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Goals

Develop tools for studying geometric properties of graphs
Large scale properties, multiscale properties
Possible applications:

Simplification and compression of graphs
Dynamics of graphs at different resolutions
Visualization and interaction

Analysis of functions on graphs
Possible applications:

Classification/regression on graphs
Recommendation systems, data organization, search
engines, ...

Mauro Maggioni Multiscale analysis on graphs



Structured data in high-dimensional spaces

A deluge of data: documents, web searching, customer
databases, hyper-spectral imagery (satellite, biomedical, etc...),
social networks, gene arrays, proteomics data, neurobiological
signals, sensor networks, financial transactions, traffic statistics
(automobilistic, computer networks)...
Common feature/assumption: data is given in a high
dimensional space, however it has a much lower dimensional
intrinsic geometry.

(i) physical constraints. For example the effective state-space
of at least some proteins seems low-dimensional, at least
when viewed at the time scale when important processes
(e.g. folding) take place.

(ii) statistical constraints. For example many dependencies
among word frequencies in a document corpus force the
distribution of word frequency to low-dimensional,
compared to the dimensionality of the whole space.
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Text documents

About 1100 Science News articles, from 8 different categories.
We compute about 1000 coordinates, i-th coordinate of
document d represents frequency in document d of the i-th
word in a fixed dictionary.
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Handwritten Digits

Data base of about 60,000 28× 28 gray-scale pictures of
handwritten digits, collected by USPS. Point cloud in R282

.
Goal: automatic recognition.

Set of 10, 000 picture (28 by 28 pixels) of 10 handwritten digits. Color represents the label (digit) of each point.
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A simple example from Molecular Dynamics

[Joint with C. Clementi]

The dynamics of a small protein (12 atoms, H atoms removed)
in a bath of water molecules is approximated by a Langevin
system of stochastic equations ẋ = −∇U(x) + ẇ . The set of
states of the protein is a noisy (ẇ) set of points in R36.

Left: representation of an alanine dipeptide molecule. Right:
embedding of the set of configurations.
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Goals

We start by analyzing the intrinsic geometry of the data, and
then working on function approximation on the data.

Find parametrizations for the data: manifold learning,
dimensionality reduction. Ideally: number of parameters
comparable with the intrinsic dimensionality of data + a
parametrization should approximately preserve distances
+ be stable under perturbations/noise
Construct useful dictionaries of functions on the data:
approximation of functions on the manifold, predictions,
learning.
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Random walks and heat kernels on the data

Assume the data X = {xi}Ni=1 ⊂ RD. Assume we can assign
local similarities via a kernel function W (xi , xj) ≥ 0.
Simplest example: Wσ(xi , xj) = e−||xi−xj ||2/σ.
Model the data as a weighted graph (G,E ,W ): vertices
represent data points, edges connect xi , xj with weight
Wij := W (xi , xj), when positive. Let Dii =

∑
j Wij and

P = D−1W︸ ︷︷ ︸
random walk

, T = D−
1
2 WD−

1
2︸ ︷︷ ︸

symm. “random walk ′′

, H = e−tL︸ ︷︷ ︸
Heat kernel

Here L = I − T is the normalized Laplacian.
Note 1: W depends on the type of data.
Note 2: W should be “local”, i.e. close to 0 for points not
sufficiently close.
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Basic properties

P t (x , y) is the probability of jumping from x to y in t steps
P t (x , ·) is a “probability bump” on the graph
P and T are similar, therefore share the same eigenvalues
{λi} and the eigenfunctions are related by a simple
transformation. Let Tϕi = λiϕi , with 1 = λ1 ≥ λ2 ≥ . . . .
λi ∈ [−1,1]

“typically” P (or T ) is large and sparse, but its high powers
are full and low-rank
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Diffusion distances

[Picture courtesy of S. Lafon]
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Diffusion distances for large time

We would like to measure distances between points on a graph
by random walks. Diffusion distance at time t :

d (2t)(x , y) = ||T tδx − T tδy || = ||T t (x , ·)− T t (y , ·)||

=

√∑
z∈G

|T t (x , z)− T t (y , z)|2

=

√∑
i

λt
i (ϕi(x)− ϕi(y))2

∼ ||(λt
iϕi(x))m

i=1 − (λt
iϕi(y))m

i=1||Rm

Therefore Φ
(2t)
m : G→ Rm with Φ

(2t)
m (x) = (λt

iϕi(x))m
i=1 satisfies

||Φ(2t)
m (x)− Φ

(2t)
m (y)||Rm ∼ d (2t)(x , y)

at least for t large and m large.
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Analysis on the set

Equipped with good systems of coordinates on large pieces of
the set, one can start doing analysis and approximation
intrinsically on the set.

Fourier analysis on data: use eigenfunctions for function
approximation. Ok for globally uniformly smooth functions.
Conjecture: most functions of interest are not in this class
(Belkin, Niyogi, Coifman, Lafon).
Diffusion wavelets: can construct multiscale analysis of
wavelet-like functions on the set, adapted to the geometry
of diffusion, at different time scales (joint with R.Coifman).
The diffusion semigroup itself on the data can be used as a
smoothing kernel. We recently obtained very promising
results in image denoising and semisupervised learning (in
a few slides, joint with A.D. Szlam and R. Coifman).
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Multiscale Analysis, a sketch

[Graphics by E. Monson]
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Multiscale Analysis - what do we want?

We would like to be able to perform multiscale analysis of
graphs, and of functions on graphs.
Of: produce coarser and coarser graphs, in some sense
sketches of the original at different levels of resolution. This
could allow a multiscale study of the geometry of graphs.
On: produce coarser and coarser functions on graphs, that
allow, as wavelets do in low-dimensional Euclidean spaces, to
analyse a function at different scales.
We tackle these two questions at once.
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Multiscale Analysis, the spectral picture

Let T = D−
1
2 WD−

1
2 as above be the L2-normalized symmetric

“random walk”.
The eigenvalues of T and its powers “typically” look like this:
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Multiscale Analysis, a bit more precisely

We construct multiscale analyses associated with a
diffusion-like process T on a space X , be it a manifold, a graph,
or a point cloud. This gives:

(i) A coarsening of X at different “geometric” scales, in a
chain X → X1 → X2 → · · · → Xj . . . ;

(ii) A coarsening (or compression) of the process T at all time
scales tj = 2j , {Tj = [T 2j

]
Φj
Φj
}j , each acting on the

corresponding Xj ;
(iii) A set of wavelet-like basis functions for analysis of

functions (observables) on the manifold/graph/point
cloud/set of states of the system.

All the above come with guarantees: the coarsened system Xj

and coarsened process Tj have random walks “ε-close” to T 2j

on X . This comes at the cost of a very careful coarsening: up
to O(|X |2) operations (< O(|X |3)!), and only O(|X |) in certain
special classes of problems.
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Multiscale Analysis, a trivial example, I

We now consider a simple example of a Markov chain on a
graph with 8 states.

T =



0.80 0.20 0.00 0.00 0.00 0.00 0.00 0.00
0.20 0.79 0.01 0.00 0.00 0.00 0.00 0.00
0.00 0.01 0.49 0.50 0.00 0.00 0.00 0.00
0.00 0.00 0.50 0.499 0.001 0.00 0.00 0.00
0.00 0.00 0.00 0.001 0.499 0.50 0.00 0.00
0.00 0.00 0.00 0.00 0.50 0.49 0.01 0.00
0.00 0.00 0.00 0.00 0.00 0.01 0.49 0.50
0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50


From the matrix it is clear that the states are grouped into four
pairs {ν1, ν2}, {ν3, ν4}, {ν5, ν6}, and {ν7, ν8}, with weak
interactions between the the pairs.
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Multiscale Analysis, a trivial example, II

Some powers of the Markov chain T , 8× 8, of decreasing effective rank.

Compressed representations T6 := T 26
(4× 4), T13 := T 213

(2× 2), and corresponding soft clusters.
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Construction of Diffusion Wavelets

Figure: Diagram for downsampling, orthogonalization and operator
compression. (All triangles are ε−commutative by construction)
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Compression Step

In order to compress the matrix T we use “rank-revealing QR”
decompositions. Fix ε > 0.

T Π = QR =
(

Q11 Q12
)( R11 R12

0 R22

)
'ε Q11

(
R11 R12

)
Q orthogonal, R upper triangular,Π permutation,
||R22||2 ' ε
Q are the scaling functions [Φ1]Φ0 , [R11|R12] is [T ]Φ1

Φ0
, the

compressed operator from fine to coarse scale.
The number of columns N1 of Q11 (and of R11) determines
the dimension of the next coarse scale.
The first N1 columns of Π select N1 representative vertices
on the graph.
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Example: chain
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Example: chain, some scaling functions
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{Φj}J
j=0, {Ψj}

J−1
j=0 , {[T 2j

]
Φj
Φj
}J

j=1 ← DiffusionWaveletTree ([T ]
Φ0
Φ0
,Φ0, J, SpQR, ε)

// Input: [T ]
Φ0
Φ0

: a diffusion operator, written on the o.n. basis Φ0

// Φ0 : an orthonormal basis which ε-spans V0
// J : number of levels to compute
// SpQR : a function compute a sparse QR decomposition, ε: precision

// Output: The orthonormal bases of scaling functions, Φj , wavelets, Ψj , representation of T 2j
on Φj .

for j = 0 to J − 1 do

[Φj+1]Φj
, [T ]

Φ1
Φ0
←SpQR([T 2j

]
Φj
Φj
, ε)

Tj+1 := [T 2j+1
]
Φj+1
Φj+1

← [Φj+1]Φj
[T 2j

]
Φj
Φj

[Φj+1]∗Φj

[Ψj ]Φj
← SpQR(I〈Φj 〉

− [Φj+1]Φj
[Φj+1]∗Φj

, ε)

end

Q,R ← SpQR (A, ε)
// Input: A: sparse n × n matrix ; ε: precision

// Output:
// Q,R matrices, possibly sparse, such that A =ε QR,
// Q is n × m and orthogonal,
// R is m × n, and upper triangular up to a permutation,
// the columns of Q ε-span the space spanned by the columns of A.
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Multiresolution Analysis

Let Vj = 〈Φj〉, in fact Φj (scaling functions) is o.n. basis for Vj .
By construction L2(X ) = V0 ⊇ V1 ⊇ V2 ⊇ . . . , and Vj → 〈ϕ1〉.
Let Wj be the orthogonal complement of Vj+1 into Vj . One can
construct an o.n. basis Ψj (wavelets) for Wj .
L2(X ) = W0 ⊕ . . .Wj ⊕ Vj , therefore we have

f =
∑

j

∑
k∈Kj

〈f , ψj,k 〉︸ ︷︷ ︸
wavelet coeff.′s

ψj,k .

Signal processing tasks by adjusting wavelet coefficients.
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Properties of Diffusion Wavelets

Multiscale analysis and wavelet transform
Compact support and estimates on support sizes
(currently being improved);
Vanishing moments (w.r.t. low-frequency eigenfunctions);
Bounds on the sizes of the approximation spaces (depend
on the spectrum of T , which in turn depends on geometry);
Approximation and stability guarantees of the construction
(theory in development).

One can also construct diffusion wavelet packets, and therefore
quickly-searchable libraries of waveforms.
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Diffusion Wavelets on Dumbell manifold
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Example: Multiscale text document organization
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Doc/Word multiscales

Scaling
Fcn

Document Titles Words

ϕ2,3

Acid rain and agricultural
pollution
Nitrogen’s Increasing Im-
pact in agriculture

nitrogen,plant,
ecologist,carbon,
global

ϕ3,3

Racing the Waves Seismol-
ogists catch quakes
Tsunami! At Lake Tahoe?
How a middling quake
made a giant tsunami
Waves of Death
Seabed slide blamed for
deadly tsunami
Earthquakes: The deadly
side of geometry

earthquake,wave,
fault,quake,
tsunami

ϕ3,5

Hunting Prehistoric Hurri-
canes
Extreme weather: Massive
hurricanes
Clearing the Air About Tur-
bulence
New map defines nation’s
twister risk
Southern twisters
Oklahoma Tornado Sets
Wind Record

tornado,storm,
wind,tornadoe,
speed

Some example of scaling functions on the documents, with some of the documents in their support, and some of the

words most frequent in the documents.
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Ongoing work: example of hierarchical graph
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Ongoing work: example of hierarchical graph
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Local Discriminant Bases

One can in fact build a large dictionary of orthonormal bases
(wavelet packets) by further splitting the wavelet subspaces into
orthogonal subspaces.
Because of hierarchical organization, one can search such
dictionary fast for “best bases” for tasks such as compression,
denoising, classification.
LDB (Coifman, Saito) is the best basis for classification.

Mauro Maggioni Multiscale analysis on graphs



Local Discriminant Bases

Figure: Left to right, a realization of a function from class 1 and 2
respectively. Note that the third smooth texture patch is on the back
side of the sphere, and can be viewed in semitransparency. The other
two smooth patches are decoys in random non-overlapping positions.
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Semi-supervised Learning on Graphs

[Joint with A.D.Szlam]

Given:
X : all the data points
(X̃ , {χi(x)}x∈X̃ ,i=1,...,I): a small subset of X , with labels:
χi(x) = 1 if x is in class i , 0 otherwise.

Objective:
guess χi(x) for x ∈ X \ X̃ .

Motivation:
data can be cheaply acquired (X large), but it is expensive
to label (X̃ small). If data has useful geometry, then it is a
good idea to use X to learn the geometry, and then
perform regression by using dictionaries on the data,
adapted to its geometry.
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Semi-supervised Learning on Graphs, cont’d

Algorithm:
use the geometry of X to design a smoothing kernel (e.g.
heat kernel), and apply such smoothing to the χi ’s, to
obtain χ̃i , soft class assignments on all of X . This is
already pretty good.
The key to success is to repeat: incorporate the χ̃i ’s into
the geometry graph, and design a new smoothing kernel K̃
that takes into account the new geometry. Use K̃ to
smooth the initial label, to obtain final classification.

Experiments on standard data sets show this technique is very
competitive.
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Semi-supervised Learning on Graph (cont’d)

FAKS FAHC FAEF Best of other meth-
ods

digit1 2.0 2.1 1.9 2.5 (LapEig)
USPS 4.0 3.9 3.3 4.7 (LapRLS, Disc.

Reg.)
BCI 45.5 45.3 47.8 31.4 (LapRLS)
g241c 19.8 21.5 18.0 22.0 (NoSub)
COIL 12.0 11.1 15.1 9.6 (Disc. Reg.)
gc241n 11.0 12.0 9.2 5.0 (ClusterKernel)
text 22.3 22.3 22.8 23.6 (LapSVM)

In the first column we chose, for each data set, the best performing method with model
selection, among all those discussed in Chapelle’s book. In each of the remaining

columns we report the performance of each of our methods with model selection, but
with the best settings of parameters for constructing the nearest neighbor graph,

among those considered in other tables. The aim of this rather unfair comparison is to
highlight the potential of the methods on the different data sets. The training set is 1/15

of the whole set. See Chapelle et al. for references
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Some open questions and applications
Fourier part:

Little known about global properties of eigenfunctions

Behavior of eigenfunctions under perturbations of the graph

Eigenfunctions on graphs different from sampled manifolds

Relationships between eigenfunctions of different Laplacians

Multiscale part:

Geometric multiscale properties of graphs

Visualization of these multiscale decompositions

Better constructions? Better sparsity of basis functions and
compressed graphs? More efficient algorithms?

Applications

Multiscale signal processing on graphs

Multiscale learning and clustering on graphs

We will see at least a couple of applications to the analysis of
networks and network traffic in the next talks!
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