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Information overload

As more information becomes
available, it becomes more
difficult to access what we are
looking for.

We need new tools to help us
organize, search, and
understand these vast
amounts of information.




Topic modeling

Topic modeling provides methods for automatically organizing,
understanding, searching, and summarizing large electronic archives.
© Uncover the hidden topical patterns that pervade the collection.

® Annotate the documents according to those topics.
® Use annotations to organize, summarize, and search the texts.
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Model the evolution of topics over time
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Model connections between topics
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This talk

© Introduction to topic modeling
® A flurry of topic models
® Two new ideas—

e The ideal-point topic model
o Scalable inference in topic models



Ideal point topic model
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predicted
discrimination

e Existing methods for collaborative filtering rely on other users
preferences to fill in a new preference.

e Ideal point topic models let us predict user preferences from
entirely new items.

e lllustrates how to build new topic models and use them to solve
real-world textual problems



Scalable inference for probabilistic topic models

On-line inference P -
W > p(B1:x | WD)

Document stream

e Existing topic modeling algorithms process document collections
in batch—iteratively examining each document

e Many applications of topic modeling could benefit from
processing documents in a stream
« Linking topic models to web APls and databases
o Handling millions and billions of documents
« Refining topic models on the fly, e.g., for user interfaces



Latent Dirichlet allocation



Probabilistic modeling

© Treat data as observations that arise from a generative
probabilistic process that includes hidden variables

o For documents, the hidden variables reflect the thematic
structure of the collection.

® Infer the hidden structure using posterior inference
o What are the topics that describe this collection?
@ Situate new data into the estimated model.

o How does this query or new document fit into the estimated
topic structure?



Intuition behind LDA

Seeking Life’s Bare (Genetic) Necessities
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Simple intuition: Documents exhibit multiple topics.




Generative model
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e Each document is a random mixture of corpus-wide topics

e Each word is drawn from one of those topics



The posterior distribution
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e In reality, we only observe the documents

e Our goal is to infer the underlying topic structure



Latent Dirichlet allocation
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Latent Dirichlet allocation

OHOFO- @O0

o 0q Zan Wan N O i

e From a collection of documents, infer
« Per-word topic assignment z,
o Per-document topic proportions 64
o Per-corpus topic distributions i

e Use posterior expectations to perform the task at hand, e.g.,
information retrieval, document similarity, etc.



Latent Dirichlet allocation
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e Computing the posterior is intractable:

p(0 | @) TIN_; p(zn | 0)D(Wn | Zn, B1.k)
fe 0‘04 Hn 122 1,D(Zn|9) (WN|Zn7ﬁ1:K)

e Stay tuned for the second half of this talk...




Example inference

Seeking Life’s Bare (Genetic) Necessities

e Data: The OCR’ed collection of Science from 1990-2000

e 17K documents
e 11M words
e 20K unique terms (stop words and rare words removed)

e Model: 100-topic LDA model using variational inference.



Example inference
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Example inference
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Example inference (Il

Chaotic Beetles

Charles Godfray and Michael Hassell

Ecologists have known since the pioneering
work of May in the mid-1970s (1) that the
population dynamics of animals and plants
can be exceedingly complex. This complex-
ity arises from two sources: The tangled web
of interactions that constitute any natural
community provide a myriad of different
pathways for species to interact, both di-
rectly and indirectly. And even in isolated
populations the nonlinear feedback pro

cesses present in all natural populations can
result in complex dynamic behavior. Natural
populations can show persistent oscillatory
dynamics and chaos, the latter characterized
by extreme sensitivity to initial conditions. If
such chaotic dynamics were common in na-
ture, then this would have important ramifi-
cations for the management and conserva-
tion of natural resources. On page 389 of this
issue, Costantino et al. (2) provide the most

The authors are in the Department of Biology. Imperial
College at Silwood Park, Ascot, Berks, SL5 7PZ UK. E-
mail: m hassell@ic ac.uk

convincing evidence to date of

move over the surface of the attractor, sets of
adjacent trajectories are pulled apart, then
stretched and folded, so that it becomes im-
possible to predict exact population densities
into the future. The strength of the mixing
that gives risc to the extreme sensitivity to
initial conditions can be measured math

ematically estimating the Liapunov expo-
nent, which is positive for cha

complex dynamics and chaos
in a biological population—of
the flour beetle, Tribolium
castaneum (see figure).

It has proven extremely dif-
ficult to demonstrate complex
dynamics in populations in the
field. By its very nature, a cha-
otically fluctuating population
will_superficially resemble a
stable or cyclic population buf-
feted by the normal random per-
turbations experienced by all
species. Given a long enough
time  series, diagnostic tools
from nonlinear mathematics

otic dynamics and nonposi-
tive otherwise. There have been
many attempts to estimate at-
tractor dimension and Liap-
unov exponents from time se-
ries data, and some candidate
chaotic population have been
identified (smnt insects, fo-
dents, and most convinc-
ingly, human childhood dis
cases), but the statistical diffi-
culties preclude any broad
generalization

An altemative approach is
to parameterize population
models with data from natural

can be used to identify the tell-

Inphase
space, chaotic trajectories come
to lie on “strange attractors,”
curious geometric objects with

The flour bee\le Tribo-
fium castaneum, exhibits
chaotic population  dy-
namics when the amount

and then compare
their predictions with the dy-
namics in the field. This tech-
nique has been gaining popu-
larity in recent years, helped by

and chaos.

fractal structure and hence  of cannibalism is altered statistical advances in pa-
dimension. Asthey ina model. rameter Good ex-
SCIENCE » VOL. 275 » 17 JANUARY 1997 323



Example inference (ll)
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mathematicians density evolutionary tropical
chaos measured genetic forests
chaotic models reproductive  ecosystem



Used in exploratory tools of document collections
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LDA summary

LDA is a powerful model for

o Visualizing the hidden thematic structure in large corpora
o Generalizing new data to fit into that structure

LDA is a mixed membership model (Erosheva, 2004) that builds
on the work of Deerwester et al. (1990) and Hofmann (1999).

See Blei et al. (2003) for details and a quantitative comparison.
See my web-site for code and other papers.

The same model was independently invented for population
genetics analysis (Pritchard et al., 2000).



LDA summary

T, Parse trees

documents
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e There is a growing research literature on topic models using LDA

¢ This has been a success story for—
o Describing assumptions with hierarchical Bayesian models
o Computation on large data with approximate inference
o Exploratory analysis with unsupervised learning



A flurry of models that extend LDA



Dynamic topic models
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Dynamic topic models

1880 1890 1900 1910 1920 1930 1940
electric electric apparatus air apparatus tube air
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two machine water laboratory glass laboratory rubber
machines two construction engineer gas pressure pressure
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battery motor room gas laboratory gas mercury
wire engine feet tube mercury small g,as
1950 1960 1970 1980 1990 2000
tube tube air high materials devices
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glass temperature power design power materials
air air system heat current current
chamber | heat »{ temperature |- system || applications | gate
instrument chamber chamber systems technology high
small power high devices devices light
laboratory high flow instruments design silicon
pressure instrument tube control device material
rubber control design large heat technology

(See Blei and Lafferty, 2007)



Correlated topic models
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Correlated topic models
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Supervised topic models
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Supervised topic models
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(See Blei and McAuliffe, 2007)



Relational topic models
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Relational topic models
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Other extensions

Bayesian nonparametric topic models (Teh et al., 2006)
Syntactic topic models (Boyd-Graber and Blei, 2009)

Topic models on images (Fei-fei and Perona, 2005 and others)
Topic models on social network data (Airoldi et al., 2008)
Topic models on music data (Hoffman et al., 2008)
Modeling scientific impact (Gerrish and Blei, 2010)



|deal point topic models



The ideal point model
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p(vij) = f(d(wi,a;))

e A model devised to uncover voting patterns (Clinton et al., 2004).
e We observe roll call data v;.

« Bills attached to discrimination parameters a;.
Senators attached to ideal points x;.



The ideal point model
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» Posterior inference reveals the political spectrum of senators
e Widely used in quantitative political science.



The ideal point model is limited for prediction

Ty

|

<ZzZ=<Z
<<zZZ<

NZ2<<2Z2
MNZ2Z22Z2<

N<<<<<ZZ2Z<=<
N<zzz<z=<<22
Nz <z<zz<<<<
Mz<z<zz<<<<

i) = Fda

=
—~
<
S
8
<
S
<.
~—
N—

e We can predict a missing vote.
e But we cannot predict all the missing votes from a bill.
o Cf. the limitations of collaborative filtering



Ideal point topic models
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Use supervised topic modeling assumptions as a predictive
mechanism from bill texts to bill discrimination.



Ideal point topic models
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Ideal point topics

tax credit,budget authority,energy,outlays,tax - @
county,eligible, ballot,election jurisdiction - .
banktransfer,requires,holding company,industrial - .
housing,mortgage,loan,family,recipient - L[]
energy,fuel,standard,administrator, lamp - .
student,loan,institution,lender,school - ]
medicare,medicaid,child,chip,coverage -
defense,iraqg,transfer,expense,chapter -
business,administrator,bills,business concern,loan -
trar ion, rail railroad security -
cover,bills,bridge,transaction,following -
bills tax,subparagraph,loss,taxable - L]
loss,crop,producer,agriculture,trade - .
head,start,child technology,award ~ °
computer,alien,bills,user,collection - L]
science,director,technology, mathematics, bills ~ o
coast guard,vessel,space,administrator,requires - L]
child,center,poison,victim,abuse - [ ]
land,site, bills, interior, river ~ ( ]
energy,bills,price,commodity,market - [ )
urveil director,court, ic,flood ~ °
child fire,attorney, internet,bills - [ ]
drug,pediatric,product,device,medical - L]
human,vietnam,united nations,call,people - [ )
bills,iran,official,company,sudan - [ ]
coin,inspector,designee,automobile,lebanon - °
producer eligible,crop,farm,subparagraph - .
people,woman,american,nation,school - .
veteran,veterans,bills,care,injury -
dod,defense,defense and appropriation,military,subtitle ~

In addition to senators and bills, IPTM places topics on the spectrum.



Prediction on completely held-out votes
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Ideal point topic models

Ideal point topic model illustrates
» Topic modeling embedded in a complex model
o Topic modeling used to solve a real-world problem with text
o Variational methods allow us to analyze larger data sets

More generally, consider

o Senators are users.
o Bills are items.

Existing collaborative filtering is akin to classical ideal point.

Our model lets us predict preferences on completely new items.



On-line posterior inference



The need for streaming inference

Document stream On-line inference
>

g
.

p(Pr.x | W1.p)

e These topic models work in the same way—

» Posit a generative model
» Cast the task at hand as a posterior computation
» Approximate the posterior

e To approximate the posterior, existing topic modeling algorithms
process document collections in batch.

e Many applications of topic modeling could benefit from
processing documents in a stream.



Return to LDA
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e Computing the posterior is intractable:

p(0 ) TN, p(2n | 0)P(Wn | 20, B1:k)
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e Several approximation techniques have been developed.




Return to LDA
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We focus on variational methods
Alternative to MCMC; replace sampling with optimization

Often faster than MCMC
(Blei and Jordan 2005, Braun and McAuliffe 2010)

Provides the right ingredients for a streaming inference algorithm



Variational inference

Introduce a distribution over the latent variables g(é, z),
parameterized by variational parameters

Use Jensen’s inequality to bound the log probability of a
document w = wy.p.

log p(w) > Eg[log p(0, Z, w)] — Eqllog q(6, 2)]

We optimize the variational parameters to tighten this bound.

This is the same as finding the member of the family g that is
closest in KL divergence to p(0, z | w).



Variational Inference for LDA
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e The mean field variational distribution is

99, z1.n |7, 61.8) = (0| 1) TIN- 1 Q(Zn | 6n)

e In the posterior, the latent variables are not independent.



Variational Inference for LDA
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The variational parameters are

~ Dirichlet parameters
¢1.n Multinomial parameters for K-dim variables

Contrast this to the model.
e An individual Dirichlet distribution for each document
e An individual multinomial for each word in each document



Variational Inference for LDA
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Given topics (31.x and words wjy.p,
optimize the ELBO with coordinate ascent—

Y o= at+Xn g 6n
¢n o< exp{E[log ] +log 5. w,}.

where
Eflog 0] = W(vi) — V(3 %)-



Example inference (again

Seeking Life’s Bare (Genetic) Necessities
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1703 genes

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,

“are not all that far apart,” especially in
comparison to the 75,000 genes in the hu
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
800 number. But coming up with a consen
sus answer may be more than just a genetic
numbers game, particularly as more and
more genomes are completely mapped and
sequenced. “It may be a way of organizing
any newly sequenced genome,” explains

Arcady Mushegian, a computational mo-

. lecular biologist at the National Center

A\ for Biotechnology Information (NCBI)
| in Bethesda, Maryland.
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Stripping down. Computer analysis yields an esti-

May 8 to 12 mate of the minimum modern and ancient genomes
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Estimating the topics

O+OFO-@—H0—+0
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e Use a variational Dirichlet for each topic, g(8k | Ak)-

¢ After doing per-document inference on each document,
=0+ Winbdn
d n

« Notice: this is like the true posterior with E4[Zy 5].



Batch Variational Inference for LDA

1: Initialize topics Aq.x randomly.

2: while relative improvement in L(w, ¢, v, A) > ¢ do
3: ford=1toDdo

4 Initialize vg x = 1.

5 repeat

6: Set ¢g 5 x exp{Eq[log 4] + Eg[log 5. w,]}
7 Setyg =a+ 3 ,¢dn

8 until % >°, [change in vy 4| < e

9: end for

0

1:

Set A\ =n+ Zd >on Wg n®d,n
end while

—_

1



“E Step”

1: Initialize topics Ay.x randomly.

2: while relative improvement in L(w, ¢,~, ) > ¢ do
3: ford=1toDdo

4 Initialize vg x = 1.

5 repeat

6: Set ¢g. 5 x exp{Eq[log 4] + Eg[log 5. w,]}
7 Setyg=a+ ,90dn

8 until % 3", [change in vy 4| < e

9: end for

0

1:

Set Ak =n+ 24> n Wa,nPa,n

10:
11: end while

Do variational inference for each document.



“M Step”

1: Initialize topics Ay.x randomly.

2: while relative improvement in L(w, ¢,~, ) > ¢ do
3: ford=1toDdo

4 Initialize Yd.k = 1.

5 repeat

6: Set ¢y n < exp{Eq[log O4] + Eq[log 5. w,] }
7 Setyg=a+ > ,ban

8 until £ 3", | change in yg4| < €

9: end for

0

1:

Set \y =n+ Zd Zn Wq n®d,n
end while

10:
1

Update the posterior estimates of the topics based on the “E step.”



Example topic inference

human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics
mapping
project
sequences

evolution
evolutionary
species
organisms
life
origin
biology
groups
phylogenetic
living
diversity
group
new
two
common

disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united

tuberculosis

computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new
simulations



The need for on-line inference

Our goal is to use this (and related) models for analyzing
massive collections of millions of documents.

But, in the first step of batch inference we estimate the posterior
for every document based on randomly initialized topics.

Rather, we use stochastic natural gradient ascent.

The basic procedure
o Sample a document from a source
o Process that document and update the model
e Repeat



A brief review of stochastic optimization

e Why waste time with the real gradient, when a cheaper noisy
estimate of the gradient will do (Robbins and Monro, 1951)?

e Idea: Follow a noisy estimate of the gradient with a step-size.

e By decreasing the step-size according to a certain schedule, we
guarantee convergence to a local optimum.



Stochastic optimization of the ELBO

ot-ofo-e—Hloto
« 04 Zan Win N O i
D K

e Many models contain “local” and “global” variables.

 Local variables are drawn for each data point.
o Global variables are drawn once for the whole data set.

e ldea—
o Subsample a small subset of the data
o Do variational inference for the local parameters
» Do stochastic optimization for the global parameters



Stochastic optimization of the ELBO

OHOFO- @O0

@ 04 Zan Wan N O n

e The procedure is to—

e Draw an index i at random
o Perform inference on document i and the current topics
o Update the (global) topics with stochastic optimization

¢ No need to process the whole corpus before updating the model.

e Further, no need to keep the corpus around on disk!



On-line variational inference for LDA

Define p; = (19 + )"
Initialize A randomly.
fort =010 cc do
Choose a random document w;
Initialize vy = 1. (The constant 1 is arbitrary.)
repeat
Set ¢1,n o exp{Eq[log 0¢] + Eq[log . w,]}
Set Yt =+ Zn Cbt,n
until £ 3", |change in v, x| < ¢
Compute A =1+ DY, Wi ndtn
Set A\ = (1 — p) Ak + ptAk.
end for



On-line variational inference for LDA

Define pt = (19 + 1)~
Initialize A randomly.
fort=0toocodo
Choose a random document w;
Initialize vy = 1. (The constant 1 is arbitrary.)
repeat
Set ¢1,n x exp{Eq[log 0] + Eq[log 5. w,] }
Setyy=a+),0n
until £ 3", |change in v x| < ¢
Compute \x =7+ D>, Wendtn
Set Ay = (1 — pt) A\ + Ptk
end for

The E-step only processes a single document.



On-line variational inference for LDA

Define p; £ (179 + )"
Initialize A randomly.
fort =0to oo do
Choose a random document w;
Initialize vy = 1. (The constant 1 is arbitrary.)
repeat
Set ¢1n ox exp{Eq[log b¢] + Eq[log 5..w,] }
Setyvi=a+> ,0tn
until 3", |change in ;x| < e
Compute A =17+ DY, Windtn
Set A\ = (1 = p) Ak + ptAk.
end for

The M-step treats that document as the whole corpus.
But, it only slightly adjusts the topics based on it.



Analyzing 3.3M articles from Wikipedia
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national language  communication  billion industry management company company
west care company health market systems  management management
language road billion industry billion services public public



On-line variational inference for LDA

Document stream

On-line inference .
Wi > p(B1:x | WD)

e We can build topic models from streams of documents.

e Some issues

o How quickly to decrease the learning rate?
o What is the “batch size”?
o How to interpret D when there is a stream of documents?

e See the paper by Hoffman et al. (NIPS, 2010) and the
foundational related work of Sato (Neural Computation, 2001).



Summary



Ideal point topic model

[
q'Q Y NY Y NY
e @—— Y N Y Y VYN
probabilistic N Y Y Y NN

) |

topic model ¢ N Y Y Y N Y
— N N NN Y Y
‘E Y Y NN N
Y NY Y N Y
& . —1Y N N N Y N
Y NY Y YN
[ Y Y NN NN
o

predicted
discrimination

e Ideal point topic models illustrate how probabilistic topic
modeling can be used to solve a real-world problem

e Our current research—
o On-line inference for this model
» Modeling changing tastes and preferences
o A scalable recommendation system for scientific articles



On-line inference for LDA

Document stream On-line inference

g
.

»| p(B1:k | W1:D)

e Stochastic optimization and variational methods provide a way to
approximate the posterior for massive and streaming data sets.

e This combination is very powerful for topic modeling.
It can be adapted to hierarchical models for many data
(e.g., biological data, natural images, network data)

e Our current research—
« On-line methods for Bayesian nonparametric models
» Working with non-conjugate priors and natural gradients
o Guiding the stream towards points that are poorly modeled



