Back to the beginning: Which sequences to align?

IPAM MSA Workshop January 2015

Patsy Babbitt <u>babbitt@cgl.ucsf.edu</u> University of California, San Francisco

MSAs: Critical for structure-function studies

	10	151	176
	*	*	*
Cu++ATPase.Ec	L DT V V F D KT GT LT E G	V I A G VL PD G <mark>K A</mark> E A I KH L	A M V G D G I N D A P A L
Cu++ATPase.Hs	V K V V V F D KT GT IT H G	V F A E VL P SH K V A KV K Q L	A M V G D G I N D S P A L
Ca++ATPase.At	A TT I C S D KT GT LT T N	V M A R S S P M D K H T L V R L L	A V T G D G T N D A P A L
Urf.Mj	K V A I V F D S A GT L V K I	E A H Q E L K R D L I R N L	I M V G D G A N D V P A M
PhosSerPhos.Hs	A D A V C F D V D ST V I R E	T A E - S G G K G K VI K L L K E	I M I G D G A T D M E A C
2-D0-6-PPhos.Sc	V D L C L F D L D GT I V S T	I T G F D V K N G K P D P E G Y S	V V F E D A P V G I K A G
DL-Gly-3-Phos.Sc	I N A A L F D V D GT I I I S	I T A N D V K Q G K P H P E P Y L	V V F E D A P A G I A A G
Phosphon.Pa Phosphon.St Phosphon.Bc	L Q A A I L D WA G T V V D F I H A V I L D WA G T T V D F I E A V I F D WA G T T V D Y	A T D E V - P N G R P W P A Q A L A T D D L A A G G R P G P W M A L T P D D V - P A G R P Y P W M S Y T C C E S L P O P K D D A D L A	V K V D D T W P G I L E G V K V D D A A P G I S E G I K V G D T V S D M K E G
NtermDom.IGPD.Pp	VQALL L D MDGV MAEV	LEDCPPKPSPEPIL	AMVG D TVDDIIAG
B-PhosGlucoMut.Ll	FKAVLFDLDGVITDT	AEVAASKPAPDIFI	IGLE D SQAGIQAI
HaloAcidDehal.PspYL	IKGIAFDLYGTLFDV	LSVDPVQVYKPDRVYE	LFVS S NAWDATGA
NtermDomEpoxHyd.Hs	L RAAVI <mark>FULDGV</mark> LALP	1 E S C Q V G M V <mark>K P</mark> E P Q I Y K	L F L S D I H Q E L D A A
EnolasePhos.Ko	I RAIV <mark>TD IEGT</mark> TSDI	F D - - T L V G A <mark>K R</mark> E A Q S Y R	

How have enzymes evolved to catalyze the many different chemical reactions required of living organisms?

...by re-using a limited set of "privileged" structural scaffolds

Enolase: 40 rxns Amidohydrolase: ~100 rxns

Haloalkanoic acid dehalogenase: 30-50 rxns

Glutathione transferase:44 major subgroups: ?? rxns

Isoprene synthase I: ?? rxns >50,000 products

Crotonase: 20 rxns

Each functionally diverse enzyme superfamily (SF) links a conserved active site architecture to a fundamental catalytic capability

Jensen, R.A. Ann. Rev. Microbiol 30:409-425(1976) Petsko, G. A. et al., TIBS 18: 372-376 (1993) Babbitt & Gerlt, JBC 272: 30591 (1997) Gerlt & Babbitt, Ann Rev Biochem 70: 209 (2001)

This "chemistry constrained" model restricts the search space for functional inference for all members of the superfamily

>39,000 sequences, 23+ known reactions, many biological functions

Predicting reaction & substrate specificity is much harder ...

Goals

- > Identify the fundamental chemical capability associated with the conserved features of the structural superfamily and the catalytic machinery shared by all members
- > Determine the patterns by which divergence has altered the structural scaffold and active site architecture to enable many different chemical reactions using the superfamily scaffold

Applications

- > Inform mechanism in knowns
- > Use a SF's fundamental structure-function mapping to limit the search space for functional inference in unknowns
- > Curation of functionally diverse enzyme superfamilies on a large scale
- > Guide identification of starting scaffolds for enzyme engineering
 - which superfamily scaffolds "know" how to catalyze the thermodynamically difficult step for a reaction of interest?

What does this have to do with MSA creation?

- > How to take advantage of the volume of [diverse] sequence and structure data now available
- > How to incorporate more functionally/biologically informed ways to choose which sequences/structures to align

This chemistry-constrained model suggests a general classification scheme

Annotation transfer only at the level of granularity at which good supporting evidence exists

See description in Nucleic Acids Res. 2014 Jan 1;42:D521-30 2

What is the Structure-Function Linkage Database (SFLD)?

- A hierarchical classification of enzymes that relates specific sequence-structure features to specific chemical capabilities
- A collection of tools and data for investigating sequencestructure-function relationships and hypothesizing function
- More...

How can I use the SFLD?

(see the tutorials for examples)

- Classify a sequence using Hidden Markov Models or BLAST search
- Browse superfamilies in the SFLD
- · Browse reactions (overall)
- Search for a specific enzyme (by name, sequence database ID, or PDB ID)
- View sequence alignments
- · View structures in Chimera
- Download data: sequence sets, multiple alignments, sequence similarity networks...

What makes the SFLD unique?

- Superfamilies are defined by a conserved chemical capability such as a partial reaction, families by a conserved overall reaction (more...)
- Conserved partial reactions are correlated with associated active site similarities
- Large-scale summaries of relationships between and within groups of enzymes are provided as sequence similarity networks

Projects under Development

- Extended SFLD (XSFLD)
- Identifying Potential Misannotations

	Universit	y of California, San Fran	icisco About I	UCSF UCSF Medical Center	SFLD	RBV
Home	About SFLD	Documentation -	Tutorials	Contact Us		Curator's Entr
		Browse by	/ Superfamil	ly Browse by Reaction	Search by Enzyme	
Top L	evel	Namo)			
L Su	perfamily (co	e) Enola	ise			
LS	ubgroup	muco	nate cycloiso	omerase		
L	Family	N-suc	cinylamino a	acid racemase 2		

	Total	100% 🖵	<100% 🖵
Functional domains	196	0	196
UniProtKB	255	0	255
GI	694	0	694
Structures	3		
Reactions	1		
Functional domains of this New functional domains were	family were las	st updated on Jar this family on De	n. 7, 2015 c. 31, 2014

				Pairwise % I	dentities			
0	170	180	190_	200	210	<u>2</u> 20	230	240
FKMKVGT	EVTRDVARI	KAVRQQVGEDI	AIRV <mark>DVNQG</mark>	WENAATTLÇ	GLRAMKDLNI	DWL <mark>EQPVDS</mark>	EDIDGMVEIK	SKSDVPLN
'LKI <mark>KVGT</mark>	SIEEDVARI	KAVRSRVGNDI	AIRV <mark>DVNQG</mark>	WKTSTAALK	ALKQLEELQI	DWV <mark>E</mark> QPVAA	DDIDGLAEVE	AKIAIPVN
FKM <mark>KVGTNVKEDVKRIEAVRERVGNDIAIRV</mark> DVNQGWKNSANTLTALRSLGHLNIDWI <mark>E</mark> QPVIADDIDAMAHIRSKTDLPLN								
FKM KVGT		GAVINGINUL	MIN DVNQG	WINDANTIT	Анконопин	Sur Sala		
Position	Amino acid	Function	AINUDVNQG				Curator notes	Eviden Code

Position	Amino acid	Function	Curator notes	Eviden Code
163	Lys (K)	base (abstracts alpha proton), acid (donates proton to leaving group)		
191	Asp (D)	metal binding ligand		ICS
218	Glu (E)	metal binding ligand		ICS
243	Asp (D)	metal binding ligand		ICS
267	Lys (K)	base (abstracts alpha proton), acid (donates proton to leaving group)	Catal	vzed Reaction(s)
-			race	emization of n-succinylamino a

Protein Name	Superfamily	Family	Species ↓	Databases 🛡	UniProtKB	MicrobesOnline Operon	The SEED	PDB ID	Structures	Updated
N-succinylamino acid racemase 2	Enolase	N-succinylamino acid racemase 2	Bacillus anthracis str. Ames ⊡ ↓	GI REF UP MO TS MB PDB	A0A084CRN0	7611946	fig 486623.3.peg.5055	2P8B 2P8C 2P88	3	Jan. 07, 2015
N-succinylamino acid racemase 2	Enolase	N-succinylamino acid racemase 2	Bacillus cereus ATCC 14579 ⊡ ↓	GI REF UP MO TS MB PDB	Q811L5	357748	fig 226900.1.peg.322	2P8B 2P8C 2P88	3	Jan. 07, 2015
N-succinylamino acid racemase 2	Enolase	N-succinylamino acid racemase 2	Bacillus cereus ATCC 10987 ☐ ↓	GI REF UP MO TS MB PDB	Q73EC5	643701	fig 222523.1.peg.433	2P8B 2P8C 2P88	3	Jan. 07, 2015
N-succinylamino acid racemase 2	Enolase	N-succinylamino acid racemase 2	Bacillus cereus ☐ ↓	GI REF UP TS MB PDB	Q4MJ00		fig 269801.1.peg.4979	2P8B 2P8C 2P88	3	Jan. 07, 2015
N-succinylamino acid racemase 2	Enolase	N-succinylamino acid racemase 2	Bacillus thuringiensis ⊟ ↓	GI REF UP MO MB PDB	Q6HP62	595563		2P8B 2P8C 2P88	3	Jan. 07, 2015

Core SFLD

Suprafamily	Superfamily	Subgroups	Families	Sequences	Structures	Reactions
	Amidohydrolase	11	89	79238	474	41
	Aromatic Prenyltransferase	2	0	339	18	0
	Crotonase	2	27	75290	172	28
	Enolase	7	20	39661	355	22
	Haloacid Dehalogenase	25	22	79778	570	21
	Isoprenoid Synthase Type I	14	69	16579	359	65
	Isoprenoid Synthase Type II	4	8	7645	202	8
	Nucleophilic Attack 6-Bladed Beta- Propeller (N6P)	3	3	31085	85	2
	Radical SAM	49	93	113568	52	66
	RuBisCO	2	2	41212	73	2
Thioredoxin Fold	Glutathione Transferase (cytosolic)	42	0	13097	432	0
Suprafamily	Peroxiredoxin	6	0	12239	179	0
	TOTAL: 12	167	333	515791	2971	255

Next steps: Identification & integration of conserved chemical capabilities in superfamilies & patterns by which their chemistry varies

~ II	- н	п -п		~ 1	1 - Ц	
11	t n	п, п		÷I	ц., Ц	A
		n Num	ber of a	71		Conserved #
Superfamily ¤	ID =	Reactions	numbers	~ 11	EC positions	Substructure =
т II	1 н	7.1 ≤ Π	~ I ~ H		с и	ц.
<u>Alkaline</u> phosphatase-like ¤	: c.76.1 ≍	- 1 67 ¤	≂ı 5 ¤		<u>3.1.x.x</u> ¤	
<u>SGNH hydrolase</u> ×	c.23.10	-1 19 ¤	- 1 2 11		<u>3.1.1.x</u> ¤	царана и обращание и обращи и обращи и обращание и обращани и обращани и обращани и обращ
<u>Metallo-dependent</u> phosphatases ≖	d.159.1	~ı 30 ¤	~ 1 2 ¤		<u>3.1.3.x</u> ¤	COP(0)(=0)0
<u>Carbohydrate</u> phosphatase ≍	[⊭] e.7.1 ¤	-ı 17¤	"" 4 ¤		<u>3.1.3.x</u> ¤	
Cobalamin (vitamin B12)-dependent enzymes ¤	c.1.19⊭	- 1 6 ¤	°⊐ 2 ¤		<u>4.2.1.x</u> ⊭	о
Phosphoglycerate mutase-like ¤	י c.60.1 ¤	- I 58 ¤	- 1 5 ¤		x.x.x.x ¤	
<u>Six-hairpin</u> glycosidases =	a.102.1	- 1 6 ¤	- 1 3 ¤		<u>X.X.X.X</u> ¤	
<u>alpha/beta-</u> <u>Hydrolases</u> ⊭	c.69.1 ⊧	- I 13 ¤	-1 3 ¤		<u>3.1.1.x</u> ¤	- : CCOC(C)=0 ::

Chiang et al, PLoS CB, 4:e1000142 (2008)

Gemma Holliday PhD

Tackling sequence data on a large scale

Most protein superfamilies are too large to manage & easily explore using multiple sequence alignments & trees

We estimate that ~1/3 of the universe of enzyme superfamilies are functionally diverse Almonacid & Babbitt, Curr Op Biol Chem 15:435 (2011)

Accessing the larger context: Protein similarity networks

- > Powerful hypothesis generator for structure-function relationships
- > Interactive
- > Fast
- > Easy visualization (Cytoscape)
- > Handles thousands of sequences, structures, etc.
- > Pairwise comparisons don't require a multiple alignment
- > Track well with known structurefunction relationships
- > Capture sequence, structure, ligand, relationships
- > Many metrics & algorithms for comparison & clustering of similarity data
- > Networks not a substitute for phylogenetic trees

Node = sequence (or structure)

Edge = connections between sequences w scores as good as the E-value cutoff threhold Sequence networks in this presentation: all-byall BLAST (*E*-values as scores); structure: all-

by-all FAST/TM-align scores

Validation

Comparison of distance metrics for generating networks shows that BLAST correlates well with several other metrics

Uronatel	BLAST	SW	MA	PT
MLE				
BLAST		0.999	0.971	0.953
Smith-Waterman (SW)	0.998		0.970	0.953
Multiple Alignment (MA)	0.800	0.798		0.974
Phylogenetic Tree (PT)	0.731	0.731	0.777	
NagA	BLAST	SW	MA	PT
NagA	BLAST	SW	MA	PT
BLAST NagA	BLAST	SW 0.997	MA 0.841	PT 0.748
NagA BLAST Smith-Waterman (SW)	BLAST	SW 0.997	MA 0.841 0.846	PT 0.748 0.753
NagABLASTSmith-Waterman (SW)Multiple Alignment (MA)	BLAST	SW 0.997	MA 0.841 0.846	PT 0.748 0.753 0.719

R² values for linear regressions of distances generated from various metrics for scoring similarity among sequences

Other validation analyses show

- > Network topologies are generally robust to missing data
- > Two-dimensional distances in visualized networks correlate well with the underlying distances in high-dimensional space
- > See Atkinson et al, PLoS ONE, 4: e4345 (2009) for more statistical validation of PSNs

Layout used in this talk

Organic layout: Edge lengths represent degree of connectivity, track with dissimilarity Colors depict function or other types of functional information

Suprafamily	Superfamily	Subgroups	Families	Sequences	Structures	Reactions
	Amidohydrolase	11	89	79238	474	41
	Aromatic Prenyltransferase	2	0	339	18	0
	Crotonase	2	27	75290	172	28
	Enolase	7	20	39661	355	22
	Haloacid Dehalogenase	25	22	79778	570	21
	Isoprenoid Synthase Type I	14	69	16579	359	65
	Isoprenoid Synthase Type II	4	8	7645	202	8
	Nucleophilic Attack 6-Bladed Beta- Propeller (N6P)	3	3	31085	85	2
	Radical SAM	49	93	113568	52	66
	RuBisCO	2	2	41212	73	2
Thioredoxin Fold	Glutathione Transferase (cytosolic)	42	0	13097	432	0
Suprafamily	Peroxiredoxin	6	0	12239	179	0
	TOTAL: 12	167	333	515791	2971	255

For the Core SFLD, networks can be downloaded at every level of the hierarchy: Superfamily, Subgroup, & Family

Extended SFLD

Suprafamily	Superfamily	Subgroups	Families	Sequences	Structures	Reactions
	Arginase/Deacetylase	0	0	10570	177	0
	Carbohydrate Phosphatase	0	0	12278	160	0
	Carbon-Nitrogen Hydrolase	0	0	14974	49	0
	Chelatase	0	0	5776	49	0
	Cytidine Deaminase-Like	0	0	18803	90	0
	Di-trans-poly-cis-decaprenylcistransferase	0	0	4075	36	0
	dUTPase-Like	0	0	6343	156	0
	Ferric Reductase Domain	2	2	282	1	0
	Fumarylacetoacetase, C-terminal-related	0	0	10104	32	0
	Glutaminase/Asparaginase	0	0	2672	37	0
	HD-Domain/PDEase-Like	0	0	33746	252	0
	Histidine Phosphatase	0	0	21228	254	0
	Isochorismatase-Like Hydrolases	0	0	11412	42	0
	Kringle-Like	0	0	1693	627	0
	L-Aspartase-Like	0	0	17659	100	0
	Metalloproteases, Zincins	0	0	21437	429	0
	Methyltransferase Domain 18	0	0	4312	42	0
	Methyltransferase Domain 9	0	0	433	1	0
	NUDIX Hydrolase Domain-Like	0	0	38313	230	0
	Peptidase M24	0	0	17752	177	0
	Phosphatidylinositol Phosphodiesterase	3	5	11014	97	5
	Phospholipase C/P1 Nuclease	0	0	1560	21	0
	Phosphonate Radical SAM	1	1	902	0	1
	PLP-Binding Barrel	0	0	19071	95	0
	Proline Racemase	0	0	748	14	0
	Pyruvoyl-Dependent Histidine/Arginine Decarboxylase	2	2	335	11	2
	Radical SAM 3-amino-3-carboxypropyl Radical Forming	1	1	1644	2	1
	Ribulose-Phosphate Binding Barrel	0	0	25997	249	0
	SGNH Hydrolase	0	0	19406	63	0
	Six-Hairpin Glycosidases	0	0	28690	227	0
	SPOUT Methyltransferase	0	0	2593	5	0
	Subtilisin-Like	0	0	15855	296	0
	Thioesterase/Thiol Ester Dehydrase-Isomerase	0	0	38098	226	0
	Xylose Isomerase-Like	0	0	18333	196	0
	TOTAL: 34	9	11	438108	4443	9

Select Task →

Download Network Download Data Set

Sequence Similarity Networks

Download a Sequence Similarity Network of this superfamily (XGMML format \Box).

Network downloads are XGMML files that are readable by program such as Cytoscape. In these networks, nodes represent proteins and edges represent pairwise similarities better than a given *E*-value cutoff. Additionally, these networks contain several attributes with data from the SFLD.

What sequences to align: The search for strictosidine variants from plants

Nucleophilic attack 6-bladed β-propeller (N6P) SF

Figure adapted from Ma X et al, The Plant Cell, 18:907 (2006)

Characterized proteins are outliers in the N6P SF

Active sites of characterized SS enzymes are outliers as well

Many SSL proteins are not from plants

	44	151	210	254	309
PON1 (1v04.pdb)	GS <mark>E</mark> DLE	SV <mark>N</mark> DIVAVG	DVRVVAEGFDFA <mark>N</mark> GINISP	LV <mark>D</mark> NISVD	QGSTVAAV
Drp35 (2dg1.pdb)	QL <mark>E</mark> GLN	CI <mark>D</mark> DMVFDS	TVTPIIQNISVA <mark>N</mark> GIALST	GP <mark>D</mark> SCCID	LRSTHPQF
DFPase (1pjx.pdb)	GA <mark>E</mark> GPV	GC <mark>N</mark> DCAFDY	QMIQVDTAFQFP <mark>N</mark> GIAVRH	GA <mark>D</mark> GMDFD	EKPSNLHF
SS (2fpb.pdb)	APNSFT	WLYAVTVDQ	ETTLLLKELHVPGGAEVSA	NPGNIKRN	EHFDQIQE
gi 147772032	GP <mark>E</mark> AIA	FL <mark>N</mark> AVDVDQ	EVTVLLRGLGGAGGVTISK	TP <mark>D</mark> NIKRN	KTISEVQE
gi 22326950	GP <mark>E</mark> SVA	FT <mark>N</mark> DLDIAD	KAVVLVSNLQFP <mark>N</mark> GVSISR	HP <mark>D</mark> NVRTN	RSVSEVEE
gi 125556119	GP <mark>E</mark> SVA	FT <mark>N</mark> GVDIDQ	QVTVLQSNITYP <mark>N</mark> GVAISA	YP <mark>D</mark> NVRPD	RP-TEVMD
gi 24308201	GP <mark>E</mark> SIA	FV <mark>N</mark> DLTVTQ	EVKVLLDQLRFP <mark>N</mark> GVQLSP	FP <mark>D</mark> NIRPS	TYISEVHE
gi 1280434	GP <mark>E</mark> CLI	IF <mark>N</mark> GVTVSK	VSEVLLDELAFA <mark>N</mark> GLALSP	LP <mark>D</mark> NLTPD	T-ISHVLE
gi 125559158	AP <mark>E</mark> DVY	FA <mark>D</mark> AAIEAS	EASVVLDGLGFA <mark>N</mark> GVALPP	NP <mark>D</mark> NIRLG	NMVTSVTE
gi 111017930	GP <mark>E</mark> DVA	AC <mark>N</mark> NSAVGR	ETDLLAEGLQFA <mark>N</mark> GVGLAS	IP <mark>D</mark> NMTSQ	P-VTGVRE
gi 15596490	GP <mark>E</mark> DTA	FT <mark>D</mark> DLDIAS	KTEVLLKDLYFA <mark>N</mark> GVALSA	LP <mark>D</mark> NLQGD	RMITSAKP
gi 52549517	GP <mark>E</mark> DVA	LT <mark>D</mark> DVDIAA	TTRLVLNNLYFA <mark>N</mark> GVAVSP	FP D GISSN	Q-ITSVQE

E-value cut-off = 10⁻⁵⁰ 516 SSL subgroup sequences Median alignment length = 297 residues; median percent identity = 41% Colored by # of metal coordinating residues Red = 4 Yellow = 3 Green = 2 Cyan = 1

Gray = 0

		44	151	210	254	309
•	PON1 (1v04.pdb)	GS <mark>E</mark> DLE	SV <mark>N</mark> DIVAVG	DVRVVAEGFDFA <mark>N</mark> GINISP	LV <mark>D</mark> NISVD	QGSTVAAV
	Drp35 (2dg1.pdb)	QL <mark>E</mark> GLN	CI <mark>D</mark> DMVFDS	TVTPIIQNISVA <mark>N</mark> GIALST	GP <mark>D</mark> SCCID	LRSTHPQF
	DFPase (1pjx.pdb)	GA <mark>E</mark> GPV	GC <mark>N</mark> DCAFDY	QMIQVDTAFQFP <mark>N</mark> GIAVRH	GA <mark>D</mark> GMDFD	EKPSNLHF
	SS (2fpb.pdb)	APNSFT	WLYAVTVDQ	ETTLLLKELHVPGGAEVSA	NPGNIKRN	EHFDQIQE
	gi 147772032	GP <mark>E</mark> AIA	FL <mark>N</mark> AVDVDQ	EVTVLLRGLGGAGGVTISK	TP <mark>D</mark> NIKRN	KTISEVQE
	gi 22326950	GP <mark>E</mark> SVA	FT <mark>N</mark> DLDIAD	KAVVLVSNLQFP <mark>N</mark> GVSISR	HP <mark>D</mark> NVRTN	RSVSEVEE
	gi 125556119	GP <mark>E</mark> SVA	FT <mark>N</mark> GVDIDQ	QVTVLQSNITYP <mark>N</mark> GVAISA	YP <mark>D</mark> NVRPD	RP-TEVMD
	gi 24308201	GP <mark>E</mark> SIA	FV <mark>N</mark> DLTVTQ	EVKVLLDQLRFP <mark>N</mark> GVQLSP	FP <mark>D</mark> NIRPS	TYISEVHE
	gi 1280434	GP <mark>E</mark> CLI	IF <mark>N</mark> GVTVSK	VSEVLLDELAFA <mark>N</mark> GLALSP	LP <mark>D</mark> NLTPD	T-ISHVLE
	gi 125559158	AP <mark>E</mark> DVY	FA <mark>D</mark> AAIEAS	EASVVLDGLGFA <mark>N</mark> GVALPP	NP <mark>D</mark> NIRLG	NMVTSVTE
	gi 111017930	GP <mark>E</mark> DVA	AC <mark>N</mark> NSAVGR	ETDLLAEGLQFA <mark>N</mark> GVGLAS	IP <mark>D</mark> NMTSQ	P-VTGVRE
	gi 15596490	GP <mark>E</mark> DTA	FT <mark>D</mark> DLDIAS	KTEVLLKDLYFA <mark>N</mark> GVALSA	LP <mark>D</mark> NLQGD	RMITSAKP
	gi 52549517	GP <mark>E</mark> DVA	LT <mark>D</mark> DVDIAA	TTRLVLNNLYFA <mark>N</mark> GVAVSP	FP <mark>D</mark> GISSN	Q-ITSVQE

The large-scale context suggests the great majority of SSL proteins are not SSs

Vitus vinifera SSL lacks SS activity but shows low levels of hydrolase activity typical of the SSL and arylesterase subgroups

Challenges

Technical issues

- > Extreme sequence diversity
- > Complex insert patterns and multiple domain architectures within a SF

Experimentally characterized proteins only poorly sample the available sequence and structure space

Especially for divergent proteins of functionally diverse enzyme SFs, clustering by sequence and structure similarity fails to track well with functional boundaries

Uniqueness of structure-function relationships in individual SFs complicates development of general solutions

Alkaline phosphatase superfamily: Inserts to the common core distinguish known reaction classes 40,000 sequences

Many of these inserts are unrelated

- > Locations vary
- Multiple insertions in a single subgroup
- Structural insert patterns fail to track with variations in reaction or mechanism

What sequences to align? How well do characterized proteins sample SF sequence space? Most alkaline phosphatase SF members have never been experimentally or structurally characterized *E*-value threshold = $1 \times 10^{-13.1}$ 4590 nodes represent 14,403 sequences SwissProt family bacterial phospholipase C (40% ID filtered) CDP-alcohol phosphatidyltrasferase class-I metal one LTA synthase Median alignment length = 422 residues; opgB O phosphoenthanolamine transferase Median pairwise ID = 30%sulfatase alkaline phosphatase Small nodes: experimentally characterized nucleotide pyrophosphatase/phosphodiesterase metal O Phosphoglycerate mutase Large nodes: structurally characterized Phosphopentomutase PIGG/PIGN/PIGO OUnknown

Collaboration with Dan Herschlag

Even very well-studied SFs are minimally characterized < 2% of GSTs experimentally shown to catalyze GST-like reactions

Mashiyama et al, PLoS Biol, 12: :e1001843 (2014)

Node color: Swiss-Prot family annotation

cytosolic Glutathione transferase (GST) SF

E-value threshold = 1×10^{-13} 1,568 nodes represent 13,000 sequences (50% ID filtered) Each node contains 1-930 sequences Median edge *E*-value = 4×10^{-25} Median alignment length = 210 residues Large nodes colored by SwissProt classification if >50% of sequences in each node belong to that class Gray: Not classified Triangles: PDB structure

Many new classes yet to be discovered

Reaction types fail to track with similarity clusters

Promiscuity likely more widespread than we know

Reaction families within a SF evolve at different rates

unk.Agr

*structurally characterized

AEE

possible AEE

unk.Cythu2

unknown

Enolase SF

"Pseudo-convergent" evolution of the same reaction from different intermediate ancestors in the SF tree

Unknown

Song et al, Nat Chem Biol, 3:486 (2007)

Sakai et al, Biochem, 48:2569 (2009)

What sequences to align

SFLD SF curation guided by sequence, structure, and functional information

Final thoughts

Alignment methods with more sophisticated tools for choosing "representative" sequences to include in an MSA would contribute significantly to these difficult problems

> Especially important for both manual and automated curation communities

Automated function prediction experiments (CAFA) suggest the value of methods that allow for incorporation of functionally relevant features

- > Already included in some phylogenomic methods
- Similarity network methods could supplement current MSA approaches but need more rigorous development
- We can supply manually curated Gold Standard sets for evaluation of new methods

Acknowledgments

Eyal Akiva, PhD Holly Atkinson, PhD* Alan Barber, PhD* Shoshana Brown, PhD Gemma Holliday, PhD Michael Hicks, PhD* Florian Lauck* Susan Mashiyama, PhD* Elaine Meng, PhD **David Mischel** Rebecca Davidson Alexandra Schnoes, PhD* Doug Stryke* Jack Yu Jeff Yunes

Collaborators

USCF Resource for Biocomputing, Visualization & Informatics Tom Ferrin John Morris

N6P Superfamily Sarah O'Connor (Danforth Center)

> *Enolase Superfamily* John Gerlt (U of IL) Matt Jacobson (UCSF)

CytGST Superfamily Enzyme Function Initiative Steven Almo (Einstein) Richard Armstrong (Vanderbilt)

Alkaline phosphatase superfamily Dan Herschlag (Stanford) Jonathan Lassila

*Former members

\$\$ NIH, NSF \$\$