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Multiple Sequence Alignment (MSA):
a major grand challenge’

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC S3 = TAG-CT------- GACCGC--
Sn = TCACGACCGACA Sn = —-—-—-—-—-—-- TCAC--GACCGACA

Novel techniques needed for scalability and accuracy

NP-hard problems and large datasets
Current methods do not provide good accuracy
Few methods can analyze even moderately large datasets

Many important applications besides phylogenetic estimation

" Frontiers in Massive Data Analysis, National Academies Press, 2013



Multiple Sequence Alignment

 Multiple purposes (e.g., phylogeny estimation
and molecular function/structure prediction)

 Multiple techniques, drawing from disparate
communities (biophysics, statistical inference,
computer science, discrete mathematics, etc.)

 Multi-disciplinary effort and communication
needed
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Phylogeny (evolutionary tree)

Corbisicam

From the Tree of the Life Website,
University of Arizona



Constructing the Tree of Life:
Hard Computational Problems
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NP-hard problems

Large datasets
100,000+ sequences
thousands of genes

“Big data” complexity:
model misspecification
fragmentary sequences
errors in input data
streaming data



Phylogenomic pipeline

Select taxon set and markers

Gather and screen sequence data, possibly identify orthologs
Compute multiple sequence alignments for each locus
Compute species tree or network:

— Compute gene trees on the alignments and combine the estimated
gene trees, OR

— Estimate a tree from a concatenation of the multiple sequence
alignments

Get statistical support on each branch (e.g., bootstrapping)
Estimate dates on the nodes of the phylogeny

Use species tree with branch support and dates to understand biology
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DNA Sequence Evolution

AAGACTT -3 mil yrs|

-2 mil yrs|

AAGGCCT TGGACTT

-1 mil yrs|

AGGGCAT TAGCCCT AGCACTT

AGGGCAT TAGCCCA  TAGACTT AGCACAA AGCGCTT today



Phylogeny Problem

U \4 \u4 X Y

@ @ @ @ @
AGGGCAT TAGCCCA TAGACTT TGCACAA TGCGCTT
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Performance criteria

Running time
Space

Statistical performance issues (e.g., statistical
consistency) with respect to a Markov model
of evolution

“Topological accuracy” with respect to the
underlying frue tree or true alignment,
typically studied in simulation

Accuracy with respect to a particular criterion
(e.g. maximum likelihood score), on real data



Markov models of site evolution

Simplest (Jukes-Cantor):

 The model tree is a pair (T,{e,p(e)}), where T is a rooted
binary tree, and p(e) is the probability of a substitution on
the edge e

 The state at the root is random

 If a site changes on an edge, it changes with equal
probability to each of the remaining states

* The evolutionary process is Markovian

More complex models (such as the General Markov model)
are also considered, with little change to the theory.
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Statistical consistency, exponential convergence,
and absolute fast convergence (afc)
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Phylogenetic reconstruction methods

1. Hill-climbing heuristics for hard optimization criteria
(Maximum Parsimony and Maximum Likelihood)

Local optimum

Cost /

“ Global optimum

Phylogenetic trees

2. Polynomial time distance-based methods: Neighbor Joining, FastME,
Weighbor, etc.

3. Bayesian methods



Phylogeny Problem
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The “real” problem

U \4 \u4 X Y
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Indels (insertions and deletions)

Deletion Mutation
..ACGGTGCAGTTACCA...

\ /
\N !/
Ny

LACCAGTCACCAL.



D?Hlon Subititution

..ACGGTGCAGTTACCA...

/ '”29”‘0” ..ACGGTGCAGTTACC-A..
..ACCAGTCACCTA.. ..AC----CAGTCACCTA..

The true multiple alighment

— Reflects historical substitution, insertion, and deletion
events

— Defined using transitive closure of pairwise alignments
computed on edges of the true tree



S1
S2
S3
S4

Input: unaligned sequences

= AGGCTATCACCTGACCTCCA

TAGCTATCACGACCGC
TAGCTGACCGC

= TCACGACCGACA



Phase 1: Alignment

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC S3 = TAG-CT-——-——-———-— GACCGC--

S4 = TCACGACCGACA S4 = ——————— TCAC--GACCGACA



Phase 2: Construct tree

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--

S3 = TAGCTGACCGC S3 = TAG-CT-——-——-———-— GACCGC--

S4 = TCACGACCGACA S4 = ——————— TCAC--GACCGACA
S1 S2

N

S4 S3




Simulation Studies

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA
Unaligned
Sequences
S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC-H
S3 = TAG-CT-----—-- GACCGC—-
S4 = ————--- TCAC--GACCGACAH
s1, 52 < >

>{ Compare

S4 S3

True tree and
alignment

S1 = -AGGCTATCACCTGACCTCCH
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-C--T-----GACCGC--
S4 = T---C-A-CGACCGA----CH
sy, S4
s52 53

Estimated tree and
alignment
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Two-phase estimation

Alignment methods Phylogeny methods

e Clustal ]

. POY (and POY*)  Bayesian MCMC

* Probcons (and Probtree) e Maximum parsimony
* Probalign . . .

. MAFFT  Maximum likelihood
* Muscle * Neighbor joining

e Di-align

. T-Coffee * FastME

* Prank (PNAS 2005, Science 2008) e UPGMA

e Opal (ISMB and Bioinf. 2007) ]

«  FSA (PLoS Comp. Bio. 2009) * Quartet puzzling

* Infernal (Bioinf. 2009) e Etc.

 Etc.

RAXML: heuristic for large-scale ML optimization
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Large-scale Alignment Estimation

e Alignments of large datasets with high rates
of evolution typically have high error, and
trees estimated on these alignments also
have high error

* Only a few methods can analyze large
datasets



1kp: Thousand Transcriptome Project

N. Matasci T. Warnow, S. Mirarab, N. Nguyen,
UT-Austin UT-Austin

G. Ka-Shu Wong J. Leebens-Mack N. Wickett I
U Alberta U Georgia Northwestern ~ iPlant uliuc

Plus many many other people...

o First study (Wickett, Mirarab, et al., PNAS 2014) had ~100 species and
~800 genes, gene trees and alignments estimated using SATe, and a

coalescent-based species tree estimated using ASTRAL

o Second study: Plant Tree of Life based on transcriptomes of ~1200
species, and more than 13,000 gene families (most not single copy)

Upcoming Challenges:
Species tree estimation from conflicting gene trees

Alignment of datasets with > 100,000 sequences
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1KP dataset: more than
100,000 p450 amino-acid
sequences, many fragmentary

All standard multiple
sequence alignment
methods we tested
performed poorly on
datasets with fragments.



1kp: Thousand Transcriptome Project

N. Matasci T. Warnow, S. Mirarab, N. Nguyen,
UT-Austin UT-Austin

G. Ka-Shu Wong J. Leebens-Mack N. Wickett I
U Alberta U Georgia Northwestern ~ iPlant uliuc

Plus many many other people...

o First study (Wickett, Mirarab, et al., PNAS 2014) had ~100 species and
~800 genes, gene trees and alignments estimated using SATe, and a

coalescent-based species tree estimated using ASTRAL

o Second study: Plant Tree of Life based on transcriptomes of ~1200
species, and more than 13,000 gene families (most not single copy)

Upcoming Challenges:
Species tree estimation from conflicting gene trees

Alignment of datasets with > 100,000 sequences,
and many fragmentary sequences!




Phylogenomic pipeline

Select taxon set and markers

Gather and screen sequence data, possibly identify orthologs
Compute multiple sequence alignments for each locus
Compute species tree or network:

— Compute gene trees on the alignments and combine the estimated
gene trees, OR

— Estimate a tree from a concatenation of the multiple sequence
alignments

Get statistical support on each branch (e.g., bootstrapping)
Estimate dates on the nodes of the phylogeny

Use species tree with branch support and dates to understand biology




Phylogenomic pipeline

Select taxon set and markers

Gather and screen sequence data, possibly identify orthologs
Compute multiple sequence alignments for each locus
Compute species tree or network:

— Compute gene trees on the alignments and combine the estimated
gene trees, OR
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Multiple Sequence Alignment (MSA):
another grand challenge’

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC S3 = TAG-CT------- GACCGC--
Sn = TCACGACCGACA Sn = —-—-—-—-—-—-- TCAC--GACCGACA

Novel techniques needed for scalability and accuracy

NP-hard problems and large datasets
Current methods do not provide good accuracy
Few methods can analyze even moderately large datasets

Many important applications besides phylogenetic estimation

" Frontiers in Massive Data Analysis, National Academies Press, 2013



Research Questions

What are good statistical models of sequence evolution that include
insertions, deletions, and other events (rearrangements, duplications,
etc.)? Are the model trees identifiable under these models?

Can we co-estimate sequence alignments and trees with high accuracy?
Can we improve alignments?

Can we do large-scale alignment estimation with high accuracy?

Can we do alignment-free phylogeny estimation?

How should we measure alignment accuracy? Are common ways of
measuring alignment accuracy predictive of tree accuracy?

Are alignments for the purpose of structure/function prediction the same
as alignments for phylogeny estimation?
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Patsy Babbit

Back to the Beginning: Which sequences to align?

While much attention has been directed at mathematical and statistical
issues for creating accurate multiple alignments, consideration of which
sequences (or parts of sequences) and structures to align is less well
explored. This issue is especially important for investigation of structure-
function relationships in large sets of highly diverse homologs for which
the proteins of unknown function are far greater than those that have
been biochemically or structurally characterized.

We discuss what we have learned about choosing representative
sequences for creating MSAs from studies of several large and functionally
diverse enzyme superfamilies and provide examples for how biologically
informed questions can be framed using this context.

Sequence similarity networks built to summarize on a large scale
relationships among members of several of these superfamilies are used
to illustrate new challenges for creating MSAs as the volume of sequence
data continues to increase.



Alexandre Bouchard-Cote

MSA using Divide-and-Conquer Sequential
Monte Carlo

* Divide-and-Conquer Sequential Monte Carlo
(D&C SMC), a method for performing
inference on a collection of auxiliary
distributions organized into a tree.

* D&C SMC provides a simple method for
approximating the posterior distribution of
Bayesian MSA models



Noah Daniels

Structure-based multiple sequence alignments

There exist several approaches to improving protein sequence
alignment algorithms using structural information. However, how
to best balance sequence alignment quality with structural
alignment quality has not been clear.

We will first demonstrate how sequence information can improve
structural alignments, and then explore how advances in homology
detection such as Markov random field approaches can improve
sequence alignments.

Finally, we will discuss how we might re-evaluate the tradeoffs
between sequence and structural alignment quality when they are
in disagreement._



Steve Evans

Recovering a tree from the lengths of random subtrees

e Suppose that we sample the leaves of edge-weighted
tree with n leaves in a uniform random order and
record the lengths of the subtrees spanned by the first
k leaves (that is, in biological terms, the phylogenetic
diversity of the first k taxa) for k between 2 and n.

e “Can we reconstruct the tree (up to isomorphism)
from the joint probability distribution of this random
increasing sequence of lengths?"

 The answer is affirmative if we know a priori that the
tree belongs to one of a number of families, but the
general question is still open.




Adam Godzik

Analysis and multiple alignments of periodic proteins

* Periodic proteins, characterized by the presence of multiple
repeats of short sequence motifs, present unique
challenges in their analysis and alignments. Especially
interesting class of periodic proteins are irregular periodic
proteins, where individual repeats can vary in length,
sometimes considerably.

* We have developed a series of tools to classify regularity
(or irregularity) of periodic proteins and to use such
irregularity patterns to guide the multiple alignments.

 We present application of these tools to a group of Leucine
Rich Repeat (LRR) proteins.




Nick Grishin

Pushing the limits of sequence profile similarity search and alighment

Traditionally, sequence similarity search has been riding on negatives and
deriving power from random models to be rejected for positive hits.

Exploring the other side, we show that the search can be significantly
improved by considering the positives, i.e., known homology relationships
in a database of sequence profiles.

Similar strategies have been widely used by most successful search
engines, such as Google. This algorithm results in re-ranking of hits, but
does not correct faulty alignments.

The main focus in the sequence alignment field has been on alignment
construction. However, many alignments are reasonably accurate with the
exception of several mildly misaligned regions.

We propose new approaches to refinement of existing alignments and
show that successful a posteriori detection and correction of misaligned
regions results in alignment improvement.



Jim Leebens-Mack

Challenges in plant phylogenomics

* Gene and genome duplications are rampant in
plant genomes.

* | will discuss the challenge this presents for
gene family circumscription, multiple
sequence alignment, gene tree estimation,
ortholog identification, and species tree
estimation.



Olivier Lichtarge

Evolution versus disease: the calculus of life

The relationship between genotype mutations and phenotype variations
determines health in the short term and evolution over the long term, and it
hinges on the action of mutations on fitness. A fundamental difficulty in
determining this action, however, is that it depends on the unique context of each
mutation, which is complex and often cryptic. As a result, the effect of most
genome variations on molecular function and overall fitness remains unknown,
and stands apart from population genetics theories linking fitness effect to
polymorphism frequency.

Here, we hypothesize that evolution is a continuous and differentiable physical
process coupling genotype to phenotype.

Thus elementary calculus and phylogenetics can be integrated into a perturbation
analysis of the evolutionary relationship between genotype and phenotype that
guantitatively links point mutations to function and fitness and that opens a new
analytic framework for equations of biology. In practice, it explicitly bridges
molecular evolution with population genetics with applications from protein
redesign to the clinical assessment of human genetic variations.



Ari Loytyjoja

Phylogeny-aware alignment with sequence graphs

* PAGAN is a new program for phylogeny-aware multiple
sequence alignment using partial-order sequence graphs,
and Wasabi is a graphical front-end for phylogeny-aware
alignment.

* |n PAGAN, we use sequence graphs to model uncertainties
in character presence/absence and thus make the
phylogeny-aware algorithm less sensitive to errors in guide
phylogeny or noisy input data.

 PAGAN can also extend existing alignments with new data:
we have built applications of this for phylogenetic

placement of marker gene data and for reference-based
scaffolding of NGS data.




Cedric Notredame

Grabbing High Hanging Fruits From the Tree Of Life

e Results on simulated data suggest that some
disagreements may exist between evolutionarily and
structurally correct multiple sequence alignments

* | will introduce a recently developed confidence index for
multiple sequence alignments, the TCS (Transitive
consistency score) and show how this index can be used to
both identify structurally correct positions in an alignment
and evolutionary informative sites, thus suggesting more
unity than initially thought between these two parameters.

* | will then introduce the structure based clustering method
we recently developed to further test these hypothesis.




Jian Peng

Distances between protein sequence alignments

 We consider the problem on how to measure
the similarity between sequence alignments.

* With good similarity metrics, we are able to
use machine learning methods to learn more
accurate alignment models than traditional
ones, for structure prediction and/or
homology search.



Mark Ragan

Phylogenetics without multiple sequence alignment

Multiple alignment is computationally hard, and does not extend
naturally to instances in which the sequences under consideration
have been rearranged relative to each other, misassembled (or not
assembled in the first place), or contain regions of lateral origin.

| explore alternative approaches that begin with the extraction of
short perfectly or near-perfectly matching character strings
variously known as words, k-mers or n-grams.

Using synthetic and empirical data | will survey the major
alignment-free approaches in phylogenetics, consider their
performance and robustness under various scenarios of sequence
evolution, and comment on their computational scalability.



Benjamin Redelings

Erasing Errors Due to Alignment Ambiguity When Estimating Positive

Selection

Current estimates of diversifying positive selection rely on first having an
accurate multiple sequence alignment. Simulation studies have shown
that under biologically plausible conditions, relying on a single estimate of
the alignment from commonly used alignment software can lead to
unacceptably high false positive rates in detecting diversifying positive
selection.

We present a novel statistical method that eliminates excess false
positives resulting from alignment error by jointly estimating the degree of
positive selection and the alignment under an evolutionary model.

We also show that samples taken from the posterior alignment
distribution using the software BAli-Phy have substantially lower
alignment error compared to MUSCLE, MAFFT, PRANK, and FSA
alignments.



Sebastien Roch

A survey of theoretical results for the TKF91 model

* Thorne, Kishino, and Felsenstein (TFK91)
developed a model of sequence evolution that

included insertions and deletions in addition to
substitutions.

* | will give a survey of theoretical results on the
reconstruction of phylogenies under the TKF91

model. | will mostly discuss known consistency/
inconsistency results.



Scott Schmidler

The Cutoff Phenomenon in Evolutionary Models for Sequence Alignment

 We examine limits on inferring evolutionary divergence times using
sequence evolution models arising as a consequence of the probabilistic
“cutoff phenomenon”, in which a Markov chain remains far from
equilibrium for an extended period, followed by a rapid transition into
equilibrium.

« We show that evolutionary sequence models exhibit a cutoff, which
relates directly to increased uncertainty in evolutionary distance
inferences.

 We derive the cutoff explicitly for symmetric models, and demonstrate
empirically the behavior in models routinely used in the literature. We
also show how to locate cutoffs for specific models and sequences.

* Finally, we show that the cutoff explains several previously reported
problems with common default priors for Bayesian phylogenetic analysis,
and we suggest a new class of priors to address these problems.




Martin Weigt

Coevolutionary modeling of protein sequences:
Inference of 3D structure and mutational

landscapes
* Direct-Coupling Analysis (DCA): a statistical-
inference approach for detecting direct residue

coevolution in large multiple-sequence
alignments of homologous proteins.

 We will show how to predict tertiary and
guaternary protein structures, reconstruct
protein-protein interaction networks, and infer
guantitative mutational landscapes.




Jinbo Xu

Graphical models of multiple protein sequence alienment

* This talk will present the modeling of multiple protein
sequence alignment (MSA) by Markov Random Fields
(MRF) and its applications to homology detection,
evolutionary coupling analysis and protein folding.

 This talk will cover

— modeling a set of related protein families (each
represented as an MSA) by group graphical lasso and its
application to joint evolutionary coupling analysis and
protein contact prediction; and

— aligning two MSAs by aligning their respective MRFs and
its application to homology detection and fold recognition.




Research Questions

What are good statistical models of sequence evolution that include
insertions, deletions, and other events (rearrangements, duplications,
etc.)? Are the model trees identifiable under these models?

Can we co-estimate sequence alignments and trees with high accuracy?
Can we improve alignments?

Can we do large-scale alignment estimation with high accuracy?

Can we do alignment-free phylogeny estimation?

How should we measure alignment accuracy? Are common ways of
measuring alignment accuracy predictive of tree accuracy?

Are alignments for the purpose of structure/function prediction the same
as alignments for phylogeny estimation?

What is the impact of alignment error on downstream biological analyses?



Opportunities for presentations

* Today: 4-5 PM: Brief (3-5 minute)
presentations by participants. (No need to
request a slot...)

* Today: 5-6 PM: Poster session

* Tuesday and Thursday: 4-5 PM: short talks
(approx. 15 minutes each) — please see one of
the organizers today to request to speak.



