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1. Congestion control with multipath routing

.( )
Optimal WELFARE problem:

subject   tomax k
k y cU x ≤∑



1 2

The resources: link capacities.
Prices ,  (e.g. queueing delays)
indicate their scarcity. 
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The "customer": 
  elastic traffic source, rate  follows 

  "demand curve" 
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Optimal welfare equililbrium:
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Does the system 
reach this equilibrium?
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The "broker": multipath router,
adapts routing fraction  slowly
in direction of cheaper prices, 
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 Source runs TCP-FAST, responds to delay.
 Router split traffic, adapt split to measured delays. 

We implemented this in the packet simulator ns2:
i
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desired equilibrium. 
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but....
Queues and routing splits oscillate!
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Something's wrong....
The latency model, from 
queueing theory in
not relevant to dynamic studies. 

  steady state
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Take , around equilibrium 
we have  the linear dynamics 

UNSTABLE (imaginary modes)
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Conclusion:
• Route oscillations are not trivial to avoid.
• A naive equilibrium viewpoint (most of econ) misses all this. 
• Beware of simplistic models for delay! 



Solving the problem
Adapt based on anticipated (rather than current) price 

In control terms, add derivative action. Same equilibrium. Simulations:
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2. Stability and user-level fairness
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Single path routing matrix:

y Rρ=

[Ferragut-P’, CISS ’08, Stochastic Networks ’08]
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 flows per user.
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 Without control of number of connections, fairness 
   per flow is moot (Briscoe'07). 
 Incentives to employ many TCP flows (e.g., p2p) .

  Tragedy of the commons? 
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User: Poisson ( ) 
arrivals,  exp( ) workloads. 
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On stochastic stability of a network served by TCP
[deVeciana et al ’99, Bonald-Massoulié ’01]
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 Both  depend solely on users'  "open loop" demands 
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y user will compensate a low TCP rate by increasing 

until serves demand, if feasible. If not  's grow without bounds. 
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Assume that for fixed  the flow rate  is determined by TCP: 
 where is the congestion price seen by the source, 
and TCP demand curve. The user rate is 
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Analysis using dual TCP congestion control,  
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asymptotically stable. Proof: passivity argument (as in Wen-Arcak '03).
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 Assume time-scale separation: for fixed 
equilibrium values from dual congestion control, . 
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Theorem 2 (single bottleneck). 

 
k k

k k k

k n x n

n x nn
n n q

ρ =

=

( )
*

1

* ˆ ( )
ˆˆ' ( ( )) ( )  are globally convergent 

 to a point  where the corresponding  are at the optimum welfare point.
 

 
k k k k

k n
n U q n n

n ρ
β ρ−= −�



sources'
In practice,  is discrete (number of TCP connections). Furthermore: 
 Real-time control at ap plication layer) is impractical, incentives?
 Killing an ongoing TCP connection to reduce is  
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From fluid control to admission control.
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 Control increase of  (admit new connections), rely on natural termination. 
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For  (optimal fairshare) 

simulations show convergence to optimal point,
we can prove it in simple networks. 
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Theory and simulations
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Multipath extensions are available. 



[Belzarena-Ferragut-P’, Net-Coop ’08] 

3. Distributed Auctions for Resource
Allocation in Overlay Networks

• Scenario: an operator sells premium services (e.g. 
video-on-demand) over a network. 

• QoS is guaranteed by reserving bandwidth in fixed
amounts, and controlling access.

• One related proposal Service Overlay Newtork
(Zuan et al.): here the service is offered by leasing 
bandwidth from several ISPs, installing distributed
content servers.

• Objective: selling the service to maximize revenue. 



• End users submit bids for certain end-to-end service
to a broker within their domain.

• Periodically, an auction is held to decide           
which users are assigned bandwidth. 

• Broker decisions are “spatially” coupled.

Distributed Auction  

• Also coupled over time:                                          
once a circuit is assigned, reserved
for entire connection (e.g. movie). 



Auctions for a single link  
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 Bids have known probability distribution.
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Successive auctions

:  sells all available capacity.
May miss better bids in the 

,
future. 

Myopic policy k ka C x= −



Optimal revenue problem
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 Expectation is w.r. t the bids, and the departure process. 
 This is a Markov Decision Process (MDP). 
 Solution is a policy  where the state 
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 Take auct

 
Receding horizon approximation:

k xa C x ba U a E U C x≤ −

•

•

= + −

0,ion and repeat recursive ly. a



0

0

1

1

0 1

, ).
( ) (),

~ (

( ) ( )]argmax[

 For the second term, 
Some calculations reduce it to  where  piecewise 

linear, increasing and convex  (c
 

ost of 

 Receding horizon policy: 
ka C x

xb

a p
W a W

x Bin x
x

a U a E U C x
≤ −

• +

−• +

= + −

missed future opportunities).  
 Maximum: intersection of decreasing marginal utilities (bids) with 

  increasing marginal costs (acceptance thresholds, ). kw
•

(1)
kb

(2)
kb

1w
2w



N N

0

1 1 1]

( ) ( )

( ) ( [ )

EXPECTEDCURRENT
REVENUE INREVENUE
NEXT STEP

CURRENT
CAPACITY
CONSTRAINT

The problem reduces to 
Maximize 

subject to 

 

 

replace by
the convex prog

A fluid aproximatio
ram

:  n   

b

x

U a U z

x a C

E U C x U C E x

+ ≤

− −

+

� 	 0( ) .
EXPECTED FUTURE
CAPACITY
CONSTRAINT

, p x a z C+ + ≤� �
 ����	���


Comparisons (C=1)



The network case
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,Assign a broker to each 
route/service in the network.

 current allocation, broker 
: expected next-step allocation. 
: routing matrix, as before. 
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Similar to network utility maximization in congestion control
 Additional (one-step ahead) variables and constraints. 

   Requires additional price variables. 
 Distributed solution via message passin

•
•

• g in the control plane
   (modification to RSVP). 



Conclusions
We studied three problems in cross layer control and 

optimization: 
1. Congestion control with multipath routing. 
2. Controlling fairness through number of TCP connections. 
3. Auctions for resource allocation in overlay networks. 

Common features: 
– Economic (utility based) models.
– Dynamics play a non-trivial role.
– Distributed solutions. 

Progression from “virtual” to real economics (utilities as 
protocol representations, versus real monetary utilities).

Grand challenge for the future: an integrated view of network
control and economics. 


