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1. Congestion control with multipath routing
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A simple network

The "customer":

e elastic traffic source, rate follows

"demand curve" x= f(q), f =U""
eg=ap, +(l-a)p,, mean price.

The resources: link capacities.
Prices p,, p, (e.g. queueing delays)
iIndicate their scarcity.

The "broker": multipath router,
adapts routing fraction « slowly
in direction of cheaper prices,

a ::B(pz _p1)~

Optimal welfare equililbrium:
x=¢ +c¢, = f(q),

¢, reach this equilibrium?
» P1=P» =4,

Does the system

o =



rate (Pkt/s)

We implemented this in the packet simulator ns2:
« Source runs TCP-FAST, responds to delay.

- Router split traffic, adapt split to measured delays.

Sources rate reaches
desired equilibrium. but. ..

Source rate

Tine {(seconds}



Can we explain this with flow models? p,
A commonly model for delay is
the "latency function™ p, =¢(y,),

where y, is the link rate.

This model implies global convergence
to equilbrium in &,p, x, using a Lyapunov argument.

Something's wrong....
The latency model, from

queueing theory in steady state, =
not relevant to dynamic studies. a




1

] - ° +

Another fluid model for queueing delay p, =—[y, —¢]
C, !

We can prove x — ¢, +c¢,. Equilibrium: ;
x =¢ +c,, a =—-L,

g . x
Take x = ¢, + ¢,, around equilibrium e e )

we have the linear dynamics

sa1 [ 0o —p B
Sp, =] 7, x° 0 01| dp, |= UNSTABLE (imaginary modes)
5p, | |-v,x 0 0| Jp, |

Mass-spring like system, frequency matches packet simulations.

Conclusion:

 Route oscillations are not trivial to avoid.

* A naive equilibrium viewpoint (most of econ) misses all this.
 Beware of simplistic models for delay!



Solving the problem

Adapt « based on anticipated (rather than current) price |z, = p, + v p,

In control terms, add derivative action. Same equilibrium. Simulations:

Theorems [P'-Mallada, to appear in IEEE ToN]
the equilibrium point (optimum max » U*(x"))

Is locally asymptotically stable in an arbitrary network

Packet implementation: variants of TCP-FAST and RIP.



2. Stability and user-level fairness
[Ferragut-P’, CISS '08, Stochastic Networks ’08]

N
User rate pk{ —

Utility U, (p,)
Link rate y,

C it
Single path routing matrix; oo (-
| 1 ifuser k uses link /
* 10 otherwise y=Rp

KELLY's SYSTEM
PROBLEM

. max, » U,(p,), subjectto Rp<c
o / .

USER LINK CAPACITY
UTILITY CONSTRAINTS

FUNCTION




Contrast with flow-level fairness of TCP

Rate x, per flow %;
Utility Uy, (x,)

n, flows per user.

TCP utility U,.,, (per flow) determined
by the protocol, e.g., U',,, (x)=x,x“ for a=2. Ip~

TCP: NETWORK
PROBLEM

;. max, an Urcp (%) subject to Zle n.x, <c

TCP UTILITY & P
FUNCTION

e Without control of number of connections, fairness
per flow is moot (Briscoe'07).

e Incentives to employ many TCP flows (e.g., p2p) .
Tragedy of the commons?



On stochastic stability of a network served by TCP
[deVeciana et al '99, Bonald-Massoulié '01]

User: Poisson (4,)

arrivals, exp(y, ) workloads. %ﬁ

For each fixed {n,}, service rates x, determined by L

TCP congestion control U',,, (x) =x,x“ for a > 0.

Result: Markov chain {n, | stable if and only if ZRZ,{&< ¢, VI
k

M

Remark: congestion control ensures neither stability nor fairness.

e Both depend solely on users' "open loop" demands /1—"

y7i
e Fairness choice per flow (e.g., value of «) has minimalkimpact.
A heavy user will compensate a low TCP rate by increasing n,,

until O, serves demand, if feasible. If not 72,'s grow without bounds.



Closing the loop onn,_ for user-level fairness

Assume that for fixed n,, the flow rate x, is determined by TCP:
x, = frer (q,) Where g, is the congestion price seen by the source,
and f..,, =(U'..,,)"', TCP demand curve. The user rate is P, =n.x,.

Objective: control n, so that the system converges to an equilibrium where

p, =n.x, solves max , » U,(p;), s.t. Rp<c, with utilities defined by users.
k

Control law for
continuous n,:

n :ﬂ(U';l(Qk)_IOk)'

P

NWK




Analysis using dual TCP congestion control,

=AU g -p); P . y
Pr = WXy
: +
X = Jrere (). — SULE Pr=7 [yz - Cl]pl
T
q li P

Theorem 1 (arbitrary network).
The equilibrium satisfies max , > U, (p,), subjectto Rp <c, and is locally
asymptotically stable. Proof: passlfvity argument (as in Wen-Arcak '03).

Theorem 2 (single bottleneck).

Assume time-scale separation: for fixed n = {n, |, let g, (n), %, (n)

be the equilibrium values from dual congestion control, and p, (n) = n, %, (n).
Then the "slow" dynamics 7n, = ,B(U',;l(c}k (n))—p, (n)) are globally convergent
to a point n" where the corresponding ,ék(n*) are at the optimum welfare point.



From fluid control to admission control.

In practice, n, is discrete (number of TCP connections). Furthermore:
e Real-time control at sources' (application layer) is impractical, incentives?
e Killing an ongoing TCP connection to reduce 7, is undesirable.

More practical alternative:

e Control increase of 72, (admit new connections), rely on natural termination.

e Admission control carried out by edge ro
e User utility U, (p, ) describes the SLA:

admit new connection <U"'(q,)> p,

Markov chain model.
Poisson(4, ) arrivals,

exp(u, ) workloads.

Active sessions served with rate x,
obtained from TCP.

Admission control markov chain transitions
T
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Fluid limit

Theory and simulations

Fluid limit model, 0

=11
ook {U',;l(@k<n>>>ﬁk<n>

For e o . (optimal fairshare)

M, / i

simulations show convergence to optimal poin

we can prove it in simple networks.

} — 1.0 (n) of

. ﬂfk k
If a certain user has —< p, , convergence

Ky
to solution of max , » U, (p,), st.Rp<c,
k

where U, (+) corresponds to a demand curve

saturated at rate p, = —*.

Non-greedy user is protkected.
Multipath extensions are available.

\”

=luid limityWon-greedy case
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3. Distributed Auctions for Resource
Allocation in Overlay Networks

[Belzarena-Ferragut-P’, Net-Coop '08]

Scenario: an operator sells premium services (e.g.
video-on-demand) over a network.

QoS is guaranteed by reserving bandwidth in fixed
amounts, and controlling access.

One related proposal Service Overlay Newtork
(Zuan et al.): here the service is offered by leasing
bandwidth from several ISPs, installing distributed
content servers.

Objective: selling the service to maximize revenue.



Distributed Auction

« End users submit bids for certain end-to-end service
to a broker within their domain.

* Periodically, an auction is held to decide
which users are assigned bandwidth.

« Broker decisions are “spatially” coupled.
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* Also coupled over time:
once a circuit is assigned, reserved .:';

for entire connection (e.g. movie).




Auctions for a single link

"?;‘j " by:user1bid
Assume: H
e At k£ —th auction period: N bids
b" >b? >pV >...>p" for a He
unit of bandwidth. Link capacity C. g bN P
¢ Bids have known probability distribution. userN
e Revenue from accepting a, bids -

: : : L (i) — 7
(first-price auction) U, (a,)= ;bk . // S
Interpolate to piecewise linear,
concave function. 2 3 a4 accepted

users (ay)

Operator revenue in auction k

e Expected revenue from a, bids: U(a,)=E[U,(a,)]=D E[b"]

i=l



Successive auctions

8 A

link ; Ak+1
capacity Xy !
c

time

p: probability that a connection remains active at the end of the period of

time T
X} number of active connections at KT-

). humber of accepted connections In auction k
X|-+a). active connections in KT+

Myopic policy: a, =C - x,, sells all available capacity.
May miss better bids in the future.




Optimal revenue problem

Maximize lim— ZE[U (a,) |

n—0o0 n

e Expectation is w.r. t the bids, and the departure process.
e This is a Markov Decision Process (MDP).

e Solution is a policy a, = a(s,), where the state s, =(x,,b,)
e a(s) can be found numerically, large compuational cost.

Receding horizon approximation:
aO =drg maXaSC—xk [Ub (Cl) T ExIU(C o xl)]

e Optimize current revenue+ expected revenue of next auction,
assuming all remaining capacity will be sold off at that time.
e Take auction a,,, and repeat recursively.



Receding horizon policy: a, :argmax[Ub(a)JrExlU(C —x,)]

a<C-x;

e For the second term, x, ~ Bin(x, +a, p).

e Some calculations reduce it to —W(x, +a), where W () piecewise

linear, increasing and convex (cost of missed future opportunities).

e Maximum: intersection of decreasing marginal utilities (bids) with
Increasing marginal costs (acceptance thresholds, w, ).

35
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Revenue

-~ |nfinite Horizon MDP

-=-Receding Horizon MDP/|

-=-Myopic policy
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A fluid aproximation: replace Exll_](C —x,) by U(C-E[x,])

EXPECTED
REVENUE IN
NEXT STEP

—_
CURRENT
REVENUE

subjectto x,+a<C, p(x,+a)+z<C.

CURRENT EXPECTED FUTURE
CAPACITY CAPACITY
CONSTRAINT CONSTRAINT

The problem reduces to the convex program
Maximize U, (a) + U(z)



The network case ..y

Assign a broker to each r,
route/service in the network.

Link 4
40 circ.

Link 1 Link 3
50 circ. 40 circ.

a’ : current allocation, broker r S

Link 2
50 circ.

z". expected next-step allocation.
R: routing matrix, as before. =+ g

Network allocation problem: Maximize Y U, (a")+U(z")

subjectto R(x,+a)<C, RP(x,+a)+z<C

e Similar to network utility maximization in congestion control

e Additional (one-step ahead) variables and constraints.
Requires additional price variables.

e Distributed solution via message passing in the control plane
(modification to RSVP).



Conclusions

We studied three problems in cross layer control and
optimization:

1. Congestion control with multipath routing.
2. Controlling fairness through number of TCP connections.
3. Auctions for resource allocation in overlay networks.

Common features:
— Economic (utility based) models.
— Dynamics play a non-trivial role.
— Distributed solutions.

Progression from “virtual” to real economics (utilities as
protocol representations, versus real monetary utilities).

Grand challenge for the future: an integrated view of network
control and economics.



