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Adaptive Information

Goal: Estimate an unknown object x € X from scalar samples

Information: samples of the form yi(x),...,yn(x),
the values of certain functionals of x

Non-Adaptive Information: yi,ys, - € ) non-adaptively
chosen (deterministically or randomly) independent of z

Adaptive Information: yi,ys,--- € ) are selected sequentially and y; can
depend on previously gathered information, i.e., y1(z),...,y;—1(x)

Does adaptivity help?




Does Adaptivity Help ?

identify a sparse signal x € R™ from a
® minimal number of measurements

Point measurments: y = (z, ;) = x;

O(n) measurements (random or adaptive) are needed to recover

Compressed Sensing: y = (r, ¢) where ¢ € {—1,1}"

O(log n) measurements (random or adaptive) are needed to recover z

Adaptivity doesn’t help




Does Adaptivity Help ?

identify a threshold signal x € R™ from
0000000 a minimal number of measurements

Point measurments: y = (z, §;) =

O(n) random measurements are needed to recover x

O(logn) adaptive measurements are needed to recover = (binary search)
Compressed Sensing: y = (z, ¢) where ¢ € {—1,1}"

O(log n) random measurements are needed to recover x

Adaptivity may help, depending on
nature of signal and measurements




Does Adaptivity Help ?

identify a sparse signal z € R™
® from noisy measurements

Noisy Compressed Sensing;:
y = (z,¢) + ¢, where ¢ € {—1,1}", e ~ N(0,1)
O(log n) measurements suffice if
maxy x> Coy/logn , for random measurements
maxy x > (7 , for adaptive measurements

where Cy, C7 > 0 are constants.

Adaptivity can help in noisy situations




Grand Challenge:

Biological Networks
(JMDBase)

Understanding Large Networked Systems

Wit
X

Technological Networks S
(Internet Mapping Project, US power grid, UCLA CENS) Social Networks

Challenges:

e Inferring structure &
function of the network

e Pattern analysis &
anomaly detection

Brain Networks
(Worsley et al, 2005)

Laplace defined science as a predicting tool.




Large-scale Network Monitoring
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Which nodes are are behaving anomalously/maliciously ?
10,000 nodes, 10,000 tests
Standard approach: non-adaptive measurement and testing

=P none of the nodes are statistically significant !




Biological Systems

- Which genes are differeﬁtially expressed ?°
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- 10,000 genes, 10,000 tests

Standard approach: Non-adaptive measurement and testing

=P none of the genes are statistically significant !
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The Multiple Testing Problem

n tests: P(max?_,y; > 7) ~ nexp(—72/2) = exp(—72/2 + logn)

= 7> +/2logn




Feedback from Data Analysis to Data Collection

high-throughput
experiments

experiment

space

Optimized multi-stage designs controlling the false discovery or the family-wise error rate
S. Zehetmayer, P. Bauer and M. Posch, Statist. Med. 2008; 27:4145-4160

sets of genes critical to a microarray or
certain function/process assay datasets

Laplace defined science as a predicting tool.



Motivation: Virus-Host Interaction

Paul Alhquist
(Molecular Virology)

Add dsRNA of the Drosophila RNAi library
(targeting to 13,071 Drosophila genes) to
each well of 384-well microplates

Add DL1 cells to the plates

AR AT ] i i I ﬂ|, ﬁ‘mﬂ ]
GFP :Sensors’@/ Infect with FVG-R virus

Measure Renilla luciferase activity
to assess the efficiency of virus
replication

Laplace defined science as a predicting tool.




Adaptive Experimentation

How do they confidently determine the ~100 out of 13K genes
hijacked for virus replication from extremely noisy data?

Multistage Adaptive Experiments:
Stage 1: assay all 13K genes, twice; keep all with significant
fluorescence in one or both assays for 2nd stage (13K — 1K)

Stage 2: assay remaining 1K genes, 6-12 times; retain only

those with statistically significant fluorescence (1K — 100)

Infecting virion RNA
\/\ =~._ | 3. RNA template recruitment 5 C_hap_erone 6. Survival,
1. Regulated viral translation “+, from translation to replication activation of fate of
: R S replication progeny
LSM1-LSM7, PAT1, DHH1, . LSM1-LSM7, PAT1, DHH1 complex (+)RNA
DED1, RPL19b, RPA1, RPA34, \ SCP160 vour
RRN3 P
L (HSP70,90) SKI23.7.8
000000 oo v 7 T
Viral RNA ; :
2. Pmltetind ta:g:f:f:g, 3 ’a """ 2ap0l
regulated stability | _ooBago00000080 8 ; 8
&) y > 000, & o000 0 000 ¢ o
SCS2, PRE9 ER membrane

4. Membrane
synthesis, trafficking,

lipid composition

(-)RNA (+)RNA
OLE1, ACB1, DRS2, synthesis synthesis
RCY1, NEM1, SPO7

Laplace defined science as a predicting tool.



Detection/Estimation of Sparse Signals

network monitoring systems biology brainrmapping astronomy

We observe sparse signals in noise and wish
to reliably detect the signal components.




Astronomical Surveying “On a Budget”

keep only “brightest” 50%
and re-measure each

for #we-times as long
four

Noisy, non-adaptive sampling

1

Original signal
(~0.8% non-zero components)

B

Recovery from adaptive samples
(5% of “discoveries” are errors)

Recovery from non-adaptive samples
(5% of “discoveries” are errors)




Sparse Signal Model

Let x = (z1,...,2,) € R™ be an unknown sparse vector;
most (or all) of its components x; are equal to zero.

z = { g>0’ Zeg , where |S| < n
’ i ¢ deterministic
signal support set  but unknown
Assume sublinear sparsity level: |S| = n!™# 0<g3<1

/

number of signal
components




Noisy Observation Model

Y = x; + 2, t=1,...,n

Suppose we want to locate just one signal component: Q= arg max; Y,

Even if no signal is present, max; y; ~ +/2logn

It is impossible to reliably detect signal components weaker than O(v/logn)




Too much noise !

max{Z1,...,Zn} ~ +/2logn

i.3.d.
Z; "R N(0,1
0,1 "
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Threshold Tests

Our goal is to estimate the set of non-zero components: S := {i : x; # 0}
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Definition 1 A threshold test is an estimator of the form:

§T(y) = {ie{l,...,n}:y; >7>0}




Family-wise Error Rate
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Definition 2 The family-wise error rate (FWER) is the probability of making
one or more false discoveries

~

FWER(S) = P (|<§\S| > 1) = P (# falsely discovered components > 1)

Bonferroni Correction: To keep the FWER small (e.g., less than 5%)
the threshold must be on the order of \/logn.




False Discovery Rate

FWER control: P(one or more false discoveries) < « too conservative

. . . ~ number of false discoveries
Alternative: # false discoveries ~ «|S| should be a small fraction of

number of total discoveries

Definition 3 Let S := {i : z; # 0} and let S(y) denote an estimator of S.
The false-discovery proportion is

FDP(A) _ |§\S\ _ # falsely discovered components

\3\ "~ total # discovered components

Definition 4 The false-discovery rate is the expected value of the false-discovery
proportion

FDR(S) = E \S\AS| _E # falsely c?zscovered components
S| total # discovered components




False Discovery Rate (FDR) Control

To guarantee FDR < «

1. Compute p-values

pi :=PWN(0,1) >y), i=1,...,n
2. Sort p-values

Py SP@e) < S D)
3. Set threshold
i* = max{i:py <2
T = pa

This is the so-called Benjamini-Hochberg (BH) threshold

The BH threshold is more lenient than Bonferroni when the signal is not too sparse




Theoretical Performance in High-Dimensional Limit

I5\S| _ # falsely discovered components

FDP(S) :=

‘ §| total # discovered components

Definition 5 The non-discovery proportion is

1S\S| B # missed components

NDP(S) := =
(5) |S] # true non-zero components

Theorem 1 Assume x has n'=", 3 € (0,1), non-zero components of amplztude
V2rlogn, r > 0. There exists a threshold test that yields an estimator S= S( )

such that if r > 3, then as n — oo,

FpP@S) £ o, NDPS) £ oo,

where £ denotes convergence in probability. Moreover, if r < (3, then there does
not exist a coordinate-wise thresholding procedure that can guarantee that both
quantities above tend to 0 as n — oo.




Limit of Detectability (Ingster ’97, Jin & Donoho '03)

signal strength
w=+/2rlogn

estimation possible
(FDP + NDP - 0)

estimation impossible
(FDP + NDP - c > 0)

/B 1 sparsity

Tll -8 non-zero components

signal amplitude must be O(y/logn) !




Is there really a problem ?

Wired Science
News for Your Neurons
Previous post

Next post

» ho ”

Scanning Dead Salmon in fMRI Machine
Highlights Risk of Red Herrings

By Alexis Madrigal £ September 18,2009 | 5:37 pm | Categories: Brains and Behavior

2.5

t-value




Science and Data Analysis

Often there are no components that exceed v/logn in magnitude!

Nothing is statistically significant at FWER=5% or FDR=5%.

What'’s a scientist to do?

Take a closer look at the most significant components.

What do scientists need?

perhaps not an FWER/FDR certification

Principled guidance on how to design the next experiment
(and the next, and the next...)

* how many components should be re-tested
* guarantees that important effects will not be overlooked
or discarded prematurely




Sequential Experimental Design

Instead of the usual non-adaptive observation model
Yi = T; + zi, i:1,...,n

suppose we are able to sequentially collect multiple noisy measurements of each
component of x, according to

Yij = Ti + 7;7.1/2,21»4, i=1,...,n, 7=1,...,k
where
j indexes the measurement steps
k denotes the total number of steps
Zi,j & N(0,1)

7i,j= 0 controls the precision of each measurement

Total precision budget is constrained, but the choice
of v; ; can depend on past observations {y; ¢},<;.




Experimental (Precision) Budget

sequential measurement model
) —1/2 . .
Yij = T + %, zig t=1...n, i=1,...,k

The precision parameters {~; ;} are required to satisfy

k n
E 5 Yijg SN

j=1i=1

For example, the usual non-adaptive, single measurement model corresponds
to taking k =1, and ;1 = 1, ¢ = 1,...,n. This baseline can be compared with
adaptive procedures by allowing k > 1 and variable {v; ;} satisfying budget.

Precision parameters control the SNR per component.
SNR is increased /decreased by
more/fewer repeated samples or

longer /shorter observation times




Distilled Sensing Jarvis Haupt Rui Castro

Distilled Sensing

initialize: j =0, So = {1,...,n}

number of measurement steps: k

precision per step: R; = Z:;l Yig,J=1,...,k
total precision: R = 25:1 Rj=n

fory=1,...,k

1) Allocate precision budget R; uniformly over indices in Sj_4
2) Measure components in S;_1 accordingly to obtain {y; ;}
3) Set S; = {i:y;; >0}

end

output: {y;x}

Key idea: At each step DS eliminates about 1/2 of the components from further
consideration. If R;j/R;_1 = p > 1/2, then SNR in remaining components is
increased at next step by a factor ~ 2p.

total number of measurements ~ 2n




Idealized Example

Let £ =3 and
R] :n/3’]:1,2,3

Yi, 1l = T4 +N(07 3)
2

Yi2 =z + N (OE)

¥iz =z +N (0> Z)




SysBio Example

fruit fly

How to find genes involved in virus replication ?

Distilled Sensing Idea
Budget: k assays, n tests/assay

Assay |:measure fluorescence of all n genes; discard n/2 genes with
weakest fluorescence.

Assay 2: measure fluorescence for remaining n/2 genes, each tested
twice (double SNR); discard n/4 genes with weakest fluorescence.

Assay 3: measure fluorescence for remaining n/4 genes, each tested
four times (quadruple SNR); discard n/8 genes with weakest fluorescence.

continue distilling....




Astronomical Surveying “On a Budget”

éingie-stége (ﬁon-édapfive)
multi-stage (DS) |

Noisy, non-|

adaptive sampling

Recovery from adaptive samples
(5% of “discoveries” are errors)

Recovery from non-adaptive samples
(5% of “discoveries” are errors)




Distilled Sensing Theorem

Theorem 2 Assume x > 0 with n*~%, 3 € (0,1), non-zero components of
amplitude p(n), and sequential measurement model DS with k = [log, logn]+2,
and precision budget distributed over the measurement steps so that Z;C:l R; <n
Rj11/R; >0 >1/2, and Ry = cin and Ry, = cin for some c1, ¢, € (0,1). Con-
sider the thresholding estimator based on the output of the DS procedure:

§DS = {’L e Iy : Yik > \/2/Ck}

If u(n) is any positive diverging sequence in n, then as n — oo
5 P 5 P
FDP(SDs) = 07 NDP(SDs) — 0.
e Take k ~ loglogn steps, with geometric (decreasing) allocation of budget

e Discard the weakest half of measured components at each step

e Re-measure only surviving components

With very high probability will detect almost all components
with amplitude > than some constant, independent of n




Key Elements of Proof:

Each step probably removes about 1/2 of noise
yi ~ N(0,07)

If we threshold an iid zero-mean Gaussian process at 0,
then only about 1/2 of the components will be retained

Each step probably retains almost all signal components

Thresholding at 0 retains almost all of the non-zero signal components




Summary of DS Performance

@)

(y) :={i:y; > threshold }

Let S:={i=1,...,n : 2; # 0} and let S(y) denote an estimator of S.

FDP (§) - \3\ \S|  # falsely discovered components
T \g\ "~ total # discovered components
NDP(§) - |S\§| B # missed components
" |S|  # true non-zero components

-~

To guarantee FDP(S) St 0, NDP(§) L Dasn— 00, we require

non-adaptive SNR ~ logn

adaptive SNR ~ arbitrarily slowly growing function of n

Adaptivity buys about logn in SNR; e.g., if n = 13071, then logn ~ 10




Example n=2" |lz]o =+n =128
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Experimental Budgets

Distilled Sensing acquires approximately 2n measurements:
n in the first stage, ~ n/2 in the second, ~ n/4 in the third, etc.

But there are far fewer, |S| < n, relevant components to detect.

Can we find these components with less than n measurements?

Yes, if we measure randomized combinations of the components.

- cal= L
v =+ v = R+
nx1 kx1 o
)

sparse noise sparse

- - noise
signal signal

direct measurement indirect (randomized) measurement




Motivation: Systems Biology

Infecting virion RNA

N . [3.RNA template recruitment ségl":.‘(’ieo"”:: i-::;""“'
1. Regulated viral translation *. from translation to replication "
R 0 replication progeny
LSM1-LSM?7, PAT1, DHH]1, % LSM1-LSM7, PAT1, DHH1 complex (+)RNA
DED1, RPL19b, RPA1, RPA34 K SCP160
RAN3 YoJ1 SKI2,3,7,8
000000 oo
2. Protein (argerlirng, 1a l 2apol
regulated stability ->
SCS2, PRE9 ER membrane

synthesis, trafficking,
lipid composition

OLE1, ACB1, DRS2,
RCY1, NEM1, SPO7

Linear sparsity model isn’t always right! Two or more genes may produce
proteins will similar functionality or interact to perform a certain function.
Need to study high-dimensional systems with sparse interactions.

Linear model: y(z) = (z,¢) =

= Z,L’,j [0} ¢ € {*1,4»1}71
Nonlinear model: y(z) = Z .’1‘51> ¢; + Z 152; OiP;j
i i<j

(13(2)0 0 ) ~ 85,000,000 possible two-fold gene deletion strains !

The fluorescence data are very noisy, and so biologists employ a multistage adaptive experimental procedure to
home-in on the important genes. The results of the first stage inform the design of the second stage. This is an
example of feedback from data analysis to data collection. This is what scientists are doing all the time. The
figure above shows the inferred network pathway exploited by the virus for the purposes of replication.
Unfortunately, single gene deletions may not tell the whole story, since certain genes act together in concert.
Such effects can only be detected through multiple gene deletions. Multiple deletion studies become daunting or
impossible quite rapidly; e.g., there are 85 million pairwise deletions that can be considered in the case of

Drosophila. Biologists have the technology (gene knockdowns) to study multiple deletions, but it is difficult to
decide where to start and how to proceed.



Randomized Experiments

~ - =g
v = B
kx1

sparse

- noise
signal

indirect (randomized) measurement

put randomly modulated “knock-

{“ down” strains into each well




Randomized Distilled Sensing

stage 1: random combinations of all components
stage 2: random combos top 1/2 components
[ m HHH I i I HHH\H
‘ ‘ ‘ H stage 4: random combos top 1/8 components
stage 5: random combos top 1/16 components

stage 6: random combos top 1/32 components

support of random sensing matrix

Theorem 4 Assume x > 0 with |S| non-zero components of amplitude p, and
take O(|S|logn) randomized DS measurements. If p = logloglogn, then there
is a threshold test guaranteeing that

FDP(Spps) & 0, NDP(Skps) = 0.

In essence, this implies that we can identify most of the |S| relevant
components using only slightly more than |S| measurements.




Scientific Discovery is a Closed-Loop Process
To guarantee that the proportions of false-discoveries and
missed components tends to zero as n — oo, we require

non-adaptive SNR ~ logn
adaptive SNR ~ constant

Adaptivity effectively eliminates the fundamental statistical
challenge in high-dimensional multiple testing.

network monitoring systems biology brain mapping astronomy

more information: www.ece.wisc.edu/~nowak
http://arxiv.org/abs/1001.5311

Laplace defined science as a predicting tool.



Key Elements of DS Theorem: Remove 1/2 the Noise

Lemma 1 If {y;}™, * N(0,02), 0 > 0, then for any 0 < e< 1/2,
1 , 1
5—5 mgl{ze{l,,m}yz>0}‘§ 5—}—5 m,

with probability at least 1 — 2 exp (—2me?).

Yi i’i\cj N(0702)

If we threshold an iid zero-mean Gaussian process at 0,
then only about 1/2 of the components will be retained




Key Elements of DS Theorem: Keep the Signal

Lemma 2 Let {y;}™, ii51]\/(;/47 a?), with o > 0 and u > 20. Define e = Mfg <
1. Then

(l—e)mg‘{ie{l,?,...,m}:yi>0} <m,

with probability at least 1 — exp (—40“7%).

Thresholding at O retains almost all of the non-zero signal components




Key Elements of DS Theorem: lteration

At each step of DS, j =1,...,k, define

Sj

number of non-zero components
zj = number of zero components
Lemma 3 Let 0 < ¢

< 1/6 and assume that R; > 8(‘2%1)(1/2 + )l
1,...,k—1. Then

7
(1—e)flsy<s;<s

1 g= 1 g=
(2—€> 21§Z]§(2+5> Z1

, k with probability at least

and
forj=2,...

—s1(1 i—1_2
1—Zcxp( (2\/% )—ZZcxp —221(1/2 —e)? 7 e%) ,

With high probability each distillation keeps almost all the non-zero
components and rejects about half of the non-signal components

SNR increases at each step




