metal catalysts & problems
- Overview of ferroelectrics
- Theoretical approach: DFT, NEB
- Sampling of results
- Proposed NO_x reduction cycle
- Preliminary results on key energy barriers
- What's next

What's next

- 1. Obviously calculate more barriers \rightarrow kinetic Monte Carlo
- Thermodynamics of monolayer RuO₂ on PbTiO₃
 Stays catalytic? Diffuses into bulk? What is its stoichiometry?
- 3. Poisoning effects of other gases (CO, CO_2 , H_2O , ...)

4. Other ideas and broader point:

can remove "Sabatier compromise" with ferroelectric....

Why Ru? Other metals?

- Chose RuO₂ because bulk RuO₂ is known "regular" NO catalyst
- Regular catalyst: has a "just right" interaction with NO
- Not stuck to "just right" interactions!
- Can choose different metals which may be more optimal on a ferroelectric surface