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Temporal Complexity of Time Series

Autoregressive
Linear 

state space
Non-linear

state space

a.k.a. dynamic linear model (statistics), 

linear dynamical system (control)
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Trade-off between expressivity of model, 

and computational tractability

COMPLEXITY

state

observations
Bayesian nonparametrics:

Data-driven flexibility in model complexity, computationally attractive properties



Complex, but Patterned

Oh et. al., IJCV, 2007

Carvalho and Lopes, Comp. Stat. & Data Anal., 2006Pavlovic et. al., NIPS, 2001

Wooters and Huijbregts, LNCS, 2007

Honey Bee Dances

Trends in Stock DataHuman Motion

Conference Audio
FOCUS ON 

SINGLE TIME SERIES



Discovering Common Behaviors

• Jointly model multiple time-series

 Transfer knowledge between related time-series

 Find interesting relationships

Time Series 1 Time Series 2 Time Series 3



• Model for single time series 

with patterned behaviors 

Hidden Markov Model

Transition distributions

jumping

jacks
squats

side

twists

Mode sequence

Observations

(e.g., body position) 
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jumping jackssquatsside twists

Tutorial:

Rabiner, Proc. IEEE 1989 



Dirichlet Process Mixture Model

Stick-breaking 

construction for: 

DP(aH)
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HDP-HMM: Teh, et. al., JASA 2006 

• Dirichlet process (DP):

 Mode space of unbounded size

 Model complexity adapts to 

observations

• Hierarchical:

 Ties mode transition distributions

 Shared sparsity
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• Hyperpriors on

“Sticky” HDP-HMM

Related self-transition parameter:

Beal, et.al., NIPS 2002

• Global transition distribution:

• Mode-specific transition distributions:

sparsity of b
is shared

HDP-HMM of Teh, et. al., JASA 2006 

special case when             . 

extra mass on component 

corresponding to self-transition



Samples From the Prior

MODE SEQUENCES

HDP-HMM Sticky HDP-HMM



TIME
50 100 150 200 250 300

John JaneBob John

B

o

b

J

i

l

l

0 1 2 3 4 5 6 7 8 9 10

x 10
4

-30

-20

-10

0

10

20

30

40

TIME

Speaker Diarization

19-dim 

MFCCs



MoG Emissions

modes

mixture 

components

observations

Speaker 1 Speaker 2 Speaker 3 Speaker 4



Results: 21 meetings

Overall DER Best DER Worst DER

Sticky HDP-HMM 17.84% 1.26% 34.29%

Non-Sticky HDP-HMM 23.91% 6.26% 46.95%

ICSI 18.37% 4.39% 32.23%

DER = 

Diarization 

Error 

Rate



Results: Meeting 1

Sticky DER = 1.26%

ICSI DER = 7.56%



Results: Meeting 18

4.81%
Sticky DER = 20.48%

ICSI DER = 22.00%



Outline

• Background: HMM, DP

• Temporal Persistence: “Sticky” HDP-HMM

• Conditionally Linear Dynamics

 HDP-AR-HMM and HDP-SLDS

• Relating Multiple Time Series



Switching Dynamical Process

• Each dynamical mode has conditionally linear dynamics

• Captures more complex temporal dependencies

HDP-AR-HMM HDP-SLDS

Conditionally vector autoregressive Conditionally linear state space models

Switching linear 

dynamical systems

Switching

AR processes

Gaussian

HMMs



• HDP-AR-HMM: decompose on lag blocks

Sparsity-Inducing Prior - ARD

• HDP-SLDS: decompose on columns

Inverse Wishart prior on covariance of additive noise terms



IBOVESPA Stochastic Volatility

• Data: IBOVESPA daily returns

• Goal: detect changes in volatility

• HDP-SLDS allows for unbounded 

number of volatility regimes

• 10 key world events cited in:

Daily Returns

Carvalho and Lopes, 

Comp. Stat. & Data Anal., 2006

Two-regime Markov switching stochastic volatility (MSSV) model, 

Particle filter for online inference



IBOVESPA Stochastic Volatility

• Posterior probability of HDP-SLDS regime changepoint at each date

• 10 key world events shown in red

HDP-SLDS non-sticky HDP-SLDS

Hong Kong stock index falls 10.4%



IBOVESPA Stochastic Volatility

• ROC curves for:

 HDP-SLDS

 Non-sticky HDP-SLDS

 HDP-AR(1)-HMM

 HDP-AR(2)-HMM

• Declare a detection if inferred 

changepoint is within small 

window around world event

ROC



Dancing Honey Bees



Honey Bee Observations

• 3 bee dance sequences with expert labeled dances:

 Turn right (green)

 Waggle (red)

 Turn left (blue)

Sequence 1 Sequence 2 Sequence 3

Oh et. al., IJCV, 2007 Time

x-pos

y-pos

sinq

cosq

• Observation vector:

 Head angle (cosq, sinq)

 x-y body position



Honey Bee Results: HDP-AR-HMM

Sequence 1 Sequence 2 Sequence 3

HDP-AR-HMM: 88.1%

SLDS [Oh]: 93.4%

HDP-AR-HMM: 92.5%

SLDS [Oh]: 90.2%

HDP-AR-HMM: 88.2%

SLDS [Oh]: 90.4%



Predictive Likelihood

• ARD prior useful in regularizing higher order models

 Compare AR(1), AR(2), and AR(7) MNIW models to AR(7) ARD model

 Train on first half of each bee sequence, test on second half

• Turning dances well-approximated by AR(1), waggle dance by AR(2)

95% HPD Intervals of Predictive Likelihood
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Outline

• Background: HMM, DP

• Temporal Persistence: “Sticky” HDP-HMM

• Conditionally Linear Dynamics: HDP-AR-HMM, HDP-SLDS 

• Relating Multiple Time Series

 Beta process – Bernoulli process featural model

 BP-AR-HMM



Discovering Common Behaviors
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COMPLETELY DISJOINT STATE SPACES

Time Series 1 Time Series 2 Time Series 3
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Discovering Common Behaviors

Time Series 1 Time Series 2 Time Series 3

• Model each time series as an AR-HMM

 Related time series  Tie together under a common prior

 Infinitely many possible behaviors  Bayesian nonparametrics



• HDP-AR-HMM

 Allows for an unbounded state space

 Assumes all time series exhibit the same behaviors in same way

Discovering Common Behaviors

HDP
Hierarchical 

Dirichlet Process

Time Series 1 Time Series 2 Time Series 3

z10

z9z8

z7
z6

z3

z4

z5

z2z1

z10

z9z8

z7
z6

z3

z4

z5

z2z1

z10

z9z8

z7
z6

z3

z4

z5

z2z1

 Utilize beta process prior
 Objects can exhibit unique behaviors

 Two objects can switch between the same 
set of behaviors in different manners
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• Beta process-Bernoulli Process

• Equivalently

Beta Process Prior for Featural Models

Points generated from 

Poisson process on: 

Beta process – Bernoulli process:

Thibaux and Jordan, AISTATS, 2007

Beta process:

Hjort, Annals of Statistics, 1990



• Marginalize beta process measure

 Indian buffet process (IBP)

 Shared features:

 Unique features:

Indian Buffet Process (IBP)

Griffiths and Ghahramani, TR, 2005

Dirichlet

Process

Chinese

Restaurant

Process

Beta-

Bernoulli

Process

Indian

Buffet

Process



• Marginalize beta process measure

 Indian buffet process (IBP)

 Shared features:

 Unique features:

Indian Buffet Process (IBP)

Previously sampled

Griffiths and Ghahramani, TR, 2005



• Marginalize beta process measure

 Indian buffet process (IBP)

 Shared features:

 Unique features:

Indian Buffet Process (IBP)

Previously sampled

Griffiths and Ghahramani, TR, 2005



BP-AR-HMM

Shared library of 

behaviors

Transition patterns for 

object i

Features indicating 

behaviors of object i

Features 

constrain 

dynamics 

to chosen 

behaviors
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Dynamic Behavior



BP-AR-HMM

Shared library of 

behaviors

Transition patterns for 

object i

Features indicating 

behaviors of object i

Features 

constrain 

dynamics 

to chosen 

behaviors



BP-AR-HMM

transition 

distributions

mode evolution

observations

Shared library of 

behaviors

Transition patterns for 

object i

Features indicating 

behaviors of object i



BP-AR-HMM

Beta 

process 

prior

Beta process prior: Encourages sharing + allows variability

Beta process realization

Bernoulli process realization

Shared library of 

behaviors

Transition patterns for 

object i

Features indicating 

behaviors of object i



BP-AR-HMM

Beta 

process 

prior

Shared library of 

behaviors

• Efficient MCMC computations

 Likelihood: based on induced collection of finite AR-HMMs 

(marginalize mode sequence via FFBS)

 Prior: IBP

Forward-Backward Algorithm

Model not conjugate  birth-death RJMCMC

Features indicating 

behaviors of object i
Transition patterns for 

object i

Conditioned on the feature matrix, 

model reduces to collection of finite AR-HMMs
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Dynamic Behavior

Generic to Models with Discrete State Spaces (e.g. HMM, SLDS)



Motion Capture

CMU MoCap: http://mocap.cs.cmu.edu/

• 62-dim 

observations

• Chose 12 

gross motor 

components

• Ran MCMC 

sampler for 

20,000 iters

• Ran 25 

chains of 

sampler

DISCOVER COMMON BEHAVIORS



Library of Discovered MoCap Behaviors

Chosen MCMC sample minimizes an expected Hamming distance criterion 



Jumping Jacks



Side Twists



Arm Circles



Squats



Unique Behaviors

Identified collection of behaviors 

appearing in only one movie

Bend Over Punching Toe Touch 1 Toe Touch 2



Split Motions: Knee Raises



Split Motions: Running in Place



Library of Discovered MoCap Behaviors



Learned MoCap Feature Matrices

• Learned feature matrices for four different models:



Conclusion

• Examined Bayesian nonparametric 

Markov switching processes:

 HMM, AR-HMM, SLDS

• Developed method of relating 

multiple time series

• Demonstrated utility on challenging datasets including speaker 

diarization, stock volatility, and motion capture analysis


