Economics and dynamics in networking: three case studies

Fernando Paganini Universidad ORT, Uruguay

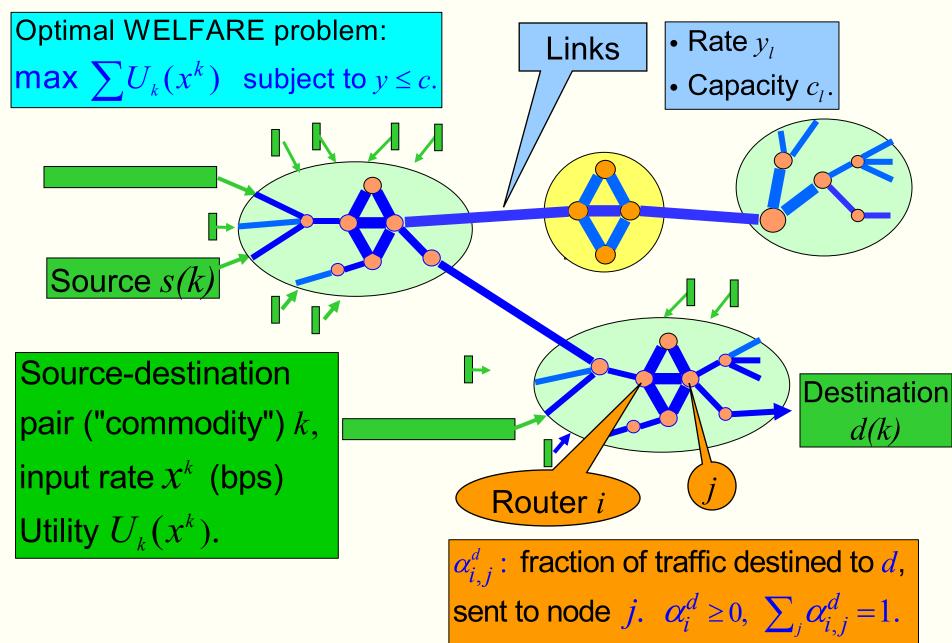
Collaborators:

- Enrique Mallada (Univ. ORT, now at Cornell).
- Andrés Ferragut (Univ. ORT and Univ. de la Rep, Uruguay)
- Pablo Belzarena (Universidad de la Republica, Uruguay)

Outline:

- 1. Congestion control with multipath routing.
- 2. Controlling fairness through number of TCP connections.
- 3. Auctions for resource allocation in overlay networks.

1. Congestion control with multipath routing



A simple network

The "customer":

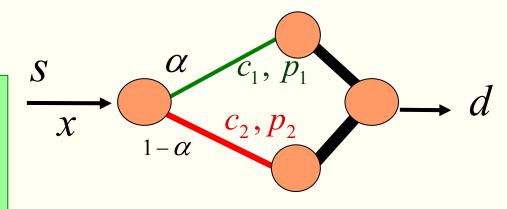
elastic traffic source, rate follows
"demand curve" x = f(q), f = U¹⁻¹
q = α p₁ + (1-α) p₂, mean price.

The "broker": multipath router, adapts routing fraction α slowly in direction of cheaper prices, $\dot{\alpha} = \beta(p_2 - p_1).$ The resources: link capacities. Prices p_1 , p_2 (e.g. queueing delays) indicate their scarcity.

Optimal welfare equilibrium: $x = c_1 + c_2 = f(q)$,

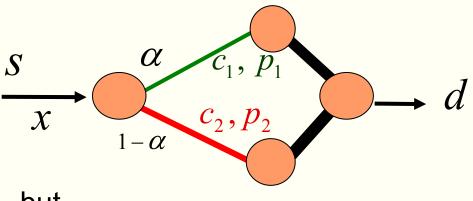
$$\alpha = \frac{c_1}{c_1 + c_2}, \quad p_1 = p_2 = q,$$

Does the system reach this equilibrium?



We implemented this in the packet simulator ns2:

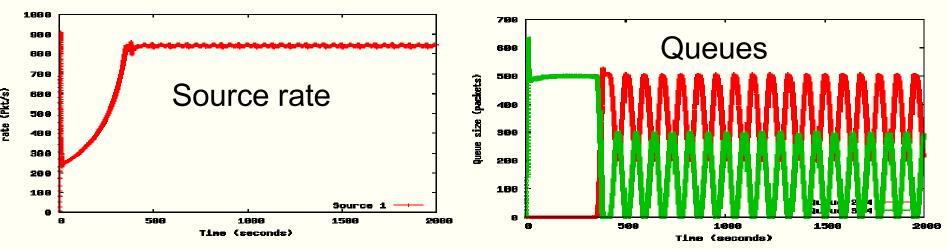
- Source runs TCP-FAST, responds to delay.
- Router split traffic, adapt split to measured delays.



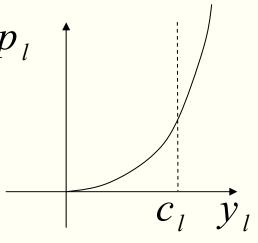
Sources rate reaches desired equilibrium.

but....

Queues and routing splits oscillate!

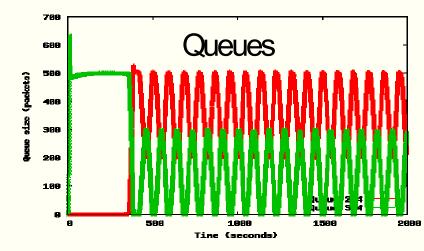


Can we explain this with flow models? p_l A commonly model for delay is the "latency function" $p_l = \varphi(y_l)$, where y_l is the link rate.



This model implies global convergence to equilbrium in α , p, x, using a Lyapunov argument.

Something's wrong.... The latency model, from queueing theory in *steady state*, not relevant to dynamic studies.



Another fluid model for queueing delay $p_l = \frac{1}{c_l} [y_l - c_l]_{p_l}^+$

We can prove $x \rightarrow c_1 + c_2$.

Take $x \equiv c_1 + c_2$, around equilibrium we have the linear dynamics

Equilibrium:

$$x^* = c_1 + c_2, \ \alpha^* = \frac{c_1}{x^*}, \ p_1^* = p_2^* = q^* = U'(x^*).$$

 $\begin{bmatrix} \delta \dot{\alpha} \\ \delta \dot{p}_1 \\ \delta \dot{p}_2 \end{bmatrix} = \begin{bmatrix} 0 & -\beta & \beta \\ \gamma_1 x^* & 0 & 0 \\ -\gamma_2 x^* & 0 & 0 \end{bmatrix} \begin{bmatrix} \delta \dot{\alpha} \\ \delta p_1 \\ \delta p_2 \end{bmatrix} \Rightarrow \text{UNSTABLE (imaginary modes)}$

Mass-spring like system, frequency matches packet simulations.

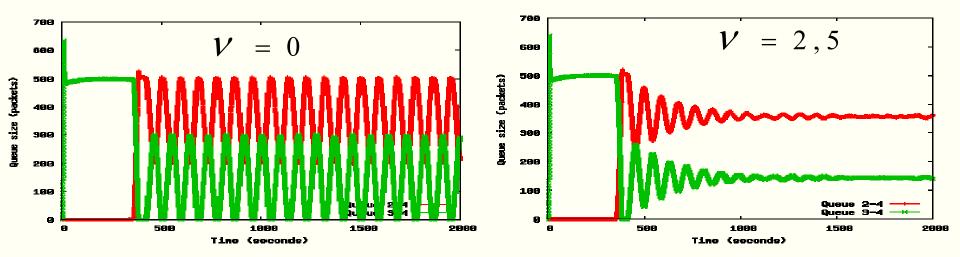
Conclusion:

- Route oscillations are not trivial to avoid.
- A naive equilibrium viewpoint (most of econ) misses all this.
- Beware of simplistic models for delay!

Solving the problem

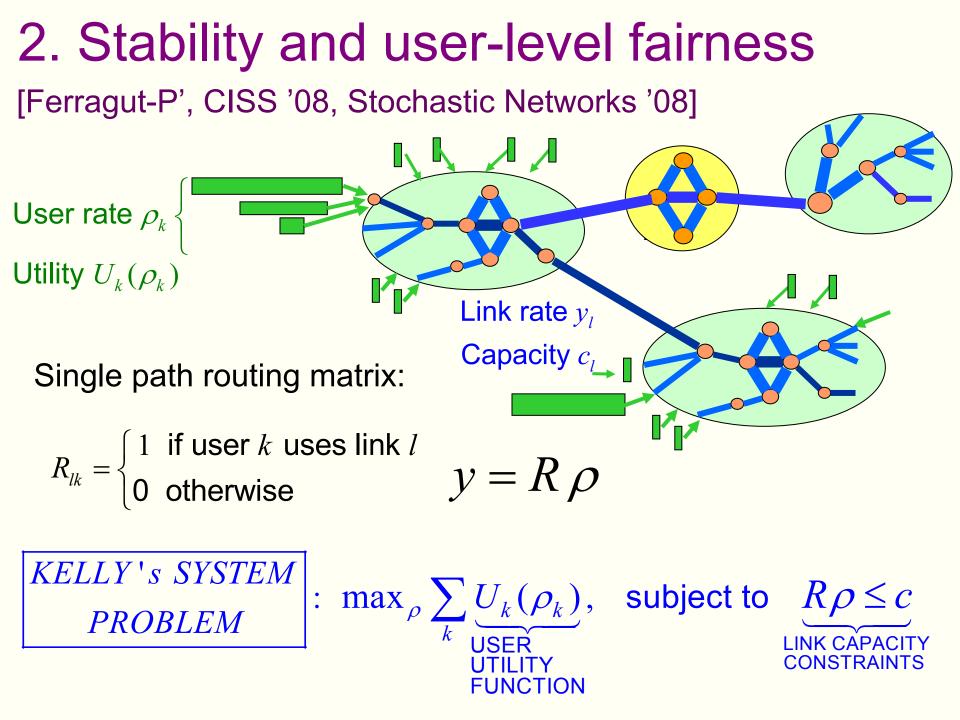
Adapt α based on anticipated (rather than current) price $|\pi_i = p_i + v \dot{p}_i|$

In control terms, add derivative action. Same equilibrium. Simulations:

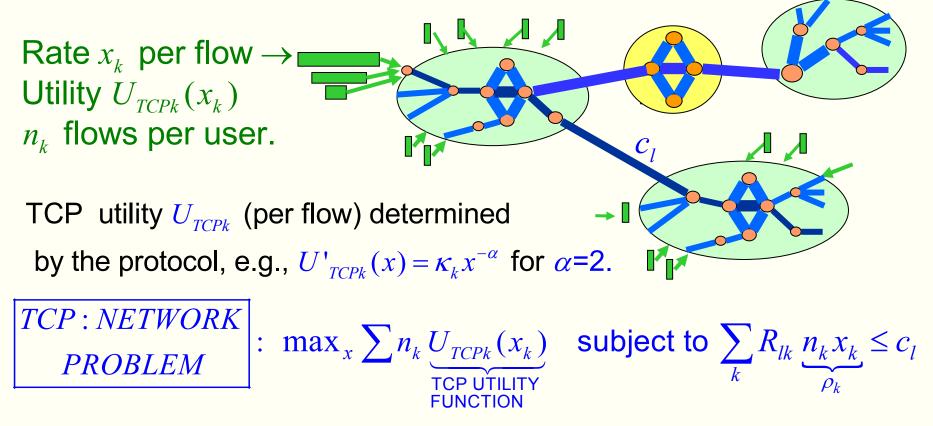


Theorems [P'-Mallada, to appear in IEEE ToN] the equilibrium point (optimum max $\sum U^k(x^k)$) is locally asymptotically stable in an arbitrary network

Packet implementation: variants of TCP-FAST and RIP.



Contrast with flow-level fairness of TCP



- Without control of number of connections, fairness per flow is moot (Briscoe'07).
- Incentives to employ many TCP flows (e.g., p2p).
 Tragedy of the commons?

On stochastic stability of a network served by TCP [deVeciana et al '99, Bonald-Massoulié '01]

User: Poisson (λ_k) arrivals, $\exp(\mu_k)$ workloads. \rightarrow

For each fixed $\{n_k\}$, service rates x_k determined by TCP congestion control $U'_{TCPk}(x) = \kappa_k x^{-\alpha}$ for $\alpha > 0$.

Result: Markov chain $\{n_k\}$ stable if and only if $\sum_k R_{lk} \frac{\lambda_k}{\mu_k} < c_l \quad \forall l.$

Remark: congestion control ensures neither stability nor fairness.

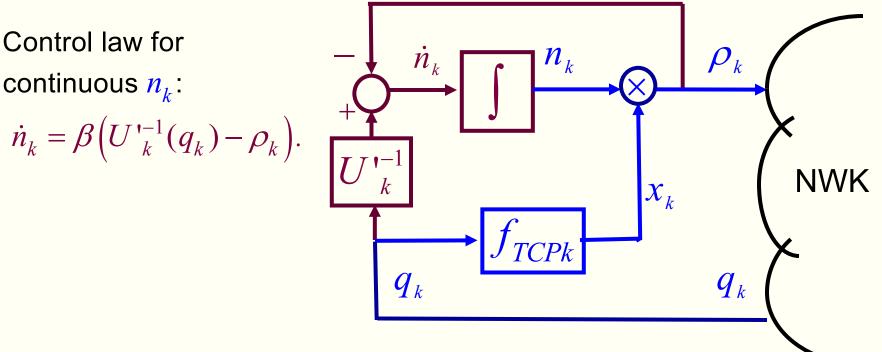
- Both depend solely on users' "open loop" demands $\frac{\lambda_k}{k}$.
- Fairness choice per flow (e.g., value of α) has minimal impact. A heavy user will compensate a low TCP rate by increasing n_k , until ρ_k serves demand, if feasible. If not n_k 's grow without bounds.

Closing the loop on n_k for user-level fairness

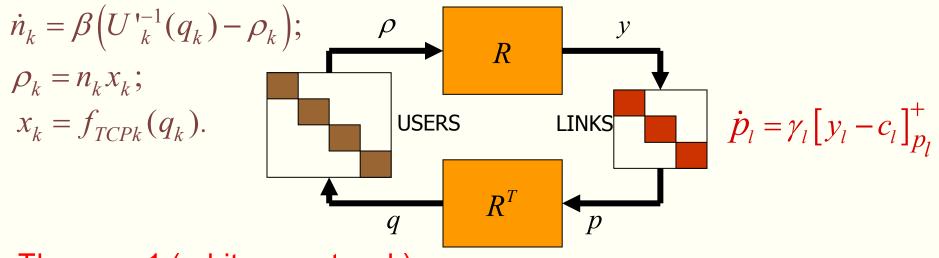
Assume that for fixed n_k , the flow rate x_k is determined by TCP:

 $x_k = f_{TCPk}(q_k)$ where q_k is the congestion price seen by the source, and $f_{TCPk} = (U'_{TCPk})^{-1}$, TCP demand curve. The user rate is $\rho_k = n_k x_k$.

Objective: control n_k so that the system converges to an equilibrium where $\rho_k = n_k x_k$ solves $\max_{\rho} \sum_k U_k(\rho_k)$, s.t. $R\rho \le c$, with utilities defined by users.



Analysis using dual TCP congestion control,



Theorem 1 (arbitrary network).

The equilibrium satisfies $\max_{\rho} \sum_{k} U_k(\rho_k)$, subject to $R\rho \leq c$, and is locally asymptotically stable. Proof: passivity argument (as in Wen-Arcak '03).

Theorem 2 (single bottleneck).

Assume time-scale separation: for fixed $n = \{n_k\}$, let $\hat{q}_k(n)$, $\hat{x}_k(n)$

be the equilibrium values from dual congestion control, and $\hat{\rho}_k(n) = n_k \hat{x}_k(n)$. Then the "slow" dynamics $\dot{n}_k = \beta \left(U'_k^{-1}(\hat{q}_k(n)) - \hat{\rho}_k(n) \right)$ are globally convergent to a point n^* where the corresponding $\hat{\rho}_k(n^*)$ are at the optimum welfare point.

From fluid control to admission control.

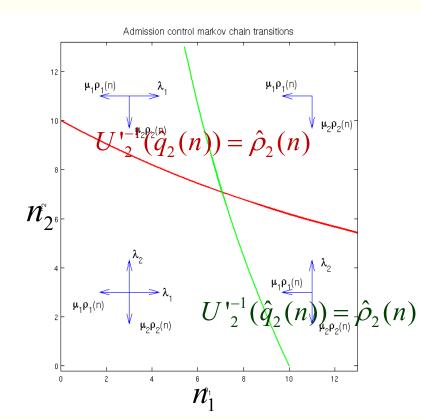
In practice, n_k is discrete (number of TCP connections). Furthermore:

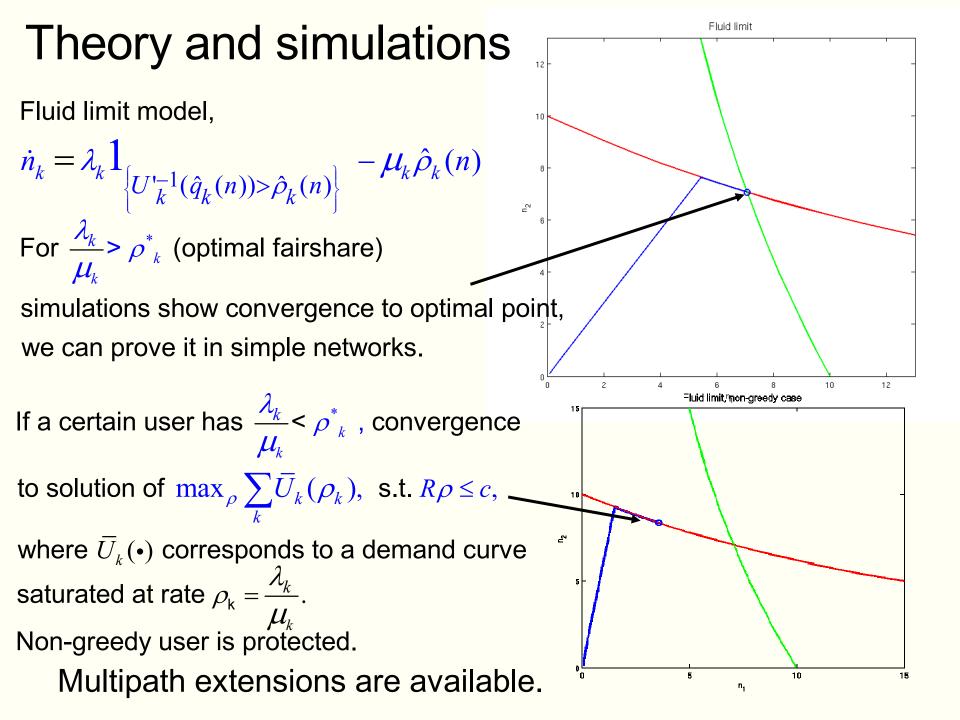
- Real-time control at sources' (application layer) is impractical, incentives?
- Killing an ongoing TCP connection to reduce n_k is undesirable.

More practical alternative:

- Control increase of n_k (admit new connections), rely on natural termination.
- Admission control carried out by edge ro
- User utility $U_k(\rho_k)$ describes the SLA: admit new connection $\Leftrightarrow U'_k^{-1}(q_k) > \rho_k$

Markov chain model. Poisson(λ_k) arrivals, $exp(\mu_k)$ workloads. Active sessions served with rate x_k obtained from TCP.





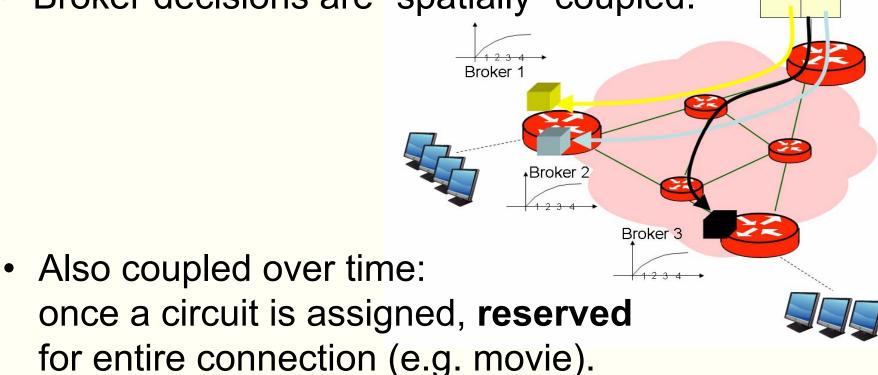
3. Distributed Auctions for Resource Allocation in Overlay Networks

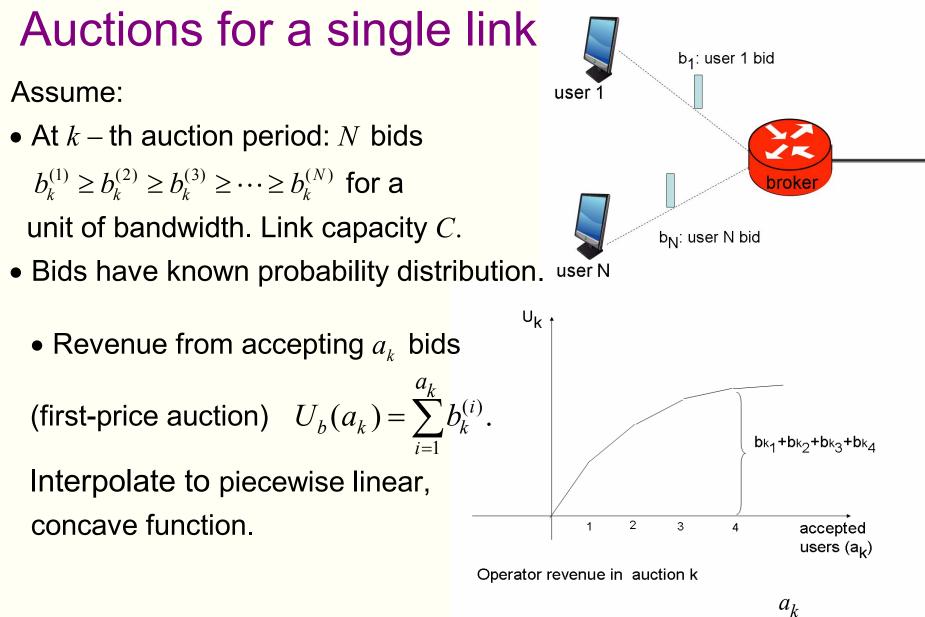
[Belzarena-Ferragut-P', Net-Coop '08]

- Scenario: an operator sells premium services (e.g. video-on-demand) over a network.
- QoS is guaranteed by reserving bandwidth in fixed amounts, and controlling access.
- One related proposal Service Overlay Newtork (Zuan et al.): here the service is offered by leasing bandwidth from several ISPs, installing distributed content servers.
- Objective: selling the service to maximize revenue.

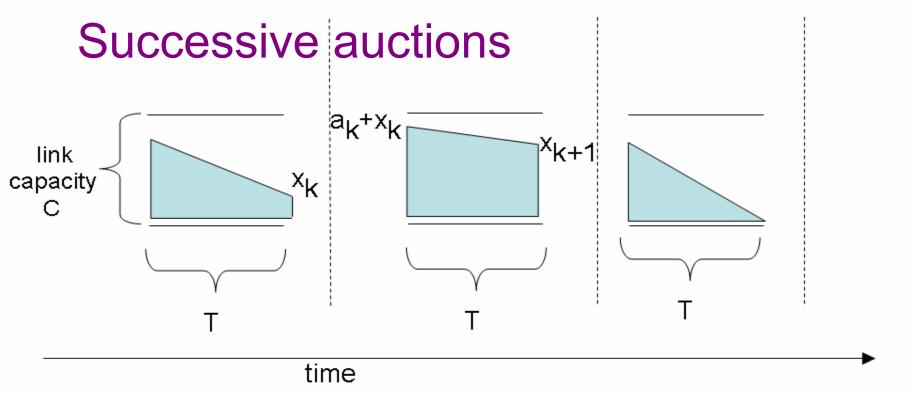
Distributed Auction

- End users submit bids for certain end-to-end service to a broker within their domain.
- Periodically, an auction is held to decide which users are assigned bandwidth.
- Broker decisions are "spatially" coupled.





• Expected revenue from a_k bids: $\overline{U}(a_k) = E[U_b(a_k)] = \sum_{k=1}^{a_k} E[b_k^{(i)}]$



p: probability that a connection remains active at the end of the period of time T

xk: number of active connections at kT-

ak: number of accepted connections in auction k

x_k+a_k: active connections in kT+

Myopic policy: $a_k = C - x_k$, sells all available capacity. May miss better bids in the future.

Optimal revenue problem

Maximize
$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{a_k}E[U_b(a_k)]$$

- Expectation is w.r. t the bids, and the departure process.
- This is a Markov Decision Process (MDP).
- Solution is a policy $a_k = a(s_k)$, where the state $s_k = (x_k, b_k)$
- a(s) can be found numerically, large computional cost.

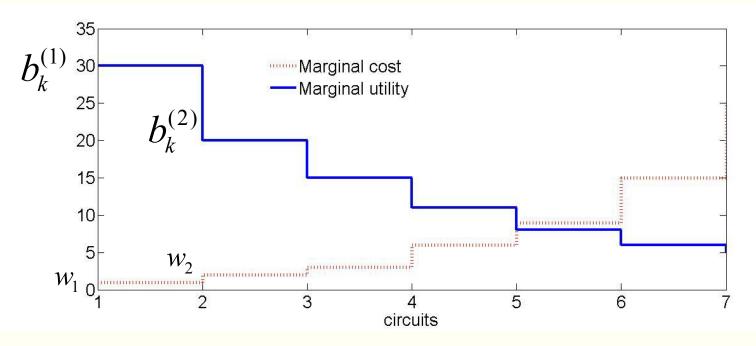
Receding horizon approximation:

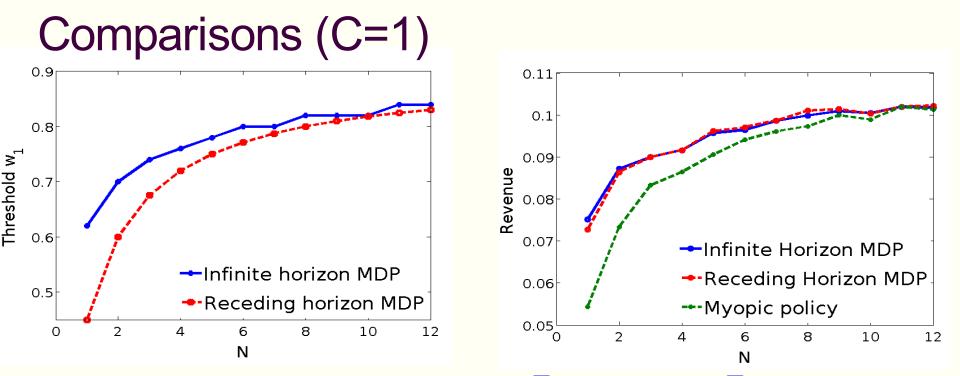
 $a_0 = \arg\max_{a \le C - x_k} [U_b(a) + E_{x_1} \overline{U}(C - x_1)]$

- Optimize current revenue+ expected revenue of next auction, assuming all remaining capacity will be sold off at that time.
- Take auction a_0 , and repeat recursively.

Receding horizon policy: $a_0 = \underset{a \leq C-x_k}{\operatorname{arg\,max}} [U_b(a) + E_{x_1} \overline{U}(C-x_1)]$

- For the second term, $x_1 \sim Bin(x_0 + a, p)$.
- Some calculations reduce it to $-W(x_0 + a)$, where W() piecewise linear, increasing and convex (cost of missed future opportunities).
- Maximum: intersection of decreasing marginal utilities (bids) with increasing marginal costs (acceptance thresholds, w_k).





A fluid approximation: replace $E_{x_1}\overline{U}(C-x_1)$ by $\overline{U}(C-E[x_1])$

The problem reduces to the convex program

Maximize
$$U_b(a) + \overline{U}(z)$$

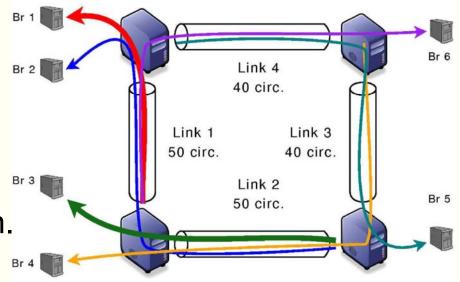
CURRENT EXPECTED
REVENUE NEXT STEP
Subject to $x_0 + a \le C$, $p(x_0 + a) + z \le C$.
CURRENT CAPACITY
CONSTRAINT $p(x_0 + a) + z \le C$.

The network case

Assign a broker to each r, route/service in the network.

 a^r : current allocation, broker r

z^r: expected next-step allocation.R: routing matrix, as before.



Network allocation problem: Maximize $\sum_{r} U_{b^{r}}(a^{r}) + \overline{U}(z^{r})$ subject to $R(x_{0} + a) \leq C$, $RP(x_{0} + a) + z \leq C$

- Similar to network utility maximization in congestion control
- Additional (one-step ahead) variables and constraints.
 Requires additional price variables.
- Distributed solution via message passing in the control plane (modification to RSVP).

Conclusions

We studied three problems in cross layer control and optimization:

- 1. Congestion control with multipath routing.
- 2. Controlling fairness through number of TCP connections.
- 3. Auctions for resource allocation in overlay networks.

Common features:

- Economic (utility based) models.
- Dynamics play a non-trivial role.
- Distributed solutions.

Progression from "virtual" to real economics (utilities as protocol representations, versus real monetary utilities).

Grand challenge for the future: an integrated view of network control and economics.