# Structural Order and Transport in Bulk Heterojunction Solar Cells

Michael L. Chabinyc Materials Department University of California, Santa Barbara



# Organic Semiconductors

#### Organic semiconductors enable direct fabrication of electronics



#### Bulk Heterojunction Organic Photovoltaics



# State of the Art Solar Cells

#### **Best Research-Cell Efficiencies**





MATERIALS UC Santa Barbara

# Structural Diversity in Efficient BHJs



# **Electronic Structure of Semiconducting Polymers**



# Crystallites in P3HT Have Two Main Orientations



P3HT thin films have dominant edge-on texture out-of-plane – alkyl chains in-plane –  $\pi$ -stacking



# Disorder and Electronic Structure in Polymers



J. Rivnay, et. al. Phys. Rev. B. 83 121306(R) (2011)

# Chain Ordering in Poly(alkylthiophenes)



Small ~10 nm crystallites

No obvious long range order



C Santa Barbara

M. Brinkmann P. Rannou Macromolecules (2011)

# Imaging Chains with Scanning Transmission Electron Microscopy





C. Takacs, et. al. Nano Lett. 2013

FT shows peaks at alkyl stacking spacing



FEI Titan 300kV microscope



# P(NDI2OD-T2) Chains in Have Long Range Correlation

Overlapping chains are resolved with long range alignment

Chain correlation length should be considered for transport simulations

C. Takacs, et. al. Nano Lett. 2013



# Molecular Order in Polymer: Fullerene BHJs



# Depth Profile of a Bilayer Film



**Deuterium = d-PCBM** 

N. Treat, M. Brady, G. Smith, M. Toney, E. Kramer, C. Hawker, M. Chabinyc Adv. Ener. Mater. 1 (2011)

# Layers Begin to Mix Upon Heating



## **Thermal Annealing Process in P3HT:PCBM**





• At I:I ratio – PCBM has little effect on P3HT crystallinity

Efficient devices comprise a three phase blend

i) pure P3HT; ii) pure PCBM & iii) molecularly mixed P3HT:PCBM

N. Treat, M. Brady, G. Smith, M. Toney, E. Kramer, C. Hawker, M. Chabinyc Adv. Ener. Mater. 1 (2011)

Similar observations by Ade, Russell, Dadmun, many others!



## Charge Formation in Bulk Heterojunctions





# **BHJ** as an Effective Semiconductor







C. Shuttle, et. al Adv. Ener Mater. (2012)

# Charge Extraction from BHJ Photovoltaics



R. Street, et. al. *Phys. Rev. B.* 84 075208 (2011) C. Shuttle, et. al *Adv. Ener. Mater.* **2** 111-119 (2012)



Charges travel to the electrode in dark and have the chance to recombine

Transient photoconductivity provides timescale of transport and thereby energetics of electronic states



# Charge Extraction Transient Shows Deep Lying States



Charge extraction shows PBDTTPD3:PCBM has deep lying traps  $(\sim > 0.45 \text{ eV} \text{ away from transport level})$ 



# Charge Extraction from BHJ Photovoltaics



- possible that there are no deep states (unlikely)
- most likely cause: doping of P3HT requires carrier concentration ~10<sup>15</sup> cm<sup>-3</sup> (confirmed by ESR)



# Can We Learn More from Transients?

Use I-D model to examine transport, i.e. reduce BHJ to an effective semiconductor

- I) Solve Poisson Equation
- 2) Recombination by Shockley-Reed-Hall mechanism

Fit to combination of transient photocurrent measurements and steady state data



Downside: numerical simulation with many parameters must be very careful to vary measurements and fit all data self-consistently



# Simulation Reveals Complex Density of States

#### Disorder in BHJ blends leads to distribution of electronic states



No reason to believe simple exponential or Gaussian is adequate to describe electronic landscape

#### Exponential DoS (LUMO) Numerical DoS (LUMO 1x10<sup>28</sup> L0.σ=35 meV L1.σ=15 meV 1x10<sup>26</sup> \_2,σ=12 meV L3,σ=8 meV -----DoS (m<sup>-3</sup>/eV) L4.σ=10 meV ···· 1x10<sup>24</sup> L5,σ=20 meV Electron States 1x10<sup>22</sup> LO 1x10<sup>20</sup> 1x10<sup>18</sup> 1x10<sup>16</sup> -4.8 -4.6 -4.4 -4.2 -4 -3.8 Energy (eV) 1x10<sup>27</sup> Exponential DoS (HOMO) 1x10<sup>26</sup> Numerical DoS (HOMO) H0,σ=20 meV H1,σ=10 meV 1x10<sup>25</sup> $H_{2,\sigma=5}$ meV 1x10<sup>24</sup> H3.σ=10 meV ..... DoS (m<sup>-3</sup>/eV) H4.σ=20 meV ..... H5,σ=20 meV -----1x10<sup>23</sup> 1x10<sup>22</sup> Hole States 1x10<sup>21</sup> 1x10<sup>20</sup> 1x10<sup>19</sup> 1x10<sup>18</sup> -4.8 -4.6 -4.4 -4.2 -4 -3.8 Energy (eV) R. MacKenzie, et. al Adv. Ener. Mater. (2012) ERIALS UC Santa Barbara

#### P3HT:PCBM Drift-Diffusion Model w/ SRH trapping

# BHJ as an Effective Semiconductor



#### Interface or "Charge Transfer" States



# Models of Interface States







R. Street Phys. Rev. B. 83 165207 (2011)



## **Decacyclene-based Acceptors**



• Similar electronic levels to PCBM; stronger optical absorption



# DTI is a well-performing non-fullerene acceptor





PCDTBT

All devices as-cast

| Donor   | J <sub>sc</sub><br>(mA/cm²) | V <sub>oc</sub><br>(V) | FF   | PCE (%) |      |
|---------|-----------------------------|------------------------|------|---------|------|
| P3HT    | 4.56                        | 0.61                   | 0.53 | 1.48    |      |
| PDTSBT  | 5.75                        | 0.72                   | 0.33 | 1.36    |      |
| PBDTTPD | 4.65                        | 1.05                   | 0.31 | 1.5     |      |
| PCDTBT  | 2.86                        | 0.93                   | 0.28 | 0.75    | rbar |

#### Excitation of DTI or Donor Leads to Charge Generation



# Charge Transfer State Observed in Tail of EQE



Reorganization energies unlikely the same - suggests interfaces states due to disorder



# Summary

- Fullerenes have substantial molecular mobility in semiconducting polymers
- Mixing observed in BHJ occurs due to PCBM diffusion within amorphous P3HT
- Non-fullerene acceptors helpful to understand interfacial states







# Acknowledgments



UCSB

Fred Wudl

Craig Hawker

**Graduate Students** Justin Cochran Neil Treat (co-w/ Hawker) Cowart (co-w/ Hawker) Nancy Eisenmenger Chris Liman Mike Brady (co-w/ Kramer) Anne Glaudell Greg Su (co-w/ Kramer) Srinivasan Venkatesh (co-w/ Hawker) Post-Docs Dr. Ruth Schlitz Dr. Betrand Tremolet de Villers Dr. Simon Bubel Dr. Joan Pho Dr. Martin Heeney Undergraduates Sarah Wang SSRL BROOKHA NATIONAL LABORATORY **Michael Toney** Dan Fisher

Funding





**CENTER** for **ENERGY EFFICIENT MATERIALS** 

Imperial College

EFRC of DOE BES

Mitsubishi Chemical - Center for Advanced Materials

**MC-CAM** 

