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Dye-sensitized (Gritzel) Solar Cells

—> Electrons path

B Electrolyte

DSSC schematic showing the electrolyte filled TiO, film attached to
the transparent electrode. The Iodine redox shuttle is in an electrolyte
mixture of a Li-lodine salt and a solvent.
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The Dye molecule

LUMO - HOMO = energy harvest/photon



LUMO verses HOMO
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Yoon-Bo Shim, Pusan National University, South Korea



Spectrum and IPCE
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IPCE = Incident Photon to Collected Electron (ratio) is a standard measurement of
dye efficiency and overall electron loss.
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First Step: Back of Envelope Calculation

Incident solar light is typically 1000 Watts/m? and a reference wave-length of

A = 500nm. From the photonic energy relation
hc
Ephoton — 79
where Planck’s constant is h = 6.626 X 107 3%J-s, and the speed of light in a
vacuum is ¢ = 3 X 10%m/s, we find

Ehoton = 3.98 X 107 12.J.

The incident photon flux is thus

J
Nine = 0w _ 2 x 107 PRoton
inc — — ’
Ephoton mZS

Using Avagadro’s number = 6.02 X 1023/mole, yields the photonic molar flux

moles

m?s

Ny =4 x 1073




Dancing in the Dark

If every photon 1s converted to an electron the incident current is

Ninc —92
Iy = — 4% 10
F

cm?

The dye density is roughly, 1 molar = 10°moles/m?®.
The dye-photon “hit-rate” for perfect absorption in a cell of depth of [; = 5pm is

—smoles
Nine 4 x 1077 2 hoton
Hits < — = m-s _ O.8p—,
lqg X Dye density 5 % 10~%m x 103m013es S
m

less than one hit a second. Better estimate is one hit every 5 seconds.
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Energy Levels and Kinetics

Forward Reactions

L - hv +D — Ryp; Dt +e_(Ti02)
700 mV 31~ + 2D —> Ryegen 13 1+ 2D
I; + 2e~ (cathode) —g_,, 31

1,/1-

Pt/TCO
Back Reactions

L I; + 2e~(TiOs) —g,., 31

D+ + e~ (TiO,) — D

The open-circuit (max) voltage depends upon back-reaction and is bounded by

VOC S VFermi - ‘/electrolyte°

The short-ciruit (max) current depends upon the light-capture efficiency.



electron energy

Juan Bisquert J. Phys. Chem. B 110 (2006).
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Fermi-Levels and Transport
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Fermi-Level Dependence

Further work is needed to determine whether the density
and energetic distribution of electron traps is an intrinsic prop-
erty of the oxide or whether it also depends on factors such
as the composition and ionic strength of the electrolyte phase,
as might be expected if trapping is due to electron—ion inter-
actions rather than defect states in the oxide.

From survey article: Laurence Peter Accounts of Chemical Research 42 (2009).
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Marcus Theory— Back Reaction Rates

Predicts rate of electron transfer, kot, between solvated ions/interfaces. Incorpo-
rates rearrangement energy, A, of solvation spheres required after charge transfer

o |Hag|? ( (A + AG°)2>
et — eXp — .
h \/471')\ka 4>\ka

log k

30 25 -20 15 -10 05 00

AGY (ev)

(left) Free energy verses 'reaction coordinate’, showing strength of coupling, H A,
between donor and acceptor states, liberated (Gibbs) free energy AG®°, and the
reorganization energy, A. (right) In ket verses AG*® for transfer to an acceptor
with differing numbers of aromatic hydrocarbons, and hence differing AG°.
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J-V Curves
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Open Circuit Voltage (OCV), Short Circuit Current (SCC), Incident Photon Con-
version Efficiency (IPCE), Fill Factor (FF), Cell Efficiency.

A simple model reproduces the experimental current-voltage relations.

Typical DSSCs have Voc = 0.7 — 0.8V and Isc = 10 — 15 mA/cm?, with
conversion efficiencies of 11%.
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Vanilla Cell Model

4 TiO, Dye Electrolyte Cathode

4 TiO, Dye Electrolyte Anode
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(Left) Typical voltages in the DSSC in the absence of back reaction. The TiO,
fills trap levels raising the Fermi level. The fill rate decreases as the difference
between the excited dye state, V,; + E and the trap level V. decrease. Photons
excite the dye from its HOMO Vj; to its LUMO level V; 4+ Ey. The observed
cell voltage V' 1s difference between cathode and anode voltages. The redox
shuttle recharges the oxidized dye at a rate dependent upon the voltage differ-
ence V. — V4. (Right) Back reactions, depicted in red, can recombine trapped
electrons from the TiO2 to oxidized dye states D™ or to the redox shuttle, at
rates that depend upon the voltage differences.
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Rate Equations

The total dye concentration, total Iodine, and charge balance
Cp=D"+ D,
Cr =2, +1 + 31,
I"+1I; +n.=Li" + D™.
The buffering reaction is fast, which yields the equilibrium relation

LIT k.,
— =P s =10"".
I k',
3 bf
The remaining, dynamic variables are the concentration of electrons in the conduc-
tion band

injection rate back reaction rate cathoderate

dn, PN — —
di — Rinj — 2 Ry ack — 2R
and the oxidized dye
dD™ B

dt — Rinj - 2Rregen°
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The cell voltage 1s either prescribed or set via an external resistance relation
V = Jeettext = 2}zcathszexta

where the cell current is equal to twice the cathode reaction rate.
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Dark-Cell Decay

Voltage Decay
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A better diagnostic experiment is the dark-cell decay:

A cell is illuminated until steady-state, the light is extinguished and the voltage
1s recorded as a function of time. This gives a strong measurement of the back
reaction rate.
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Much of the back reaction is from the transparent fluorine doped tin oxide (SnO5:F)
or FTO collection plate, adding a blocking layer of pure TiO, greatly reduces this
mode of back reaction.

18



How to Improve DSSCs?

e Replace Ruthenium with a cheaper (organic) dye
e Replace Pt electrode with a non-precious metal (Exfolieated Graphene)
e Reduce the back reaction by replacing electrolyte mixtures.

e Eliminate volatility of the electrolyte, which leads to leakage, evaporation, and
expansion upon freezing.

hole
transporting
medium

dye barrier

Replace electrolyte with

| | | | \Tf ‘14
e Organic and inorganic hole-transport materials Tio, A
e

~_ Slow

e Polymers and poly-electrolyte gels /\
e Jonic Liquids

Caveats: Pay attention to compatibility of new electronic transporter with TiO»/dye
and potential back-reaction rates.
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Solid-State (Polymer) Hole Transport Polymers verses Gels

Amphiphilic
sensitizer dye Polymer gel

Nanocrystalline electrolyte doped Platinized
TCO—&%:;ted TiO, film with /13 TCO-coated glass
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e Solid State Polymer hole conductors have no volatile solvents, but generically
have poor connectivity to the dye molecules.

e Embedding the 1odine redox shuttle in a polymer gel matrix reduces need for
Lithium, and entraps solvent in a porous network that dramatically limits its
volatility and swelling, yet may preserve its role as a charge transfer mediator at
the dye interface.
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