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Some Background




Human Supervisory Control
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(Supervisor) (Vehicle)

« Complex, time-pressured,
high risk domains

« Systems require embedded
autonomy with human
supervision

e Individuals & teams




The need for human-automation collaboration

« Growing system complexity and mission requirements
mean that mutually exclusive role allocation between
humans and automation will not be sufficient

« Humans and automation both have strengths & limitations

— Brittleness vs. attention inefficiencies
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Humans helping algorithms “see”




Human-Automation Collaboration in Track Smoothing
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The power of perceptual-based reasoning
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Algorithms helping humans by
reducing workload, humans
helping algorithms optimize




Single Operator-Multiple Unmanned Vehicle Control
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« Humans are needed for plan approval
 How often should automation have human in the loop?
« 30, 45, 120s replanning interval over 10 min experiment w/ 30 subjects

Schedule Comparison Tool

Proposed Schedule

Current Schedule Woaorking Schedule

e Task-based control vs. vehicle-based control
 MILP planners (ACL lab/Aurora Flight Sciences) can replan ~ every 10




The Role of Consensus

30s Replan | 45s Replan |120s Replan
Interval Interval Interval
Rate Dissenters 32 +6.95s 37+13.6s | 38+11.7s
Mixed Rate Consenters 35 + 6.55 36 + 8.8s 65 + 26.1s
Rate Consenters 33 +6.3S 46 + 6.3s 79+ 18.7s
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Gaming experience mattered...
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Human-algorithm assistance

« What if we have a perfectly compliant human?
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Human search guidance was critical




Modeling the operator In the
decentralized UV control world to
Investigate network performance
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Operator Modeling

e Critical for investigation of ANY supervisory control system
metric performance

— EXxpensive and time consuming
e High level vs. low level operator models
— Manual vs. supervisory control models v WEmre
— Stochastic vs. deterministic 50
— Variable performance within 70+
and across humans

e No one size fits all
e For decentralized UV
sim, probabilistically

modeled:
— Reaction times (planning :
0
& comms), error rates, ’ ’ C Readion Time(s)
attention allocation schemes, management strategies
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Investigating joint system performance
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Automation helping supervisors
monitor and assess personnel
performance
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Motivation

e Supervisors of controllers

of automated systems need

assistance in determining
when to intervene

e Such supervisory control
human behavior is
generally procedure
oriented and event driven,
with a temporal
component.

e Machine learning can be used to identify the patterns in the
event/time series

e Adherence to procedures as patterns can be computed from a
normative model
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HMMs in UAV Control Example

Modify Flight
Parameters

e

Camera Control ) < >

N

Mission Replan
Waypoint Update
Observables) vs ¢Hidden State

— Hidden states are not directly visible, but
variables influenced by them are.

Target Monitoring H&S Monitoring

Hidden States
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e Event vs. Behavioral Pattern Observable States
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e Action vs. Task

 Doubly stochastic Bayesian Process
e Supervised vs. unsupervised
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Behind the (Modeling) Curtain...

I Observable |
Low Level events
Input Grammatical |—> Statistical

« Grammar= transforms real-world events into observable
events usable by the pattern recognizer (state space
reduction), obtained by Cognitive Task Analysis

« Pattern Recognizer = recognition and prediction
— “Simple™. Hidden Markov Models (HMMS)
— Time dependent: Hidden Semi-Markov Models (HSMMSs)
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Grammar

|£/ RESCHU VER 1.0.0 (user : yves)

Payload

Message
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HMM Results

e HMMs can predict next
state transition with —~80%
accuracy

e Nice but not particularly
useful in the real world...

e Time Is critical
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Hidden Semi-Markov Models

« HMM + sojourn time distribution
There are no self-transitions

Semi-Markov regime
— Relaxing the Markov assumption

Issues
— Complexity

« Both in computation and
generalizability

— Which is more important, time of
transition or next likely state?

— How to turn such a model into a
useful decision support tool?
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Parameter Reduction & Model Selection

e Bayesian Information Criterion L(H): max log lik

P: num free params
BIC =-2log L(H) + Plog(K) K: num obs

e (Gaussian Mixture Models
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States and Sojourns for the 1 mode GMM model

State 1
Visual Task
MALEs

State 0
Planning
UuUVvs

State 2
Planning
MALEs

State 3
Visual Task
Uuvs

State 4
Planning
HALEs

State O
State 1
-+« State 2
State 3
- -State 4

11 21 31 41 51 61 71 81 91
Sojourn time t (in 0.5 second resolution)
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Prediction Metric of HSMMs

 Model Accuracy Score

izt e-na X Quality(i) + {1 — a) x Timing(i)
n
* Inherently a cost-benefit & potentially subjective metric
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Real-Time Decision Su

pport?
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The path ahead?

e Real-time vs. off-
line use
— Model sensitivity
— Prediction horizons
— Alpha weighting in
real time
— Decision support
viability
e [ndividuals vs.
teams of operators
— can this scale?

e Training evaluation
 New PhD
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Meta-Analysis

e Algorithms and humans can be
complementary in many
settings

e Humans are good at:

Excellent

~Automation >

=

o _ _ Human
— Filling in data/information gaps =
— Assessing goodness/badness of . 2 BRiEr
off-nominal predictions =
. . o qv)
 Automation is good at: =| E A
— Handling large quantities of data 2 E Automation
quickly g
= Price; 1985
— Detecting trends not immediately 2 Human Only
Observable to humans Unsatisfactory Human Excellent
e Uncertainty and planning time
horizons are the key factors to
consider




Questions?
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