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The electronic Schrodinger equation

Hamilton operator:

- __ZA _ZZ‘X _aV‘JF Z‘X — X,

1=1 v=1 1,7=1
7]

electronic eigenvalue problem:

Hu = A\u



The electronic Schrodinger equation

spectrum:
isolated eigenvalues A < ¥*(o) < 0, essential spectrum A > X (o)

here:
eigenfunctions for isolated eigenvalues A < >* (o)




The electronic Schrodinger equation

solutions:
. RS N R -
u - (R — DXy, XN) = u(Xy, ., X))

depend on electron positions X1,..., XN € R

water molecule:

HoO : 3 nuclei, N =1+148 electrons

U : R3O S R




The electronic Schrodinger equation

solutions (incl. spin):

wi BV SR (xy, . Xy) o O XN O ON)

problem:
very high-dimensional domain, direct approximation possible?

rescue ?




Curse of dimensionality

Error € vs. number of degrees of freedom n in d dimensions

First order scheme

d=1 3 % n!
d=23 5~% n—1/3
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Curse of dimensionality

Error £ vs. number of degrees of freedom n in d dimensions

First order scheme e=1, Az/L== N=10
d=1 £ % n~! n ~ 10
d=3 e~ BT~ pTL/3 n ~ 1000
d=3N 5~%Nn_1/3N n ~ 10
Ax

A
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Curse of dimensionality

Error £ vs. number of degrees of freedom n in d dimensions

p-th order scheme — requiring higher-order differentiability —
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Curse of dimensionality

What if Slater-determinants (or similar) did play a role ?

Suppose
N %k
u(x) = > (k) <H i(xXi, kz‘))
k 1=1

and the

o .

Do (€ {1,2,3})  exist
then the

. . 0 0

N -th order mixed derivatives u

({93317041 855]\/,04]\;

should exist, too

* anti-symmetrized & normalized



Curse of dimensionality

Why would this be note-worthy ?

Suppose we are in d >> 1 dimensions

u(x) = Z ak)p(k,x) with ok, x) = (Hsm(kwﬁ)

k1>l€2...>kd

and

* anti-symmetrized & normalized



Curse of dimensionality

approximation space:

Vi = { Z ak)p(k,x) | ak) =0 for |ki... kq| > QL}

hyperbolic cross



Curse of dimensionality

approximation space:

Vi = { Y ak)g(k,x) | a(k) =0 for |ki... k| > QL}

k1>k‘2...>k‘d

dimension: o
n=dimVy < a(d, L) < (25t

approximation error:

| 1 R 1/2
inf |ju—olly < Q—L{Zuﬁ... kd|2‘u(k)‘2}

a
UEVL

independent of d



The electronic Schrodinger equation

Hamilton operator:

= __ZA _ZZIX@{DM Z‘X_X]‘

1=1 v=1 2]1
7]

eigenvalue problem:

Hu = \u




The electronic Schrodinger equation

interaction potential:

NE
Vix) = _;;m—ay + = ”Z_ ‘Xz_le

assigned bilinear form on H1*:

a(u,v) = /{%VU'VU + Vuv}dx

weak formulation:

Find we H' with a(u,v) = Mu,v) forallv € H

* H': functions v for which [ v*dx and [(Vv)?dz are finite



Aside on variational formulation

For problems of this type

Find u € X with a(u,v) = Au,v) forall veX

or this, with f € Lo *

Find uw € X with a(u,v)=(f,v) forall veX

coercivity plays the role of “invertibility” of matrices in finite dimensions
la(u,v)] < Ci|lul|x||v|lx  boundedness, continuity

la(u,u)| > Csllullk akin to classical invertibility

* square integrable



The electronic Schrodinger equation

interaction potential:

N K 7 1 1
Vix) = — - 5
(x) ZZ|XZ._3V| +2.Z\XZ—XJ\
=1 v=1 Z’]:l
i#]

estimate low-order part:

/ Viwdx < 3vVN max(N, Z) ||ullo| Vollo



The electronic Schrodinger equation

Pauli principle:
Full, spin-dependent wave functions are antisymmetric with respect to the
exchange of the electrons. Only solutions with certain symmetry properties are

therefore admissible.

solution spaces H'(o):

we HY  with  u(Px)=sign(Plu(x) if Po=o

splitting of the full problem:

Find wué€ H'(o) with  alu,v)=Au,v) forall ve HY o)



Spectrum and exponential decay

spectrum:
isolated eigenvalues A < ¥*(a) < 0, essential spectrum A > ¥*(o)

here:
eigenfunctions for isolated eigenvalues A < >*(o)




Spectrum and exponential decay

hydrogen ground state u(x) = e #¥, A = —1 72

multi-particle problem:
N

exp (7 Z %] )u(x) c H' (o) for certain y >
i=1




Existence and decay of high derivatives

multi-indices:

N

a=(ay,...,ay) € (ZSZO) , oy = (a4, q40,043) € Z?éo

(mixed) derivatives, monomials:
N 3
0

set of the here considered multi-indices:
A = {(Oﬂl, Ceey ()zN) ’ Q; © Z;;O? Q1+ Qo+ o3 < 1}




Existence and decay of high derivatives

regular parts of the eigenfunctions:

wlx) = exp 2 3 Zuot ) = 300~ x,) )

example for the choice of ¢:




Existence and decay of high derivatives

regular parts:

ol —exp(zw - Yo —x) ) ut)

i<j

central result:

The regular parts ug of the eigenfunctions u possess weak

derivatives D% for all multi-indices o« € A. Moreover,
N

exp (73 il ) (D%ug)(x) € H!

1=1

with the same v > 0 as for the eigenfunctions themselves.



Idea of proof

exponentially weighted regular parts:

u(x —exp( Zle)uo

second-order equation:

1
§/VﬂV1}dX—|— 5<777U> — )\(ﬂ,’l)), UEHl

estimate for low-order part:

s(u,v) S llullillvlle, w,ve H



Idea of proof

frequency decomposition u = u; + up :*

1
. /VuH-VXHdX + s(um, xn) — MNum,xn) = — s(ur, xu), xy € Hy

high-frequency parts:

lunllo < QM Vurllo

estimate for low-order part:

s(u,v) S llullillvllo, w,v e H

*ur: u(k)for k| <Q,  wuy: u(k)for k| > Q



Idea of proof

equation of order 2N 4 2:

1
5 /Vﬂ-VﬁvdX + s(u, Lv) = A(u,Lv), veES

N

1=1

key property:

s(u, Lv) S Y ID%ullo|D]1, w,v €S

acA

S = rapidly decreasing functions



Approximation of the eigenfunctions

representation of the eigenfunctions:

u(x) :exp( ZZqu a,) + Y ¢(x —xg) o(x)

i<J

exp( Z‘Xz) “uo)(x) € H' foralla € A




Approximation of the eigenfunctions

representation of the eigenfunctions:

14me(227¢ ) + Yo~ x) ) wlx)

i<j

approximate eigenfunctions:

uwzm(ngzmi )+ S0k —x,)) o)

i<j

ansatz for the regular part v:

antisymmetrized sparse grid functions
based on three-dimensional function systems™

* Eigenfunctions of one-particle Hamiltonians!!
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DE
PARTITIONE NVMERORVM.

AVCTORE
L. EV LEROQ.

§. I.

Problcma de partitione Numerorum primum mihi eft
propofitum a Celeb. Profeffore Haude , in quo quae-
rebat , quot variis modis datus numerus integer , { hic enim
perpetuo de numeris tantum integris et affirmatiuis eft fex-
mo , ) poflit effe aggregatum , duorum vel trium vel qua-
tuor , vel in genere quot libuerit numerorum. Siue quod
eodem redit , quaeritur, quot variis modis datus numerus
vel in duas, vel tres, vel quatuor, vel quot libuerit partes




ASYMPTOTIC FORMULA IN COMBINATORY ANALYSIS

By G. H. Harpy anp 8. Ramanuvian.*

(Preliminary communication December 14th, 1916.—Read January 18th, 1917.—
Received February 28th, 1917.)

1.

INTRODUCTION AND SUMMARY OF RESULTS.

1.1. The present paper is the outcome of an attempt to apply to the
principal problems of the theory of partitions the methods, depending
upon the theory of analytic functions, which have proved so fruitful in
the theory of the distribution of primes and allied branches of the analytic
theory of numbers.

The most interesting functions of the theory of partitions appear as
the coefficients in the power-series which represent certain elliptic modular
functions. Thus p (1), the number of unrestricted partitions of n, is the



Complexity of the N-electron problem

sparse grid approximation:

To obtain an H!-error of order O(1/n), one needs asymptotically
at most O(n?t) correspondingly antisymmetrized sparse grid
functions, where ¥ > 0 can be chosen arbitrarily small.

That is, independent of /V, the error of the best n-term approximation
tends to zero almost like

e 1/3

... which was the complexity of the single-particle problem!



The electronic Schrodinger equation

solutions (incl. spin):

wi BV SR (xy, . Xy) o O XN O ON)

problem:
very high-dimensional domain, direct approximation possible?

rescue:

NN -th order mixed derivatives exist and decay exponentially
smoothness increases with number of electrons

symmetry properties enforced by the Pauli principle
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