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Some Background
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Human Supervisory Control

Controls Actuators

Displays

Human Operator
(Supervisor)

Task

Sensors

Computer
(Vehicle)

• Complex, time-pressured, 
high risk domains

(Supervisor) (Vehicle)

high risk domains
• Systems require embedded 
autonomy with humanautonomy with human 
supervision
• Individuals & teams
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The need for human-automation collaboration

• Growing system complexity and mission requirements• Growing system complexity and mission requirements 
mean that mutually exclusive role allocation between 
humans and automation will not be sufficient

• Humans and automation both have strengths & limitations
– Brittleness vs. attention inefficiencies
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Humans helping algorithms “see”
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Human-Automation Collaboration in Track Smoothing

6



The power of perceptual-based reasoning

• Two experiments with data• Two experiments with data 
gap and crossing angle 
factor levels
– 30/60/90, shallow/steep

• 17% & 26% people did as 
well or better than algorithmwell or better than algorithm
– Algorithm did better than 

all participants only 42% 
& 28% of the time. 

• Interpolation vs. 
extrapolationextrapolation

• Clear function allocation 
criteria
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Algorithms helping humans by 
d i kl d hreducing workload, humans 

helping algorithms optimizep g g p
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Single Operator-Multiple Unmanned Vehicle Control
Map Display Schedule Comparison Tool

• Task-based control vs. vehicle-based control
• MILP planners (ACL lab/Aurora Flight Sciences) can replan ~ every 10MILP planners (ACL lab/Aurora Flight Sciences) can replan  every 10 
secs

• Humans are needed for plan approval
• How often should automation have human in the loop?

9

How often should automation have human in the loop? 
• 30, 45, 120s replanning interval over 10 min experiment w/ 30 subjects



30s Replan 45s Replan 120s Replan

The Role of Consensus

30s Replan 
Interval

45s Replan 
Interval

120s Replan 
Interval

Rate Dissenters 32 ± 6.9s 37 ± 13.6s 38 ± 11.7s
Mixed Rate Consenters 35 ± 6 5s 36 ± 8 8s 65 ± 26 1sMixed Rate Consenters 35 ± 6.5s 36 ± 8.8s 65 ± 26.1s

Rate Consenters 33 ± 6.3s 46 ± 6.3s 79 ± 18.7s

Gaming experience mattered
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Gaming experience mattered…



Human-algorithm assistance

• What if we have a perfectly compliant human?• What if we have a perfectly compliant human?

Human search guidance was critical
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Modeling the operator in the 
d t li d UV t l ld tdecentralized UV control world to 
investigate network performanceg p
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Operator Modeling
• Critical for investigation of ANY supervisory control system g p y y

metric performance 
– Expensive and time consuming

• High level vs low level operator models• High level vs. low level operator models
– Manual vs. supervisory control models
– Stochastic vs. deterministic

V i bl f ithi– Variable performance within 
and across humans

• No one size fits all
• For decentralized UV 

sim, probabilistically
d l dmodeled:

– Reaction times (planning
& comms), error rates, 
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attention allocation schemes, management strategies 



Investigating joint system performance
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Automation helping supervisors 
it d lmonitor and assess personnel 

performancep
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Motivation

Supervisors of controllers• Supervisors of controllers 
of automated systems need 
assistance in determining 
when to intervene

• Such supervisory control 
human behavior ishuman behavior is 
generally procedure 
oriented and event driven, 

i h lwith a temporal 
component.

• Machine learning can be used to identify the patterns in the• Machine learning can be used to identify the patterns in the 
event/time series

• Adherence to procedures as patterns can be computed from a 
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normative model



HMMs in UAV Control Example

H&S M it iTarget Monitoring H&S MonitoringModify Flight 
Parameters

CC C t l

a11 a22 a33

Mission Replan

CommsCamera Control

Waypoint Update

S1 S2 S3
a12 a23

• Observables  vs . Hidden States

P(o/S1) P(o/S2) P(o/S3)

– Hidden states are not directly visible, but 
variables influenced by them are.

• Action vs Task• Action vs. Task 
• Event vs. Behavioral Pattern
• Doubly stochastic Bayesian Process
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• Supervised vs. unsupervised



Example

Data Model DescriptionPatterns

Predictions Behavioral 
Assessment
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Behind the (Modeling) Curtain…

Left Click (x y)=(21 456) Waypoint Add for UAV #3 UAV Threat Evasion

G ti l St ti ti lLow Level  M d l

Observable
events

Left Click (x,y)=(21,456) Waypoint Add for UAV #3 UAV Threat Evasion

Grammatical Statistical Input Model

• Grammar= transforms real-world events into observable 
events usable by the pattern recognizer (state space 

d ti ) bt i d b C iti T k A l ireduction), obtained by Cognitive Task Analysis

• Pattern Recognizer = recognition and prediction• Pattern Recognizer = recognition and prediction
– “Simple”: Hidden Markov Models (HMMs)
– Time dependent: Hidden Semi-Markov Models (HSMMs)
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Time dependent: Hidden Semi Markov Models (HSMMs)



Grammar

All
UnderwaterUV
AerialUV (UAVs)

High Altitude UAVs t
SELECT 

t
t+d

t+d’
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HMM Results

HMMs can predict next• HMMs can predict next 
state transition with ~80% 
accuracy

• Nice but not particularly 
useful in the real world…

Ti i iti l• Time is critical
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Hidden Semi-Markov Models

HMM + sojo rn time distrib tion X X• HMM + sojourn time distribution
• There are no self-transitions
• Semi-Markov regime

X X X

Semi Markov regime
– Relaxing the Markov assumption

• Issues
– Complexity

• Both in computation and 
generalizabilitygeneralizability

– Which is more important, time of 
transition or next likely state?

– How to turn such a model into a 
useful decision support tool?
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Bayesian Information Criterion

Parameter Reduction & Model Selection

L(H): max log lik• Bayesian Information Criterion

• Gaussian Mixture Models

L(H): max log lik
P: num free params
K: num obsBIC = -2log L(H) + Plog(K)

• Gaussian Mixture Models
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States and Sojourns for the 1 mode GMM model
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Prediction Metric of HSMMs
• Model Accuracy Score

• Inherently a cost-benefit & potentially subjective metric

25



Real-Time Decision Support?
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The path ahead?

• Real-time vs. off-
line use
– Model sensitivityModel sensitivity
– Prediction horizons
– Alpha weighting in 

real timereal time
– Decision support 

viability

I di id l• Individuals vs. 
teams of operators 
– can this scale?

• Training evaluation
• New PhD
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Meta-Analysis

• Algorithms and humans can beAlgorithms and humans can be 
complementary in many 
settings
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observable to humans

• Uncertainty and planning time 
horizons are the key factors to 
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consider



Questions?
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