Duke University Department of Statistical Science

Bayesian Nonparametric Learning of Complex Dynamical Phenomena

Emily Fox

Joint work with Erik Sudderth (Brown University), Michael Jordan (UC Berkeley), and Alan Willsky (MIT)

Temporal Complexity of Time Series

Data-driven flexibility in model complexity, computationally attractive properties

Complex, but Patterned

Time Series 1

Time Series 2

Time Series 3

- Jointly model multiple time-series
 - Transfer knowledge between related time-series
 - Find interesting relationships

Hidden Markov Model

Dirichlet Process Mixture Model

HDP-HMM: Teh, et. al., JASA 2006

- Dirichlet process (DP):
 - Mode space of unbounded size
 - Model complexity adapts to observations
- Hierarchical:
 - Ties mode transition distributions
 - *Shared* sparsity

"Sticky" HDP-HMM

 β

- Global transition distribution: $\beta \sim \operatorname{Stick}(\gamma)$
- Mode-specific transition distributions: $\pi_j \sim DP(\alpha\beta + \kappa\delta_j), \quad j = 1, 2, \dots$
- Hyperpriors on α, γ, κ extra mass on component corresponding to self-transition

HDP-HMM of Teh, et. al., JASA 2006 special case when $\kappa = 0$.

Related self-transition parameter: Beal, et.al., *NIPS* 2002

Samples From the Prior

MODE SEQUENCES

Speaker Diarization

MoG Emissions

Results: 21 meetings

	Overall DER	Best DER	Worst DER	
Sticky HDP-HMM	17.84%	1.26%	34.29%	DER = Diarization Error Rate
Non-Sticky HDP-HMM	23.91%	6.26%	46.95%	
ICSI	18.37%	4.39%	32.23%	

ICSI DER = 7.56%

Outline

- Background: HMM, DP
- Temporal Persistence: "Sticky" HDP-HMM
- Conditionally Linear Dynamics
 - HDP-AR-HMM and HDP-SLDS
- Relating Multiple Time Series

Switching Dynamical Process

- Each dynamical mode has conditionally linear dynamics
- Captures more complex temporal dependencies

Sparsity-Inducing Prior - ARD

• HDP-AR-HMM: decompose on lag blocks

Inverse Wishart prior on covariance of additive noise terms

IBOVESPA Stochastic Volatility

- Data: IBOVESPA daily returns
- Goal: detect changes in volatility

$$x_t = a^{(z_t)} x_{t-1} + e_t(z_t)$$

 $\log(y_t^2) = x_t + w_t$

- HDP-SLDS allows for unbounded number of volatility regimes
- 10 key world events cited in:

Two-regime Markov switching stochastic volatility (MSSV) model, Particle filter for online inference

IBOVESPA Stochastic Volatility

- Posterior probability of HDP-SLDS regime changepoint at each date
- 10 key world events shown in red

IBOVESPA Stochastic Volatility

- ROC curves for:
 - HDP-SLDS
 - Non-sticky HDP-SLDS
 - HDP-AR(1)-HMM
 - HDP-AR(2)-HMM
- Declare a detection if inferred changepoint is within small window around world event

Dancing Honey Bees

Honey Bee Observations

- 3 bee dance sequences with expert labeled dances:
 - Turn right (green)
 - Waggle (red)
 - Turn left (blue)
- Observation vector:
 - Head angle $(\cos\theta, \sin\theta)$
 - x-y body position

Honey Bee Results: HDP-AR-HMM

Predictive Likelihood

- ARD prior useful in regularizing higher order models
 - Compare AR(1), AR(2), and AR(7) MNIW models to AR(7) ARD model
 - Train on first half of each bee sequence, test on second half
- Turning dances well-approximated by AR(1), waggle dance by AR(2)

95% HPD Intervals of Predictive Likelihood

Outline

- Background: HMM, DP
- Temporal Persistence: "Sticky" HDP-HMM
- Conditionally Linear Dynamics: HDP-AR-HMM, HDP-SLDS
- Relating Multiple Time Series
 - Beta process Bernoulli process featural model
 - BP-AR-HMM

CGD/AFLILIERHNITACIERS SKILAN EI (STF/HICHEISEP FCCAELS

- Model each time series as an AR-HMM
 - Related time series \rightarrow Tie together under a common prior
 - Infinitely many possible behaviors \rightarrow Bayesian nonparametrics

Beta Process Prior for Featural Models

- Beta process-Bernoulli Process
 - $B \mid B_0, c \sim BP(c, B_0)$ $X_i \mid B \sim BeP(B)$
- Equivalently

 $B = \sum_{k} \omega_{k} \delta_{\theta_{k}}$ $X_{i} = \sum_{k} f_{ik} \delta_{\theta_{k}}$ $f_{ik} = \begin{cases} 1, & \omega_{k} \\ 0, & 1 - \omega_{k} \end{cases}$

Beta process: Hjort, *Annals of Statistics,* 1990

Beta process – Bernoulli process: Thibaux and Jordan, *AISTATS*, 2007

Indian Buffet Process (IBP)

- Marginalize beta process measure
 → Indian buffet process (IBP)
 - Shared features:

$$p(f_{ik} = 1 \mid \mathbf{f}_1, \dots, \mathbf{f}_{i-1}, \alpha) \propto \frac{m_k^{-i}}{i}$$

• Unique features:

 $n_i \mid \alpha \sim \text{Poisson}\left(\frac{\alpha}{i}\right)$

$$f_1 \qquad f_1 \neq A \square$$

Griffiths and Ghahramani, TR, 2005

1

Indian Buffet Process (IBP)

- Marginalize beta process measure
 → Indian buffet process (IBP)
 - Shared features:

$$p(f_{ik} = 1 \mid \mathbf{f}_1, \dots, \mathbf{f}_{i-1}, \alpha) \propto \frac{m_k^{-i}}{i}$$

• Unique features:

$$n_i \mid \alpha \sim \operatorname{Poisson}\left(\frac{\alpha}{i}\right)$$

Griffiths and Ghahramani, TR, 2005

Indian Buffet Process (IBP)

- Marginalize beta process measure
 → Indian buffet process (IBP)
 - Shared features:

$$p(f_{ik} = 1 \mid \mathbf{f}_1, \dots, \mathbf{f}_{i-1}, \alpha) \propto \frac{m}{2}$$

• Unique features:

$$n_i \mid \alpha \sim \operatorname{Poisson}\left(\frac{\alpha}{i}\right)$$

Previously sampled

 $\mathbf{f}_i \bigstar \mathbf{f}_i \bigstar \mathbf$

Griffiths and Ghahramani, TR, 2005

Features constrain dynamics to chosen behaviors

Features constrain dynamics to chosen *behaviors*

behaviors

Generic to Models with Discrete State Spaces (e.g. HMM, SLDS)

Motion Capture

• 62-dim observations

- Chose 12 gross motor components
- Ran MCMC sampler for 20,000 iters
- Ran 25 chains of sampler

CMU MoCap: http://mocap.cs.cmu.edu/

DISCOVER COMMON BEHAVIORS

Library of Discovered MoCap Behaviors

Chosen MCMC sample minimizes an expected Hamming distance criterion

Jumping Jacks

Side Twists

Arm Circles

Squats

Identified collection of behaviors appearing in only one movie

Split Motions: Knee Raises

Split Motions: Running in Place

Library of Discovered MoCap Behaviors

Learned MoCap Feature Matrices

• Learned feature matrices for four different models:

Conclusion

- Examined Bayesian nonparametric Markov switching processes:
 - HMM, AR-HMM, SLDS
- Developed method of relating multiple time series

• Demonstrated utility on challenging datasets including speaker diarization, stock volatility, and motion capture analysis

