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Information overload

www.betaversion.org/~stefano/linotype/news/26/

As more information becomes
available, it becomes more
difficult to access what we are
looking for.

We need new tools to help us
organize, search, and
understand these vast
amounts of information.



Topic modeling

Candida Hofer 

Topic modeling provides methods for automatically organizing,
understanding, searching, and summarizing large electronic archives.

1 Uncover the hidden topical patterns that pervade the collection.
2 Annotate the documents according to those topics.
3 Use annotations to organize, summarize, and search the texts.



Discover topics from a corpus

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations



Model the evolution of topics over time
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Model connections between topics
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This talk

1 Introduction to topic modeling
2 A flurry of topic models
3 Two new ideas—

• The ideal-point topic model
• Scalable inference in topic models



Ideal point topic model
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predicted
discrimination

• Existing methods for collaborative filtering rely on other users
preferences to fill in a new preference.

• Ideal point topic models let us predict user preferences from
entirely new items.

• Illustrates how to build new topic models and use them to solve
real-world textual problems



Scalable inference for probabilistic topic models

Document stream On-line inference�wi p(β1:K | �w1:D)

• Existing topic modeling algorithms process document collections
in batch—iteratively examining each document

• Many applications of topic modeling could benefit from
processing documents in a stream

• Linking topic models to web APIs and databases
• Handling millions and billions of documents
• Refining topic models on the fly, e.g., for user interfaces



Latent Dirichlet allocation



Probabilistic modeling

1 Treat data as observations that arise from a generative
probabilistic process that includes hidden variables

• For documents, the hidden variables reflect the thematic
structure of the collection.

2 Infer the hidden structure using posterior inference
• What are the topics that describe this collection?

3 Situate new data into the estimated model.
• How does this query or new document fit into the estimated

topic structure?



Intuition behind LDA

Simple intuition: Documents exhibit multiple topics.



Generative model

gene     0.04
dna      0.02
genetic  0.01
.,,

life     0.02
evolve   0.01
organism 0.01
.,,

brain    0.04
neuron   0.02
nerve    0.01
...

data     0.02
number   0.02
computer 0.01
.,,

Topics Documents Topic proportions and
assignments

• Each document is a random mixture of corpus-wide topics

• Each word is drawn from one of those topics



The posterior distribution

Topics Documents Topic proportions and
assignments

• In reality, we only observe the documents

• Our goal is to infer the underlying topic structure



Latent Dirichlet allocation

θd Zd,n Wd,n
N

D K
βk

α η

Dirichlet
parameter

Per-document
topic proportions

Per-word
topic assignment

Observed
word Topics

Topic
hyperparameter

K∏

i=1

p(βi | η)
D∏

d=1

p(θd |α)

(
N∏

n=1

p(zd ,n | θd )p(wd ,n |β1:K , zd ,n)

)



Latent Dirichlet allocation

θd Zd,n Wd,n
N

D K
βk

α η

• From a collection of documents, infer
• Per-word topic assignment zd ,n
• Per-document topic proportions θd
• Per-corpus topic distributions βk

• Use posterior expectations to perform the task at hand, e.g.,
information retrieval, document similarity, etc.



Latent Dirichlet allocation

θd Zd,n Wd,n
N

D K
βk

α η

• Computing the posterior is intractable:

p(θ |α)
∏N

n=1 p(zn | θ)p(wn | zn, β1:K )∫
θ p(θ |α)

∏N
n=1

∑K
z=1 p(zn | θ)p(wn | zn, β1:K )

• Stay tuned for the second half of this talk...



Example inference

• Data: The OCR’ed collection of Science from 1990–2000
• 17K documents
• 11M words
• 20K unique terms (stop words and rare words removed)

• Model: 100-topic LDA model using variational inference.



Example inference
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Example inference

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations



Example inference (II)



Example inference (II)

problem model selection species
problems rate male forest

mathematical constant males ecology
number distribution females fish

new time sex ecological
mathematics number species conservation
university size female diversity

two values evolution population
first value populations natural

numbers average population ecosystems
work rates sexual populations
time data behavior endangered

mathematicians density evolutionary tropical
chaos measured genetic forests

chaotic models reproductive ecosystem



Used in exploratory tools of document collections



LDA summary

• LDA is a powerful model for
• Visualizing the hidden thematic structure in large corpora
• Generalizing new data to fit into that structure

• LDA is a mixed membership model (Erosheva, 2004) that builds
on the work of Deerwester et al. (1990) and Hofmann (1999).

• See Blei et al. (2003) for details and a quantitative comparison.
See my web-site for code and other papers.

• The same model was independently invented for population
genetics analysis (Pritchard et al., 2000).



LDA summary
by emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to different topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution φt, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
θt over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell

V
(b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w
(b)
k the kth token in the event b

V
(b)

ij entity i and j’s groups behaved same (1)
or differently (2) on the event b

S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper
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Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution γ
(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb ∼ Uniform(
1

T
)

wit|φt ∼ Multinomial(φt)

φt|η ∼ Dirichlet(η)

git|θt ∼ Multinomial(θt)

θt|α ∼ Dirichlet(α)

V
(b)

ij |γ(b)
gigj

∼ Binomial(γ(b)
gigj

)

γ
(b)
gh |β ∼ Beta(β).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables φ determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n

(m)
· ∼ NB(

�
k bmkφk, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length πk according to Eq. 1.
(b) Sample the relative mass φk ∼ Gamma(γ, 1).
(c) Draw the topic distribution over words,

βk ∼ Dirichlet(η).

2. for m = 1, . . . ,M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n
(m)
· ∼ NB(

�
k bmkφk, 1/2).

(c) Sample the distribution over topics,
θm ∼ Dirichlet(bm · φ).

(d) For each word wmi, i = 1, . . . , n
(m)
· ,

i. Draw the topic index zmi ∼ Discrete(θm).
ii. Draw the word wmi ∼ Discrete(βzmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, θm, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters φ separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n
(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n

(m)
· =

P
k n

(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmjγ + τδi,j , where

Chang, Blei
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(Θ,Z|γ,Φ) =
�

d [qθ(θd|γd)
�

n qz(zd,n|φd,n)] , (3)

where γ is a set of Dirichlet parameters, one for each doc-

ument, and Φ is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = φd,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2

|zd1
,zd2

,η, ν)]+
�

d

�
n Eq [log p(wd,n|β1:K , zd,n)]+�

d

�
n Eq [log p(zd,n|θd)]+�

d Eq [log p(θd|α)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2
= 1 whenever a link is ob-

served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2

= 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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(b) Sentence Graphical Model

Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document θ,
and the node’s parent’s successor weights π. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an efficient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters βt is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and ∆sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 ≤ k ≤ K) topic’s parameter at term w is:

β0,k,w ∼ N (m, v0)

βj,k,w|βi,k,w, s ∼ N
�
βi,k,w, v∆sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write ∆sj ,si

as ∆sj for short.)

1. For each topic k, 1 ≤ k ≤ K,

(a) Draw β0,k ∼ N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to suffer from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is different: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for different items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is difficult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and efficiently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very different types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, effectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
θloc

d,v and a distribution defining preference for local topics
versus global topics πd,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution ψs. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(γ) for the distribution
ψs permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics ϕgl

z from a Dirichlet prior
Dir(βgl) and Kloc word distributions for local topics ϕloc

z′
from Dir(βloc). Then, for each document d:

• Choose a distribution of global topics θgl
d ∼ Dir(αgl).

• For each sentence s choose a distribution ψd,s(v) ∼
Dir(γ).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, φz, specific to a particular
topic/author, z, however topics are selected differently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, θ, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, θ, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution θx that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution φz. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite different. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.
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• There is a growing research literature on topic models using LDA

• This has been a success story for—
• Describing assumptions with hierarchical Bayesian models
• Computation on large data with approximate inference
• Exploratory analysis with unsupervised learning



A flurry of models that extend LDA



Dynamic topic models
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Dynamic topic models

 1880
electric

machine
power
engine
steam

two
machines

iron
battery

wire 

 1890
electric
power

company
steam

electrical
machine

two
system
motor
engine 

 1900
apparatus

steam
power
engine

engineering
water

construction
engineer

room
feet 

 1910
air

water
engineering
apparatus

room
laboratory
engineer

made
gas
tube 

 1920
apparatus

tube
air

pressure
water
glass
gas

made
laboratory
mercury 

 1930
tube

apparatus
glass

air
mercury

laboratory
pressure

made
gas

small 

 1940
air

tube
apparatus

glass
laboratory

rubber
pressure

small
mercury

gas 

 1950
tube

apparatus
glass

air
chamber

instrument
small

laboratory
pressure
rubber 

 1960
tube

system
temperature

air
heat

chamber
power
high

instrument
control 

 1970
air

heat
power
system

temperature
chamber

high
flow
tube

design 

 1980
high

power
design
heat

system
systems
devices

instruments
control
large 

 1990
materials

high
power
current

applications
technology

devices
design
device
heat 

 2000
devices
device

materials
current

gate
high
light

silicon
material

technology 

(See Blei and Lafferty, 2007)



Correlated topic models
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Correlated topic models
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Supervised topic models

Document-specific
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Supervised topic models

Topic and Coefficient
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(See Blei and McAuliffe, 2007)



Relational topic models
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for all pairs of documents
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(See Chang and Blei, 2010)



Relational topic models
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Other extensions

• Bayesian nonparametric topic models (Teh et al., 2006)

• Syntactic topic models (Boyd-Graber and Blei, 2009)

• Topic models on images (Fei-fei and Perona, 2005 and others)

• Topic models on social network data (Airoldi et al., 2008)

• Topic models on music data (Hoffman et al., 2008)

• Modeling scientific impact (Gerrish and Blei, 2010)



Ideal point topic models



The ideal point model
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p(vij) = f(d(xi, aj))

• A model devised to uncover voting patterns (Clinton et al., 2004).
• We observe roll call data vij .
• Bills attached to discrimination parameters aj .

Senators attached to ideal points xi .



The ideal point model
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• Posterior inference reveals the political spectrum of senators
• Widely used in quantitative political science.



The ideal point model is limited for prediction
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• We can predict a missing vote.
• But we cannot predict all the missing votes from a bill.
• Cf. the limitations of collaborative filtering



Ideal point topic models
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Use supervised topic modeling assumptions as a predictive
mechanism from bill texts to bill discrimination.



Ideal point topic models
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Ideal point topics

dod,defense,defense and appropriation,military,subtitle
veteran,veterans,bills,care,injury
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In addition to senators and bills, IPTM places topics on the spectrum.



Prediction on completely held-out votes
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Ideal point topic models

• Ideal point topic model illustrates
• Topic modeling embedded in a complex model
• Topic modeling used to solve a real-world problem with text
• Variational methods allow us to analyze larger data sets

• More generally, consider
• Senators are users.
• Bills are items.

• Existing collaborative filtering is akin to classical ideal point.

• Our model lets us predict preferences on completely new items.



On-line posterior inference



The need for streaming inference

Document stream On-line inference�wi p(β1:K | �w1:D)

• These topic models work in the same way—
• Posit a generative model
• Cast the task at hand as a posterior computation
• Approximate the posterior

• To approximate the posterior, existing topic modeling algorithms
process document collections in batch.

• Many applications of topic modeling could benefit from
processing documents in a stream.



Return to LDA
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• Computing the posterior is intractable:

p(θ |α)
∏N

n=1 p(zn | θ)p(wn | zn, β1:K )∫
θ p(θ |α)

∏N
n=1

∑K
z=1 p(zn | θ)p(wn | zn, β1:K )

• Several approximation techniques have been developed.



Return to LDA
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• We focus on variational methods
• Alternative to MCMC; replace sampling with optimization
• Often faster than MCMC

(Blei and Jordan 2005, Braun and McAuliffe 2010)

• Provides the right ingredients for a streaming inference algorithm



Variational inference

• Introduce a distribution over the latent variables q(θ, z),
parameterized by variational parameters

• Use Jensen’s inequality to bound the log probability of a
document w = w1:N .

log p(w) ≥ Eq[log p(θ,Z,w)]− Eq[log q(θ,Z)]

• We optimize the variational parameters to tighten this bound.

• This is the same as finding the member of the family q that is
closest in KL divergence to p(θ, z |w).



Variational Inference for LDA

θd Zd,n Wd,n
N

D K
βk

α η

• The mean field variational distribution is

q(θ, z1:N | γ, φ1:N) = q(θ | γ)
∏N

n=1 q(zn |φn)

• In the posterior, the latent variables are not independent.



Variational Inference for LDA

θd Zd,n Wd,n
N

D K
βk

α η

The variational parameters are

γ Dirichlet parameters
φ1:N Multinomial parameters for K-dim variables

Contrast this to the model.
• An individual Dirichlet distribution for each document
• An individual multinomial for each word in each document



Variational Inference for LDA

θd Zd,n Wd,n
N

D K
βk

α η

Given topics β1:K and words w1:N ,
optimize the ELBO with coordinate ascent—

γ = α +
∑N

n=1 φn

φn ∝ exp{E[log θ] + logβ.,wn},

where
E[log θi ] = Ψ(γi)−Ψ(

∑
j γj).



Example inference (again)
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Estimating the topics

θd Zd,n Wd,n
N

D K
βk

α η

• Use a variational Dirichlet for each topic, q(βk |λk ).

• After doing per-document inference on each document,

λk = η +
∑

d

∑

n

wd ,nφd ,n

• Notice: this is like the true posterior with Eq[Zd ,n].



Batch Variational Inference for LDA

1: Initialize topics λ1:K randomly.
2: while relative improvement in L(w ,φ,γ,λ) > ε do
3: for d = 1 to D do
4: Initialize γd ,k = 1.
5: repeat
6: Set φd ,n ∝ exp{Eq[log θd ] + Eq[logβ·,wn ]}
7: Set γd = α +

∑
n φd ,n

8: until 1
K
∑

k |change in γd ,k | < ε
9: end for

10: Set λk = η +
∑

d
∑

n wd ,nφd ,n
11: end while



“E step”

1: Initialize topics λ1:K randomly.
2: while relative improvement in L(w ,φ,γ,λ) > ε do
3: for d = 1 to D do
4: Initialize γd ,k = 1.
5: repeat
6: Set φd ,n ∝ exp{Eq[log θd ] + Eq[logβ·,wn ]}
7: Set γd = α +

∑
n φd ,n

8: until 1
K
∑

k |change in γd ,k | < ε
9: end for

10: Set λk = η +
∑

d
∑

n wd ,nφd ,n
11: end while

Do variational inference for each document.



“M step”

1: Initialize topics λ1:K randomly.
2: while relative improvement in L(w ,φ,γ,λ) > ε do
3: for d = 1 to D do
4: Initialize γd ,k = 1.
5: repeat
6: Set φd ,n ∝ exp{Eq[log θd ] + Eq[logβ·,wn ]}
7: Set γd = α +

∑
n φd ,n

8: until 1
K
∑

k | change in γd ,k | < ε
9: end for

10: Set λk = η +
∑

d
∑

n wd ,nφd ,n
11: end while

Update the posterior estimates of the topics based on the “E step.”



Example topic inference

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations



The need for on-line inference

• Our goal is to use this (and related) models for analyzing
massive collections of millions of documents.

• But, in the first step of batch inference we estimate the posterior
for every document based on randomly initialized topics.

• Rather, we use stochastic natural gradient ascent.

• The basic procedure
• Sample a document from a source
• Process that document and update the model
• Repeat



A brief review of stochastic optimization

• Why waste time with the real gradient, when a cheaper noisy
estimate of the gradient will do (Robbins and Monro, 1951)?

• Idea: Follow a noisy estimate of the gradient with a step-size.

• By decreasing the step-size according to a certain schedule, we
guarantee convergence to a local optimum.



Stochastic optimization of the ELBO

θd Zd,n Wd,n
N

D K
βk

α η

• Many models contain “local” and “global” variables.
• Local variables are drawn for each data point.
• Global variables are drawn once for the whole data set.

• Idea—
• Subsample a small subset of the data
• Do variational inference for the local parameters
• Do stochastic optimization for the global parameters



Stochastic optimization of the ELBO

θd Zd,n Wd,n
N

D K
βk

α η

• The procedure is to—
• Draw an index i at random
• Perform inference on document i and the current topics
• Update the (global) topics with stochastic optimization

• No need to process the whole corpus before updating the model.

• Further, no need to keep the corpus around on disk!



On-line variational inference for LDA

Define ρt , (τ0 + t)−κ

Initialize λ randomly.
for t = 0 to∞ do

Choose a random document wt
Initialize γtk = 1. (The constant 1 is arbitrary.)
repeat

Set φt ,n ∝ exp{Eq[log θt ] + Eq[logβ·,wn ]}
Set γt = α +

∑
n φt ,n

until 1
K
∑

k |change in γt ,k | < ε

Compute λ̃k = η + D
∑

n wt ,nφt ,n
Set λk = (1− ρt )λk + ρt λ̃k .

end for



On-line variational inference for LDA

Define ρt , (τ0 + t)−κ

Initialize λ randomly.
for t = 0 to∞ do

Choose a random document wt
Initialize γtk = 1. (The constant 1 is arbitrary.)
repeat

Set φt ,n ∝ exp{Eq[log θt ] + Eq[logβ·,wn ]}
Set γt = α +

∑
n φt ,n

until 1
K
∑

k |change in γt ,k | < ε

Compute λ̃k = η + D
∑

n wt ,nφt ,n
Set λk = (1− ρt )λk + ρt λ̃k .

end for

The E-step only processes a single document.



On-line variational inference for LDA

Define ρt , (τ0 + t)−κ

Initialize λ randomly.
for t = 0 to∞ do

Choose a random document wt
Initialize γtk = 1. (The constant 1 is arbitrary.)
repeat

Set φt ,n ∝ exp{Eq[log θt ] + Eq[logβ·,wn ]}
Set γt = α +

∑
n φt ,n

until 1
K
∑

k |change in γt ,k | < ε

Compute λ̃k = η + D
∑

n wt ,nφt ,n
Set λk = (1− ρt )λk + ρt λ̃k .

end for

The M-step treats that document as the whole corpus.
But, it only slightly adjusts the topics based on it.



Analyzing 3.3M articles from Wikipedia
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On-line variational inference for LDA

Document stream On-line inference�wi p(β1:K | �w1:D)

• We can build topic models from streams of documents.

• Some issues
• How quickly to decrease the learning rate?
• What is the “batch size”?
• How to interpret D when there is a stream of documents?

• See the paper by Hoffman et al. (NIPS, 2010) and the
foundational related work of Sato (Neural Computation, 2001).



Summary



Ideal point topic model
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• Ideal point topic models illustrate how probabilistic topic
modeling can be used to solve a real-world problem

• Our current research—
• On-line inference for this model
• Modeling changing tastes and preferences
• A scalable recommendation system for scientific articles



On-line inference for LDA

Document stream On-line inference�wi p(β1:K | �w1:D)

• Stochastic optimization and variational methods provide a way to
approximate the posterior for massive and streaming data sets.

• This combination is very powerful for topic modeling.
It can be adapted to hierarchical models for many data
(e.g., biological data, natural images, network data)

• Our current research—
• On-line methods for Bayesian nonparametric models
• Working with non-conjugate priors and natural gradients
• Guiding the stream towards points that are poorly modeled


