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The “Boxers” or “Briefs” Qn of 
this workshop…

When there is an elephant in the 
room, introduce it…

-Randy Pausch

• Bio-inspired folks
• Pro-human folks
• Mechano-philes



Mechano-phile? Bio-Inspired?  

• Don’t like ants, spiders or 
other bugs…
– Not sure they can teach me 

much about high-level planning 
• Not crazy about humans 

either..
• ..am stuck with humans in 

the loop
– So, a Buddhist middle way

Irritated/Resigned



A: A  Unified Brand-name-Free Introduction to Planning Subbarao Kambhampati

Planning Involves Deciding a Course of 
Action to achieve a desired state of affairs

Environment

Goals

(Static vs. Dynamic)

(Observable vs.

Partially Observable)

(perfect vs. 

Imperfect)

(Deterministic vs. 

Stochastic)

What action next?  

(Instantaneous vs. 

Durative)

(Full vs. 

Partial satisfaction)



Blocks world

State variables:
Ontable(x) On(x,y)  Clear(x)  hand-empty  holding(x)

Stack(x,y)
Prec:  holding(x), clear(y)
eff:   on(x,y), ~cl(y), ~holding(x), hand-empty

Unstack(x,y)
Prec:  on(x,y),hand-empty,cl(x)
eff:    holding(x),~clear(x),clear(y),~hand-empty

Pickup(x)
Prec:  hand-empty,clear(x),ontable(x)
eff:   holding(x),~ontable(x),~hand-empty,~Clear(x)

Putdown(x)
Prec:  holding(x)
eff: Ontable(x), hand-empty,clear(x),~holding(x)

Initial state:
Complete specification of T/F values to state variables

--By convention, variables with F values are omitted

Goal state:
A partial specification of the desired state variable/value combinations

--desired values can be both positive and negative 

Init: 
Ontable(A),Ontable(B),
Clear(A), Clear(B), hand-empty

Goal:
~clear(B), hand-empty

Ontable(A)

Ontable(B),

Clear(A)

Clear(B)

hand-empty

holding(A)

~Clear(A)

~Ontable(A)

Ontable(B),

Clear(B)

~handempty

Pickup(A)

Pickup(B)

holding(B)

~Clear(B)

~Ontable(B)

Ontable(A),

Clear(A)

~handempty

P-Space Complete

“Classical” Planning



We have figured out how to scale synthesis..

 Before, planning 
algorithms could 
synthesize about 6 
– 10 action plans in 
minutes

 Significant scale-
up in the last 
decade
 Now, we can 

synthesize 100 
action plans in 
seconds.

Realistic encodings 
of Munich airport!

The primary revolution in planning in the recent years has been 
methods to scale up plan synthesis

Problem is Search Control!!!

Scalability was the big bottle-neck…
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..and we have done our fair bit…



A: A  Unified Brand-name-Free Introduction to Planning Subbarao Kambhampati

Static Deterministic Observable Instantaneous Propositional

“Classical Planning”

Dynamic Durative ContinuousStochastic Partially

Observable

So, what next?



Underlying System Dynamics

Traditional Planning

[AAAI 2010; IJCAI 2009; IJCAI 2007,AAAI 2007]

Assumption: Complete Models
Complete Action Descriptions
Fully Specified Preferences
All objects in the world known up front
One-shot planning

Allows planning to be a pure inference problem
 But humans in the loop can ruin a really a perfect day 

FF-HOP [2008]

Effective ways to handle the more expressive planning problems by 
exploiting the deterministic planning technology 

Assumption: Complete Models
Complete Action Descriptions (fallible domain writers)
Fully Specified Preferences    (uncertain users)
All objects in the world known up front  (open worlds)
One-shot planning (continual revision)

Planning is no longer a pure inference problem 

SAPA [2003] POND  [2006]



Learning is not the (sole) answer..

• A tempting way to handle 
incompleteness is to say that we should 
wait until the full model is obtained

– Either through learning
– Or by the generosity of the domain writer..

• Problem: Waiting for complete model is 
often times not a feasible alternative

• The model may never become complete…
• We need to figure out a way of maintaining 

incomplete models, and planning with them 
(pending learning..)



Challenges of Handling 
Incompleteness

1. Circumscribing the incompleteness
• Preference components; possible precond/effect annotations; 

OWQG
2. Developing the appropriate solution concepts

• Diverse plans; Robust plans; Partial sensing plans
3. Developing planners capable of synthesizing them 

• Can adapt existing planners toward these solution concepts
4. Life-long Planning/Learning to reduce incompleteness

– Commitment-sensitive Replanning
• Learning preferences h(.) through interactions; learning model 

conditions through execution 
• [ Tutorial on Learning in Planning AI MAG 2003; Learning 

preferences as HTNs IJCAI 2009; ICAPS 2009]



There are known 
knowns; there are 
things we know that we 
know. There are known 
unknowns; that is to 
say, there are things 
that we now know we 
don’t know. But there 
are also unknown 
unknowns; there are 
things we do not know 
we don’t know.



Challenges of Human-in-the-Loop 
Planning

1. Circumscribing the incompleteness
• Preference components; possible precond/effect annotations; 

OWQG
2. Developing the appropriate solution concepts

• Diverse plans; Robust plans; Partial sensing plans
3. Developing planners capable of synthesizing them 

• Can adapt existing planners toward these solution concepts
4. Life-long Planning/Learning to reduce incompleteness

– Commitment-sensitive Replanning
• Learning preferences h(.) through interactions; learning model 

conditions through execution 
• [ Tutorial on Learning in Planning AI MAG 2003; Learning 

preferences as HTNs IJCAI 2009; ICAPS 2009]Tough Problems



Our Contributions

• Preference incompleteness
– Unknown Preferences [IJCAI 2007]

– Partially known  Preferences [IJCAI 2009]

• Model incompleteness
– Robust plan generation [ICAPS Wkshp 2010]

• World/Object incompleteness
– OWQG [IROS 2009; BTAMP 2009; AAAI 2010] 

Model-Lite Planning



Preferences in Planning – Traditional 
View
 Classical Model: “Closed world” assumption 

about user preferences. 
 All preferences assumed to be fully 

specified/available

Two possibilities
 If no preferences specified —then user is 

assumed to be indifferent. Any single feasible 
plan considered acceptable. 

 If preferences/objectives are specified, find a plan 
that is optimal w.r.t. specified objectives.

Either way, solution is a single plan

Full Knowledge
of Preferences

1515



Human in the Loop: Unknown &  
Partially Known Preferences 
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Unknown preferences occur in
search engine queries
How do they handle them?

Diversify the results…!
--Return answers that are 

closest to the query, and
are farthest from each other

--Distance Metrics

Google-inspired?



Handling Unknown &  Partially 
Known Preferences 
 Unknown preferences

 For all we know, user may 
care about every thing -- the 
flight carrier, the arrival 
and departure times, the 
type of flight, the airport, 
time of travel and cost of 
travel…

 Best choice is to return a 
diverse set of plans [IJCAI 
2007]
 Distance measures between 

plans

 Partially known
 We may know that user 

cares only about makespan 
and cost. But we don’t know 
how she combines them..

 Returning a diverse set of 
plans may not be enough
 They may not differ on the 

attributes of relevance..
 Focus on spanning the pareto 

set.. [IJCAI 2009]
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Generating Diverse Plans 
 Formalized notions of bases 

for plan distance measures
 Proposed adaptation to 

existing representative, 
state-of-the-art, planning 
algorithms to search for 
diverse plans
 Showed that using action-

based distance results in plans 
that are likely to be also 
diverse with respect to 
behavior and causal structure

 LPG can scale-up well to large 
problems with the proposed 
changes 

[IJCAI 2007]

•Action-based 
comparison: S1-1, S1-2 
are similar, both 
dissimilar to S1-3; with 
another basis for 
computation, all can be 
seen as different 
•State-based comparison: 
S1-1 different from S1-2 
and S1-3; S1-2 and S1-3 
are similar
•Causal-link comparison: 
S1-1 and S1-2 are 
similar, both diverse from 
S1-3

Compute by Set-difference

p1,
p2,
p3

g1,
g2,
g3

A1 A2

<p1,p2,p3>

A3

<g1,p2,p3>
<g1,g2,p3>

<g1,g2,g3>

Plan S1-2

p1,
p2,
p3

g1,
g2,
g3

A1

A2

A3
<p1,p2,p3>

<g1,g2,g3>

Plan S1-1

p1,
p2,
p3

g1,
g2,
g3

A1 A2’

<p1,p2,p3>

A3’

<g1,p2,p3>
<g1,g2,p3>

<g1,g2,g3>

Plan S1-3

Initial State Goal State

 dDISTANTkSET
 Given a distance measure δ(.,.), and a 

parameter k, find k plans for solving the 
problem that have guaranteed minimum 
pair-wise distance d among them in 
terms of δ(.,.)

Distance Measures

 In what terms should we measure 
distances between two plans?
 The actions that are used in the plan?
 The behaviors exhibited by the plans?
 The roles played by the actions in the plan?

 Choice may depend on
 The ultimate use of the plans

 E.g. Should a plan P and a non-minimal 
variant of P be considered similar or different?

 What is the source of plans and how much is 
accessible? 
 E.g. do we have access to domain theory or 

just action names?



Generating Diverse Plans with Local Search

LPG-d solves 109 comb.
Avg. time = 162.8 sec
Avg. distance = 0.68
Includes d<0.4,k=10; d=0.95,k=2

LPG-d solves 211 comb.
Avg. time = 12.1 sec
Avg. distance = 0.69

LPG-d solves 225 comb.
Avg. time = 64.1 sec
Avg. distance = 0.88



Jan 09, 2007 Domain Independent Approaches for Finding Diverse Plans

Unknown &  Partially Known 
Preferences 
 Unknown preferences

 For all we know, user may 
care about every thing -- the 
flight carrier, the arrival 
and departure times, the 
type of flight, the airport, 
time of travel and cost of 
travel…

 Best choice is to return a 
diverse set of plans [IJCAI 
2007]
 Distance measures between 

plans

 Partially known
 We may know that user 

cares only about makespan 
and cost. But we don’t know 
how she combines them..

 Returning a diverse set of 
plans may not be enough
 They may not differ on the 

attributes of relevance..
 Focus on spanning the pareto 

set..

2222



Modeling Partially Known Objectives
 The user is interested in minimizing two objectives 

(say makespan and execution cost of plan p: time(p), 
cost(p).)

 The quality of plan p is given by cost function:

 represents the trade-off between two competing 
objectives.

 w is unknown, but the belief distribution w, h(w), is 
assumed to be known
 (if no special information is available, assume uniform 

distribution).
 Objective: find a representative set of non-dominated 

plans                minimizing expected value of            
w.r.t h(w)
 Represented by Integrated Convex Preference (ICP) 

measure developed in OR community (Carlyle, 2003).

])1,0[()(cos)1()(),( ∈×−+×= wptwptimewwpf
]1,0[∈w

),( wpfkPP ≤||,
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Handling Partially Known 
Preferences 

 View it as a Multi-objective optimization
 Return the Pareto optimal set of plans

(and let the user select from among them)
 Two problems

 [Computational] Computing the full pareto set can be 
too costly

 [Comprehensional] Lay users may suffer information 
overload when presented with a large set of plans to 
choose from

 Solution: Return k representative plans from the 
Pareto Set
 Challenge 1: How to define “representative” robustly? 
 Challenge 2: How to generate representative set of 

plans efficiently?

2424



Measuring Representativeness: ICP

25
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Handling Partial Preferences using 
ICP 
Problem Statement: 
 Given 

 the objectives Oi, 
 the vector w for convex 

combination of Oi
 the distribution h(w) of 

w, 
 Return a set of k plans 

with the minimum ICP 
value.  

 Solution Approaches:
 Sampling: Sample k

values of w, and 
approximate the optimal 
plan for each value. 

 ICP-Sequential: Drive 
the search to find plans 
that will improve ICP

 Hybrid: Start with 
Sampling, and then 
improve the seed set 
with ICP-Sequential

 [Baseline]: Find k
diverse plans using the 
distance measures from 
[IJCAI 2007] paper; 
LPG-Speed.
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Learning Planning Preferences

27

We can learn 
to improve the 
preference 
model by 
revising the 
h(w) after 
every few 
iterations 
(through user 
interaction)

Revising 
distribution 
h(w) over 
iterations
(Bayesian
learning..)

27



Hitchhike
? No way!

 Pbus: Getin(bus, source), Buyticket(bus), Getout(bus, dest) 2
 Ptrain: Buyticket(train), Getin(train, source), Getout(train, dest) 8
 Phike: Hitchhike(source, dest) 0

LEARNING PLAN PREFERENCES
From Observed Executions

[IJCAI 2009]



LEARNING USER PLAN PREFERENCES 
OBFUSCATED BY FEASIBILITY CONSTRAINTS

 Rescale observed plans
 Undo the filtering caused 

by feasibility constraints
 Base learner
 Acquires true user 

preferences based on 
adjusted plan 
frequencies

Rescaled Plans:

Pplane * 12

Ptrain   *  4

Pbus *  1

Base 
Learner

Input Plans:

Pplane *  3

Ptrain   *  5

Pbus *  6

IJCAI ‘09

User Preference Model

[ICAPS 2009]



Our Contributions
Preference incompleteness

Unknown Preferences [IJCAI 2007]
Partially known  Preferences [IJCAI 2009]

Model incompleteness
Robust plan generation [ICAPS Wkshp 2010]

World/Object incompleteness
OWQG [IROS 2009; BTAMP 2009; AAAI 2010] 



Planning with partial domain models:
Motivation

• Planning, in traditional 
perspective, assumes a completely 
specified domain model

– We know exactly the 
conditions and effects of action 
execution

– Stochastic models  also assume 
completeness (“known” 
probabilities)

• Domain modeling is a laborious, 
error-prone task
– So much so that there is a 

Knowledge Engineering track for 
ICP

– Action descriptions have to be seen 
as “nominal”
– May have missing preconditions 

and effects…
– Sometimes, the domain modeler 

may be able to annotate the action 
with sources of incompleteness
– Possible preconditions/effects

Can the planner exploit such partial 
knowledge?



Deterministic Partial Domain Models
• We consider planning with deterministic, but incompletely 

specified domain model

• Each action a is associated with possible precond and effects 
(in addition to the normal precond/eff):
– PreP(a) [p]: set of propositions that a might depend on during 

execution
– AddP(a) [p]: : set of propositions that a might add after 

execution
– DelP(a) [p]: : set of propositions that a might delete after 

execution

a

p1

p3

p1

p3

–

p4

p2

–

Example: An action a that is 
known to depend on p1, add p4 
and delete p3. In addition, it might 
have p3 as its precondition, might 
add p2 and might delete p1 after 
execution.



Solution Concept: Robust Plans
• Solution concept:

– Robust plan
– Plan is highly robust if executable in 

large number of most-likely candidate 
models

• Robustness measure
– Set of candidate domain models S

(consistent with the given 
deterministic partial domain model D)

– A complete but unknown domain 
model D*

• Can be any model in S

∑ ++=
a

aaaK )(DelP)(AddP)(PreP

|Π|Number of candidate models with 
which the plan succeeds

Robustness value: 3/8

Easily generalized to consider model likelihood



Assessing Plan Robustness
• Number of candidate models: 

exponentially large. Computing 
robustness of a given plan is 
hard!!!
– Exact and approximate 

assessment.
• Exact methods:

– (Weighted) Model-counting 
approach: 

• Construct logical formulas 
representing causal-proof (Mali & 
Kambhampati 1999) for plan 
correctness

• Invoke an exact model counting 
approach

• Approximate methods:

– Invoke approximate model 
counting approach

– Approximate and propagate 
action robustness

• Can be used in generating 
robust plans

“If p1 is realized 
as a delete effect 
of a1, then it 
must be an 
additive effect of 
a2.”



Generating Robust Plans

• Compilation approach: Compile into a 
(Probabilistic) Conformant Planning
problem
– One “unobservable” variable per each 

possible effect/precondition

• Significant initial state uncertainty

– Can adapt a probabilistic conformant 
planner such as  POND [JAIR, 2006; AIJ 
2008]

• Direct approach: Bias a planner’s 
search towards more robust plans
– Heuristically assess the robustness of 

partial plans

• Need to use the (approximate) 
robustness assessment procedures

[ICAPS 2010 Wkshp on Planning under Uncertainty]



Our Contributions

• Preference incompleteness
– Unknown Preferences [IJCAI 2007]

– Partially known  Preferences [IJCAI 2009]

• Model incompleteness
– Robust plan generation [ICAPS Wkshp 2010]

• World/Object incompleteness
– OWQG [IROS 2009; BTAMP 2009; AAAI 2010] 



Cognitive
Science

Urban Search and Rescue

37

• Human-Robot team

• Robot starts the beginning
of the hallway

• Human is giving higher
level knowledge

• Hard Goal: Reach the end 
of the hallway

• Wounded people are in 
rooms

• Soft Goal: Report locations 
of wounded people



Cognitive
Science

Planning Support for USAR

• Good News:  Some aspects of existing 
planning technology are very relevant 

• Partial Satisfaction
• Replanning & Execution Monitoring

• Bad News:  Incomplete Model / Open World
– Unknown objects 

• Don’t know where injured people are

– Goals specified in terms of them
• If  the robot finds an injured person, it should report 

their location …

38
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Planner Robot

Closed World Open World

Under Sensing
Closed World Model

Limited Sensing
Planner guides robot 

in a limited way

Over Sensing
Robot senses its way 

through the world

How do you make a deterministic 
closed-world planner believe in 
opportunities sans guarantees?

Open World Quantified Goals
Partial Satisfaction Planning (PSP)

Sensing and Replanning



Cognitive
Science

Handling Open World

• Extreme Cases
– If  the robot assumes “closed world”, it will just go 

to the end of the corridor.

– If  the robot insists on “closing” the model before 
doing planning, it will do over-sensing.

• Need a way of combining sensing and 
planning
– Information on unknown objects

– Goals conditioned on these objects

40



Cognitive
Science

Open World Quantified 
Goals (OWQGs)

• Goals that allow for the specification of 
additional information
– To take advantage of opportunities 

41

(:open (forall ?r – room
(sense ?p – person 

(looked_for ?p ?r)
(and (has_property ?p wounded)

(in ?p ?r))
(:goal 

(and (reported ?p wounded ?r) 
[100] - soft))))

Quantified Object(s)
Sensed Object
Closure Condition

Quantified Facts

Quantified Goal



OWQGs as Conditional Rewards
Robot needs to
sense wounded people
before reporting them

Planner has to deal with open world

Naïve idea: Ask Robot to look
everywhere (high sensing cost)

--Need to sense for those conditional goals
whose antecedents are likely to hold

Conditional Goals can be compiled
down when the world model is complete

[ACM TIST 2010; AAAI, 2010; IROS 2009; BTAMP 2009]



Cognitive
Science

Planning with OWQGs
• Bias the planner’s model

• Endow the planner with an optimistic view
– Assume existence of objects and facts that may 

lead to rewarding goals
• e.g. the presence of an injured human in a room

– Create runtime objects

– Add to the planner’s database of ground objects

• Plans are generated over this reconfigured 
potential search space

43



Cognitive
Science

Partial Satisfaction Planning (PSP)

• Soft Goals
– Allows planner to model “bonus” goals

• Quantification of Goals
– Cannot possibly satisfy all possible groundings

– Constrained by metric resources (time etc.)

• Net Benefit
– Sensing is costly

– Must be balanced with goal-achievement reward

44

Preferences and PSP in Planning
Benton, Baier, Kambhampati (Tutorial)



Cognitive
Science

Replanning and
Execution Monitoring

• Sensing is expensive …
• Cannot be done at every step

• Planner needs to direct the architecture on:
• when to sense

• what to sense for

• Planning to sense in a goal-directed manner
• Output all actions up to (and including) any 

action that results in “closing” the world
– Obtaining information about unknown objects

45



Cognitive
Science

Putting It All Together

46

Goal 
Manager

Monitor Planner
Plan

Plan

Problem 
Updates

Updated State 
Information

OWQGs

Sensory 
Information

Actions



Challenges of Human-in-the-Loop 
Planning

1. Circumscribing the incompleteness
• Preference components; possible precond/effect annotations; 

OWQG
2. Developing the appropriate solution concepts

• Diverse plans; Robust plans; Partial sensing plans
3. Developing planners capable of synthesizing them 

• Can adapt existing planners toward these solution concepts
4. Life Long Planing/Learning to reduce incompleteness

• Learning preferences h(.) through interactions; learning model 
conditions through execution 

• [ Tutorial on Learning in Planning AI MAG 2003; Learning 
preferences as HTNs IJCAI 2009; ICAPS 2009]



Partial Solutions for 
Human-in-the-Loop  Planning

1. Circumscribing the incompleteness
• Preference components; possible precond/effect annotations; 

OWQG
2. Developing the appropriate solution concepts

• Diverse plans; Robust plans; Partial sensing plans
3. Developing planners capable of synthesizing them 

• Can adapt existing planners toward these solution concepts
4. Life Long Planning/Learning to reduce incompleteness

• Learning preferences h(.) through interactions; learning model 
conditions through execution

• [ Tutorial on Learning in Planning AI MAG 2003; Learning 
preferences as HTNs IJCAI 2009; ICAPS 2009]

Model-Lite Planning:
Planning is more than pure inference over completely specified models!

Can exploit
Deterministic

Planning technology!
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