Cooperative Surveillance in Aerial and Ground Robots

Vijay Kumar

UPS Foundation Professor Departments of Mechanical Engineering and Applied Mechanics and Computer and Information Science Member of the GRASP Laboratory and the Graduate Group of Computational Biology

University of Pennsylvania

Acknowledgements

ONR N00014-08-1-0696 (HUNT) ONR Grant N00014-09-1-1051 (SMARTS) ARLW911NF-08-2-0004 (MAST)

ONR N00014-09-1-1051 (ANTIDOTE)

Cooperating Robots

Robot networks

- Applications with large numbers of networked robots, embedded computers, high data rate sensors
 - ▼ ~ ¥200 Trillion industry, Network robot forum
- n ↑ (I-I0 to I0's to I00's to I,000,000's)

Acquatic Microbial Observatory (USC)

ABB

Kiva Systems

*Japanese Ministry of Internal Affairs and Communications, "Toward the Realization of Network Robots", 2003.

Communication, control and perception

Cooperative Retrieval

S. Berman, Q. Lindsey, M. S. Sakar, V. Kumar, and S. Pratt. *Study of group food retrieval by ants as a model for multi-robot collective transport strategies.* Robotics: Science and Systems (RSS) 2010.

Fink et al, RSS 07

Outline

- I. Micro Unmanned Aerial Vehicles
- 2. Control in Complex Environments
- 3. 3-D Perception and State Estimation
- 4. Coordinated Control for Exploration and Surveillance
- 5. Establishing and Maintaining Communication Networks

Unmanned Air Vehicles

55 cm diameter 8 cm height Carbon fiber, Mg frame 500 gm (3 LiPo cells) 140 gm claws + camera

Planning/estimation run on MATLAB on a Macbook Pro

Convergence

• Large basin of attraction $tr[I - (R^{des})^T R] < 2 \qquad ||e_{\omega}(0)||^2 \leq \frac{2}{\lambda_{min}(I)} k_R \left(1 - \frac{1}{2} tr \left[I - (R^{des})^T R\right]\right)$

Trajectory Planning

Need to specify trajectory $\sigma(t): [0,T] \rightarrow R^3 \times SO(2)$

Constraints on state and input variables can be expressed as algebraic functions of the *independent* trajectory variables and its derivatives

$$\sigma = \begin{bmatrix} \mathbf{r} \\ \psi \end{bmatrix} \implies \mathbf{v} = \mathbf{r} \qquad f = \|(mg\mathbf{e}_3 + m\mathbf{a})\|$$
$$\mathbf{a} = \ddot{r}$$
$$\mathbf{R}_{12}\mathbf{e}_3 = \frac{1}{f}(mg\mathbf{e}_3 + m\mathbf{a})$$
$$\mathbf{R} = \mathbf{R}_{12}\mathbf{R}_{\psi}$$
...

Trajectory Planning

Trajectory $\sigma(t): [0,T] \to R^3 \times SO(2)$

Parameterization

$$\mathbf{r}^{des}(t) = \sum_{\substack{i=0\\m}}^{n} \mathbf{r}_i \ t^i$$
$$\psi^{des}(t) = \sum_{\substack{i=0\\m}}^{n} \psi_i \ t^i$$

Discretization $\{0, t_1, t_2, \dots, T\}$

Optimization

 $\min_{\sigma(t)} \int_0^T \alpha \|\ddot{\mathbf{r}}^{des}(t)\|^2 + \beta \ddot{\psi}(t)^2 dt$

Constraints

$$f(\mathbf{r}^{des}(t), \dot{\mathbf{r}}^{des}(t), \mathbf{R}^{des}(t), \omega^{des}(t)) \le 0$$

Solve

$$\min_{\mathbf{x} = \{\mathbf{r}_i, \psi_i\}} \mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{p}^T \mathbf{x}$$
s.t. $\mathbf{A}^T \mathbf{x} \leq \mathbf{b}$

3-D Perception and State Estimation

Camera Hokuyu UTM-30LX Atom X86 processor

3-D Perception and State Estimation

Outline

I. Micro Unmanned Aerial Vehicles

2. Control in Complex Environments

3. 3-D Perception and State Estimation

4. Coordinated Control for Exploration and Surveillance

5. Establishing and Maintaining Communication Networks

Problem Definition

- N robots explore an unknown (or partially known) environment
- Achieve **coverage** of the environment
- **Track** detected targets during coverage
- Share tasks in a fair manner
- From localization and tracking targets to mapping unknown environments
- Decentralization, anonmity

Cooperative search, identification, and localization

Grocholsky, B., Keller, J., Kumar, V. and Pappas, G. "Cooperative Air-Ground Surveillance," *IEEE Robotics and Automation Magazine*, Vol. 13 (3), 2006: 16-25

Information Model: Shared

$$\begin{bmatrix} x_{k+1}^R \\ x_{k+1}^T \end{bmatrix} = \begin{bmatrix} x_k^R \\ x_k^T \end{bmatrix} + \begin{bmatrix} u_{k+1} \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} z_k^R \\ z_k^T \end{bmatrix} = \begin{bmatrix} x_k^R \\ h(x_k^T) \end{bmatrix} + \begin{bmatrix} 0 \\ v_k \end{bmatrix}$$

$$v_k \sim N(0, R_k)$$

$$P_k = E(x_k x'_k) \qquad Y_k = P_k^{-1}$$

$$Y_{k+1} = Y_k + I_k \qquad I_k = H_k^T R_k^{-1} H_k$$

UAV search pattern

UGV identification and localization of potential targets

Assignment for Exploration and Coverage (known environment) Voronoi Tesellation:

Penn Engineer

Engineering

$$V_i(P) = \{ \mathbf{q} \in \Omega \mid d(\mathbf{q}, \mathbf{p}_i) \le d(\mathbf{q}, \mathbf{p}_j), \forall j \neq i \}$$

In non-convex environments:

Geodesic Distance

L. Pimenta, V. Kumar, R, Mesquita and G. Pereira, Sensing and Coverage for a Network of Heterogeneous Robots, Proceedings of the 47th IEEE International Conference on Decision and Control (CDC'08). Dec 9-11, Cancun, Mexico.

33

$$\begin{aligned} \text{for the constraints the log of a log of the second s$$

Coverage and Tracking

L. Pimenta, M. Schwager, Q. Lindsey, V. Kumar, and D. Rus. Simultaneous coverage and tracking (SCAT) of moving targets with robot networks. *8th Int. Workshop on the Algorithmic Foundation of Robotics*, Guanajuato, Mexico, December 2008.

Representative Example

3 robots

Convergence to a state where the entropy of each reachable cell is below τ

Each iteration (timestep) takes about 0.1 s for each robot

S. Bhattacharya, N. Michael and V. Kumar, "Distributed Coverage and Exploration in Unknown Non-Convex Environments," *10th International Symposium on Distributed Autonomous Robots*, Lausanne, Switzerland, Nov 1-3, 2010.

Mapping three interconnected buildings

t = 2800

Conclusion

- Ability to create/control agile, micro UAVs
- 3-D state estimation, mapping is challenging
- Exploration, persistent surveillance require decentralized algorithms for coverage, mapping, localization and tracking
- Concurrent control of routing and mobility to enable cooperative surveillance

