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The “Boxers” or “Briefs” Qn of
this workshop...

e Bio-inspired folks
* Pro-human folks
 Mechano-philes

When there is an elephant in the
room, introduce it...

-Randy Pausch
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 Don't like ants, spiders or
other bugs...

— Not sure they can teach me 4
much about high-level planning efthe nafc...”

Sy

« Not crazy about humans EaEA S
either..

e ..am stuck with humans in
the loop

— S0, a Buddhist middle way




Planning Involves Deciding a Course of
Action to achieve a desired state of affairs

Static vs. Dynamic)

(Observable vs.
Rartially Observable)

(perfect vs.

(Full vs.

Partial satisfaction)

Imperfect) (Instantaneous vs.

Durative)

S§
b

&)

v (Deterministic vs.
Stochastic)
e
4\'\ ( o
What action next? &
ONO) s&sgs

A: A Unified Brand-name-Free Introduction to Planning Subbarao Kambhampati



“Classical” Planning

{:action plck-up

Blocks world -
iparameteras (7obl) State varizbles: Ontable(A),Ontable(B),
:precondition (and (clear ?obl) Ontable(x) On(x,y) Clear(x) hand-empty holding(x) Clear(A), Clear(B), hand-empty
{on-table Tobl) Goal:
Initial state: I . P
{arm-empty) Complete specification of T/F values to state variables ~CIEETE (T By
{bleck ?obl))

--By convention, variables with F values are omitted

taffact Goal state:
{and (not (on-table Fobl)) A partia! specification of the desire(_j _state variable_/value combinations
--desired values can be both positive and negative
{not {(clear 7obl)) N pickup(x)
ickup(x
{not (arm-empty)) P Putdown(x)

Prec: hand-empty,clear(x),ontable(x)
eff: holding(x),~ontable(x),~hand-empty,~Clear(x)

Prec: holding(x)
{holding Fobl)))

eff: Ontable(x), hand-empty,clear(x),~holding(x)

Stack(x,y) Unstack(x,y)
Prec: holding(x), clear(y) Prec: on(x.y),hand-empty,cl(x)
eff: on(x,y), ~cl(y), ~holding(x), hand-empty eff: holding(x),~clear(x),clear(y),~hand-empty

holding(A)
~Clear(A)
~Ontable(A)
Ontable(B),

Ontable(A)
Ontable(B),

Pickup(A

P-Space Complete

Clear(A) Clear(B) holding(B)
Clear(B) ~handempty ~Clear(B)
hand-empt Pickup(B) ~Ontable(B)
Ontable(A),
Clear(A)

~handempty



Scalability was the big bottle-neck...

We have figured out how to scale synthesis..
Problem is Search Control!!!

10000

: - oA

" Before, planning | e
algorithms could 1000 | Trom =
synthesize about 6 | e ¥ i v

— 10 action plans in 100 ¢

minutes

* Significantscale- * [ ..
up in the last
decade ‘f"_;--“*r : m i s 4 Realistic encodings |
m NOW’ we can ™ x PN of Munich airport! |
synthesize 100 R A
action plans in S

seconds.

The primary revolution in planning in the recent years has been
methods to scale up plan synthesis




.and we have done our fair bit...
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International Conference on
Automated Planning and Sched

The

Autom 2010 Influential Paper Award <8

Honorable Mention ?

Presented to

Outstanding Diss

for their AIPS 2000 paper

Me “Solving Planning-Graph by

Compiling it into CSP”

May 15, 2010
Toronto, ON, Canada
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“Integer Programmin 3

Qriginal Photo: Wiadyslaw Sojka
Licence: Creative Commons Attribution ShareAlike 3.0




So, what next?

Dynamic Stochastic Partially
T Observable

POMDP Policies
Semi-MDP Policies

Subbarao Kambhampati

A: A Unified Brand-name-Free Introduction to Planning



Assumption: Complete Models
- Compiete Action Descriptions (fallible domain writers)
> Full.Specified Preferences (uncertain users)
- All-ebjects in the world known up front (open worlds)
- One-=shatpianning (continual revision)

Planning is no longer a pure inference problem ®

® But humans in the loop can ruin a really a perfect day ®

Traditional Planning FF-HOP [2008]
o%% A /

n
>

|
|
> I D >
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Underlying System Dynamics
SAPA [2003] POND [2006]

Effective ways to handle the more expressive planning problems by
exploiting the deterministic planning technology



Learning is not the (sole) answer..

A tempting way to handle
Incompleteness Iis to say that we should
wait until the full model is obtained

— Elther through learning
— Or by the generosity of the domain writer..

 Problem: Waiting for complete model is
often times not a feasible alternative

« The model may never become complete...

« We need to figure out a way of maintaining
Incomplete models, and planning with them
(pending learning..)



1.

2.

3.

Challenges of Handling
Incompleteness

Circumscribing the incompleteness

Developing the appropriate solution concepts
Developing planners capable of synthesizing them

Life-long Planning/Learning to reduce incompleteness
Commitment-sensitive Replanning



There are known
knowns; there are
things we know that we
know. There are known
unknowns; that is to
say, there are things

that we now know we
don’t know. But there
are also unknown
unknowns; there are
things we do not know
we don’t know.




Challenges of Human-in-the-Loop
Planning

Circumscribing the incompleteness

Developing the appropriate solution concepts
Developing planners capable of synthesizing them

Life-long Planning/Learning to reduce incompleteness
—  Commitment-sensitive Replanning

% Tough Problems




Our Contributions

* Preference incompleteness
— Unknown Preferences [IJCAI 2007] <
— Partially known Preferences [IJCAI 2009]
 Model incompleteness
— Robust plan generation [ICAPS Wkshp 2010]

o \World/Object incompleteness
— OWQG [IROS 2009; BTAMP 2009; AAAI 2010]

Model-Lite Planning

/o A~ T\




Preferences in Planning — Traditional
View

Classical Model: “Closed world” assumption
about user preferences.

All preferences assumed to be fully
specified/available Full Knowledge

of Preferences
Two possibilities

If no preferences specified —then user is
assumed to be indifferent. Any single feasible
plan considered acceptable.

If preferences/objectives are specified, find a plan
that 1s optimal w.r.t. specified objectives.

Either way, solution is a single plan



Human in the Loop: Unknown &
Partially Known Preferences
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Handling Unknown & Partially
Known Preferences

Unknown preferences

For all we know, user may
care about every thing -- the
flight carrier, the arrival
and departure times, the
type of flight, the airport,
time of travel and cost of
travel...

Best choice i1s to return a
diverse set of plans [IJCAI
2007]

o Distance measures between
plans

Domain Independent Approaches
for Finding Diverse Plans

H BWJ

(6 Authors from 3 continents, 4 countries, 5 institutions)

Jan 09, 2007 Domain Independent Apgrazches far Finding Diverse lens.




o dDISTANTKSET

Given a distance measure 46(.,.), and a
parameter k, find k plans for solving the

G e n e rati n g D ive rse P I anS problem that have guaranteed minimum

pair-wise distance d among them in
terms of 8(.,.)

o Formalized notions of bases

for plan distance measures _
) Distance Measures
O P roposed ad aptatl O n to o In what terms should we measure

distances between two plans?

eXiSti n g re p rese ntative y The actions that are used in the plan?

The behaviors exhibited by the plans?

State — Of_th e _art , p I an n i n g . Ch'g;serorlsz)[/)Igyeesezydtg(;actions in the plan?

The ultimate use of the plans

algorithms to search for e s g pon o

What is the source of plans and how much is

d ive rS e p I an S aZj%E;iiiji?\é)vﬁ Qg%eeggcess to domain theory or
Showed that using action-

based distance results in plans |
that are likely to be also - e
diverse with respect to —eo—

comparison: S1-1, S1-2

behavior and causal structure Chesimiar o 91.3; with s
—-0—0—0— |a

another basis for

LPG can scale-up well to large Coon as diferent

=State-based comparison:

b I I h h d S1-1 diffi tf S1-2 23>
p ro e m S WI t t e p ro pose and Sll—3e;r2r1—2rgrr?d S1-3 Plan S1-2
imil
C h an g es ?geajlsr:;—ﬁrzk comparison: M a2 e
S1-1 and S1-2 are —0—-0—-0— 2
similar, both diverse from <grpapss  “OHO2P g
S1-3 <go2ge>

[IJ CAl 200 7] P plan s1-3




Generating Diverse Plans with Local Search
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Figure 2: Performance of LPG-d (CPU-time and plan distance) for there problems in DriverLog-Time, Satellite-Strips

and Storage-Propositional.

LPG-d solves 109 comb.

Avg. time = 162.8 sec

Avg. distance = 0.68

Includes d<0.4,k=10; d=0.95,k=2

LPG-d solves 211 comb.

Avg. time = 12.1 sec
Avg. distance = 0.69

LPG-d solves 225 comb.
Avg. time = 64.1 sec
Avg. distance = 0.88



Unknown & Partially Known
references

o Partially known

»  We may know that user
cares only about makespan
and cost. But we don’t know
how she combines them..

o Returning a diverse set of
plans may not be enough

o They may not differ on the
attributes of relevance..

» Focus on spanning the pareto
set..

PARTIAL PREFERENCE
MODELS

Minh I Du
Pala Alto Research Center

. PLANNING WITH
@ -
®

Subbaras Ramblha i Biplay Srivasiava
CSE, Arizona State Univ rw'ty [BM Indin Research Lab

APPrO&ciico 1o 1 miuny aver oo 1 oo



Modeling Partially Known Objectives

The user 1s interested in minimizing two objectives
(say makespan and execution cost of plan p: time(p),

cost(p).)
The quality of plan p is given by cost function:
f(p,w)=w x time(p)+(1L—w)xcost(p) (we[0,1])

w € [0,]] represents the trade-off between two competing
objectives.

1L1IUAAO UL U \.A.\/V\/.LUH\/\.L ALl \J ALV \JU.LLL.I..LLLA..I..LLUJ \\_/(A,.L .LJ L) HUUU/.



cost
‘@ 0o

Handling Partially Known e g
R
Preferences "8y Paretosset

0 . time
View it as a Multi-objective optimization

Return the Pareto optimal set of plans
(and let the user select from among them)

Two problems
[Computational] Computing the full pareto set can be

too costly
[Comprehensional] Lay users may suffer information
overload when presented with a large set of plans to

choose from
Solution: Return £ representative plans from the

Pareto Set
Challenge 1: How to define “representative” robustly?

Challenge 2: How to generate representative set of
plans efficiently?



Measuring Representativeness: ICP
f(p,w)=w x time(p)+(@L—w)xcost(p) (we[01])

k ULg
ICP(P) = Z/ hlw)(w <ty +(1—w)x ey, Jdw
i=1 Y wi-1

cost

h(w)’

0 0.5 1 w
(Fast plan seems better)

-
LA
\

v

s
%
A .
.

.
.
A .
3
3
%

ol O
~
LY

o 3 representative plans
o

time



Handling Partial Preferences using
ICP

Problem Statement: Solution Approaches:

Given Sampling: Sample k&
values of w, and
approximate the optimal
plan for each value.

ICP-Sequential: Drive
the search to find plans

the objectives O,

the vector w for convex
combination of O,

the distribution A(w) of

w, that will improve ICP
Return a set of & plans Hybrid: Start with
with the minimum ICP Sampling, and then
value. improve the seed set

with ICP-Sequential

[Baseline]: Find &
diverse plans using the
distance measures from

[IJCAI 2007] paper;
LPG-Speed.



Learning Planning Preferences

We can learn
to 1improve the

preference hw)
model by 1
revising the o
" evising
h(LU) afte][‘ " distribution
2 h(w) over
every feW iterations
. . . 1 > (Baye_S|an
1terations learning..)
h(w)
(through user :
Iinteraction)




LEARNING PLAN PREFERENCES
From Observed Executions

= P, Getin(bus, source), Buyticket(bus), Getout(bus, dest) 2
r- P.....: Buyticket(train), Getin(train, source), Getout(train, dest) 8
" Py Hitchhike(source, dest) 0

/ mredem\

Gobybusg{source,dest)

Getin(bus,source) Buyticket(bus) Getout(bus,dest) Getout(train.dest)

Getin(train,source)

Buyticket(train)

Hitchhike
Hitchhike{source.dest_). <) ? No Way!

[IJCAI 2009]



LEARNING USER PLAN PREFERENCES
OBFUSCATED BY FEASIBILITY CONSTRAINTS

Rescale observed plans

Undo the filtering caused
by feasibility constraints

Base learner

Acquires true user
preferences based on
adjusted plan
frequencies

User Preference Model
b=

e
1

P2
L

/\ Base
A <: Learner
1Dl ;gﬁ\\

’/%\ s s
’/{%\ ml . [JCAI ‘09

. . . .
Getin Buyticket Getout Buyticket Getin Getout

Input Plans:
I:)plane* 3 .
I:)train *5 O

I:)bus * 6 O

: 1

Rescaled Plans:

I:)plane *12 ‘
* 4 O

P

train

I:)bus *1 O

[ICAPS 2009]



Our Contributions

Preference incompleteness
Unknown Preferences [IJCAI 2007]
Partially known Preferences [IJCAI 2009]

Model incompleteness
Robust plan generation [ICAPS Wkshp 2010]

World/Object incompleteness
OWQG [IROS 2009; BTAMP 2009; AAAI 2010]

There are known
knowns; there are
things we know that we
know. There are known
unknowns; that is to
say, there are things
that we now know we
don’t know. But there
are also unknown
unknowns; there are
things we do not know
we don’t know.




Planning with partial domain models:
Motivation

Planning, in traditional
perspective, assumes a completely
specified domain model

— We know exactly the
conditions and effects of action
execution

— Stochastic models also assume
completeness (“known”
probabilities)

{:action plck-up
:parameteras (7obl)
:preconditlion (and (<clear 7obl)
(on-table Tobl)
{arm-empty)
{block Pobl))
taffact
{and (not (on-table 7okl))
(not {(clear 7obl))
{not {(arm-empty)}
{holding Fobl)))

e Domain modeling is a laborious,
error-prone task

— So much so that there is a

Knowledge Engineering track for
ICP

— Action descriptions have to be seen
as “nominal”

— May have missing preconditions
and effects...

— Sometimes, the domain modeler
may be able to annotate the action
with sources of incompleteness

— Possible preconditions/effects

Can the planner exploit such partial
knowledge?



Deterministic Partial Domain Models

e We consider planning with deterministic, but incompletely
specified domain model

e Each action a is associated with possible precond and effects
(in addition to the normal precond/eff):

— PreP(a) [p]: set of propositions that a might depend on during

execution

— AddP(a) [p]: : set of propositions that a might add after
execution

— DelP(a) [p]: : set of propositions that a might delete after
execution
Example: An action a that is 7 Pl
known to depend on p1, add p4 pl @
and delete p3. In addition, it might -7 p2
have p3 as its precondition, might 03 e 03

add p2 and might delete p1 after
execution. p4



Solution Concept: Robust Plans

Solution concept:

— Robust plan

— Planis highly robust if executable in
large number of most-likely candidate
models

Robustnhess measure

— Set of candidate domain models S
(consistent with the given
deterministic partial domain model D)

— A complete but unknown domain
model D*

e Can be any modelin$S

I

21{

R(m)

IIT) Number of candidate models with
which the plan succeeds

K =) PreP(a)+ AddP(a) + DelP(a)

©) S
'l s
. a,
/
!
" .‘!
WP
_.f
;
/
/
‘-.. j. '-u
Y )

] ]

N P @
state s, (initial state) state s, state s, (goal state)
Candidate models of plan 1 2|3 4 5 6 7 8

a,| relies on  p, yes | yes | yes [ yes | no no no no

a, deletes p, yes | yes | no | no | ves | yes | no no

a, adds p. yes | no | yes | no | ves no €S no

Plan status fail | fail | fail | fail |succeed| fail Jsucceed|succeed
Legend

precondition —" additive effect "*" ggzistii?ffeffect

possible
precondition

—®- delete effect -@+

possible

delete effect

Robustness value: 3/8

Easily generalized to consider model likelihood

@p is true

o
tpipis false



-
y

L}

Py

state s, (initial state)

~

Assessing Plan Robustness

Number of candidate models:
exponentially large. Computing
robustness of a given plan is
hard!!!
— Exact and approximate
assessment.

Exact methods:

— (Weighted) Model-counting
approach:

* Construct logical formulas
representing causal-proof (Mali &
Kambhampati 1999) for plan
correctness

* Invoke an exact model counting
approach

1 “If p1is realized

| as a delete effect
lofal, thenit
must be an
additive effect of
a2’

-
MY
' P3a
\_‘

state s, state s, ( goal state)

Approximate methods:

— Invoke approximate model
counting approach

— Approximate and propagate
action robustness

e (Can be used in generating
robust plans

®

MN%

@)

MN%

@)

MN%

) S—

1. Approximating
and propagating
robustness to the
goal state

2. Aggregate
robustness of goal
propositions (i.e.
plan robustness)



Generating Robust Plans

D. Bryce et al. / Artificial Intelligence 172 (2008) 685-715

e Compilation approach: Compile into a |
ope . . Compute h(bh,) for
(Probabilistic) Conformant Planning ) o
problem e
“ ” . Grounding & »}ppmximare Bplief Manual
— One “unobservable” variable per each Pre processing ' auticley
possible effect/precondition -
. iy e ey . <P, A, b, G, 1>, lerlicl;
 Significant initial state uncertainty
e CUDD ADD
— Can adapt a probabilistic conformant Represcntation Spce ——
planner such as POND [JAIR, 2006; AlJ B I
Relaxed
2008] i

e Direct approach: Bias a planner’s
search towards more robust plans

— Heuristically assess the robustness of Initial Current ‘B> B>
partial plans ate ate O

0= “O<O (=

Fig. 6. POND architecture.

* Need to use the (approximate)
robustness assessment procedures

Successor Relaxed plans are
states used to evaluate
successor states

[ICAPS 2010 Wkshp on Planning under Uncertainty]



Our Contributions

 Preference incompleteness
— Unknown Preferences [lJCAI 2007]
— Partially known Preferences [IJCAI 2009]

e Model incompleteness
— Robust plan generation [ICAPS Wkshp 2010]

e World/Object incompleteness -
— OWQG [IROS 2009; BTAMP 2009; AAAI 2010]




Urban Search and Rescue rrr

Suence

e Human-Robot team

e Robot starts the beginning
of the hallway

 Human is giving higher
level knowledge

e Hard Goal: Reach the end
of the hallway

 Wounded people are in
rooms

e Soft Goal: Report locations
of wounded people

37




| e
Planning Support for USAR gr

Science

e Good News: Some aspects of existing
planning technology are very relevant

 Partial Satisfaction
* Replanning & Execution Monitoring

* Bad News: Incomplete Model / Open World

— Unknown objects
e Don’t know where injured people are
— Goals specified in terms of them

e If the robot finds an injured person, it should report
their location ...



How do you make a deterministic
closed-world planner believe in
opportunities sans guarantees?

Open World Quantified Goals

Partial Satisfaction Planning (PSP)
Sensing and Replanning

Pnner

Robot
CLOSED WORLD OPEN WORLD
Under Sensin Limited Sensing Over Sensing
Closed World M(?del Planner guides robot Robot senses its way
in a limited way through the world

2J



Handling Open World

e Extreme Cases

— If the robot assumes “closed world”, it will just go
to the end of the corridor.

— If the robot insists on “closing” the model before
doing planning, it will do over-sensing.

e Need a way of combining sensing and
planning
— Information on unknown objects

— Goals conditioned on these objects



Open World Quantified 'r v

Cognitive

el

Goals (OWQGs) W

e Goals that allow for the specification of
additional information

— To take advantage of opportunities

(:open (forall ?r - room Quantified Object(s)

(sense ?p - person Sensed Object
(looked_for ?p ?r) Closure Condition
(and (has_property ?p wounded)] | uantified Facts

(in ?p ?r))
(:goal

(and (reported ?p wounded 7r) [ Quantified Goal
[100] - soft)))) -




OWQGs as Conditional Rewards

Robot needs to

Initial State

sense wounded people [
before reporting them [emetn ]
Planner has to deal with open worldm@m —

Naive idea: Ask Robot to look - .
] i Conditional Goals can be compiled
everywhere (high sensing cost)  down when the world model is complete

--Need to sense for those conditional goals
whose antecedents are likely to hold

G. — arg max Ep. gy B(G, U [gg \ P|) — S(QE)

GgLCG.
[ACMTIST 2010; AAAI, 2010; IROS 2009; BTAMP 2009]



Planning with OWQGs

e Bias the planner’s model

e Endow the planner with an optimistic view

— Assume existence of objects and facts that may
lead to rewarding goals

e ¢.2. the presence of an injured human in a room
— Create runtime objects
— Add to the planner’s database of ground objects

e Plans are generated over this reconfigured
potential search space




e Soft Goals
— Allows planner to model “bonus” goals

e Quantification of Goals
— Cannot possibly satisfy all possible groundings
— Constrained by metric resources (time etc.)

* Net Benefit

— Sensing is costly
— Must be balanced with goal-achievement reward

Preferences and PSP in Planning
Benton, Baier, Kambhampati (Tutorial)




. |
Replanning and (
Execution Monitoring v

* Sensing 1s expensive ...

e Cannot be done at every step

e Planner needs to direct the architecture on:
e when to sense

 what to sense for

* Planning to sense in a goal-directed manner

e Qutput all actions up to (and including) any
action that results in “closing” the world

— Obtaining information about unknown objects



| e
Putting It All Together 4\

Science

Laser Camera
Rangifinder i
Laser Vision

Server Server

SapaReplan
Server

Motion
Server

- v l

Robot
Base Speaker
Actions Updated State
Information
Goal Plan _
Monitor <€ Planner <€——
Sensory | Manager | proplem Plan

Information “—_ Updates__
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Challenges of Human-in-the-Loop
Planning

1. Circumscribing the incompleteness

2. Developing the appropriate solution concepts
3. Developing planners capable of synthesizing them

4. Life Long Planing/Learning to reduce incompleteness



Partial Solutions for
Human-in-the-Loop Plann
Deterministic

1. Circumscribing the incompleteness—gjanning technolggy)

. Preference components; possible preceror
OWQG

2. Developing the appropriate solution concepts

. Diverse plans; Robust plans; Partial sensing plans

3. Developing planners capable of synthesizing them
« Can adapt existing planners toward these solution concepts

4. Life Long Planning/Learning to reduce incompleteness
« Learning preferences h(.) through interactions; learning model
conditions through execution

e [ Tutorial on Learning in Planning Al MAG 2003; Learning
preferences as HTNs IJCAI 2009; ICAPS 2009]

Can exploit

Model-Lite Planning:
Planning is more than pure inference over completely specified models!
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