Introduction Incentive Models Dynamics and Robustness of Incentive Policies Conclusion

Mathematical Modeling of Incentive Policies in P2P Systems

John C.S. Lui

cslui@cse.cuhk.edu.hk

Department of Computer Science & Engineering The Chinese University of Hong Kong

Outline

- Introduction
- Incentive Models
 - General Model
 - Incentive Policies
- Oynamics and Robustness of Incentive Policies
- Conclusion

Motivation

- Cooperation plays an essential role in many developing large-scale network systems and application.
 - Wireless mesh networks (e.g., forward packets).
 - P2P file sharing systems (e.g., BitTorrent [Performance 2007]).
 - P2P streaming, VoD (e.g., PPLive, P2P-VoD [Sigcomm 2008]).
- Individuals are selfish.
- Important to consider incentive protocols to encourage cooperation.

Background

- Micro-payment in Napster. Weakness: central authority.
- Tit-for-tat in Bit-torrent. Free-riding is still possible.
- Reputation-based policies. Concern: collusion.

Background: continue

- Natural for nodes to learn from the environment.
- Shared history based incentive mechanisms can overcome scalability problem of private history based mechanisms.
- Designing/testing a "good" incentive is difficult.
- Design and evaluation of incentive protocols: ad-hoc

Contribution

- A general (and simple) mathematical framework to analyze and evaluate incentive protocols for P2P systems.
- Analysis of several incentive policies using this framework.
- Performance evaluation for these incentive policies.
- Connection with evolutionary game theory.

Assumptions

• Finite strategies: Given an incentive policy \mathcal{P} which has a finite strategy set

$$\mathcal{P} = \{\textbf{s}_1, \textbf{s}_2, \dots, \textbf{s}_n\},$$

where s_i is the i^{th} strategy. All users in a P2P system can use any $s_i \in \mathcal{P}$. A user chooses s_i is of type i.

- Service model: The system runs in discrete time slots. At the beginning of each time slot, each peer randomly selects another peer in the system and requests for a service.
- Denote $g_i(j)$ as the probability that a peer of type s_i will provide a service to a peer of type s_i .

Assumptions cont.

- Gain and loss model: at each time slot, a peer gains $\alpha > 0$ points when it receives a service from another peer, while loses β points when it provides a service to another. Without loss of generality, one can normalize β by setting $\beta = 1$.
- Learning model:
 - At the end of a time slot, a peer can choose to switch (or adapt) to the current best strategy s_h.
 - Let $G_i(t)$ be the expected gain of using strategy s_i at time slot t, then a peer using strategy s_i will switch to strategy s_h at time slot t + 1 with probability

$$\gamma(\mathcal{G}_h(t)-\mathcal{G}_i(t)),$$

where $\gamma > 0$ is the learning rate.

General Model

- Let $x_i(t)$ be the fraction of type s_i peers at time t.
- If a peer is of type s_i , the expected services it receives, denoted by $E[R_i(t)]$, can be simply expressed as:

$$E[R_i(t)] = \sum_{j=1}^n x_j(t)g_j(i)$$
 for $i = 1, ..., n$. (1)

 The expected number of services provided by type s_i peer at time t is E[S_i(t)], which is:

$$E[S_i(t)] \approx \sum_{i=1}^n x_j(t)g_i(j) \text{ for } i=1,2,\ldots,n.$$
 (2)

General Model

• Since a peer receives α points for each service it receives and loses $\beta = 1$ point for each service it provides, the expected gain per slot at time t is $\mathcal{G}_i(t)$:

$$G_i(t) = \alpha \sum_{j=1}^n x_j(t)g_j(i) - \sum_{j=1}^n x_j(t)g_i(j) \quad i = 1, 2, ..., n.$$
(3)

 We can put the above expression in matrix form and derive \$\mathcal{G}(t)\$, the expected gain per slot for the whole P2P system at time t as

$$\mathcal{G}(t) = \sum_{i=1}^{n} x_i(t)\mathcal{G}_i(t) = (\alpha - 1)\boldsymbol{x}^T(t)\boldsymbol{G}\boldsymbol{x}(t), \tag{4}$$

where $\mathbf{x}(t)$ is a column vector of $(x_1(t), \dots, x_n(t))$ and G is an $n \times n$ matrix with $G_{ij} = g_i(j)$.

General Model

 According to the learning mechanism, we can describe the dynamics as this fluid model:

$$\dot{x}_{h} = \gamma \sum_{i \neq h} x_{i}(t) \left(\mathcal{G}_{h}(t) - \mathcal{G}_{i}(t) \right)
= \gamma \left(\mathcal{G}_{h}(t) - \sum_{i=1}^{n} x_{i}(t) \mathcal{G}_{i}(t) \right) = \gamma \left(\mathcal{G}_{h}(t) - \mathcal{G}(t) \right)
\dot{x}_{i} = -\gamma x_{i}(t) \left(\mathcal{G}_{h}(t) - \mathcal{G}_{i}(t) \right), \quad i \neq h.$$
(6)

Key ideas

- Given an incentive policy \mathcal{P} , we have to first find out all $g_i(j)$, or all entries in G.
- Once we found G, we can derive:

$$\mathbf{x}(t) = [x_1(t), x_2(t), x_3(t), \dots,],$$

 $G_i(t)$ = Performance measure of each strategy

G(t) = Performance measure of the incentive policy

Three types of peers

In a typical P2P system, one can classify peers according to their *behavior* upon receiving a request:

- cooperator: a peer has a cooperative behavior when it serves other peers unconditionally.
- defector: a peer has a defective behavior when it refuses to serve any request from other peers.
- reciprocator: a peer has a reciprocative behavior when it serves according to the requester's contribution level. In short, it tries to make the system fair.

Image Policy \mathcal{P}_{image}

- Image incentive policy \mathcal{P}_{image} has three pure strategies:
 - \circ s_1 , or pure cooperation,
 - s₂, or image reciprocation,
 - \circ s_3 , or pure defection.
- Under this policy, when a reciprocative peer receives a request for service:
 - this peer checks (or infers) the requester's reputation, and
 - it will only provide service with the *same probability* as this requester serves other peers.

Image Policy \mathcal{P}_{image} : continue

- To model this incentive policy, we have to derive $g_i(j)$.
- For s_1 (pure cooperation), we have:

$$g_1(j) = 1$$
 $j = 1, 2, 3$.

• For s_3 (pure defection), we have:

$$g_3(j) = 0$$
 $j = 1, 2, 3.$

- For s₂ (image reciprocation):
 - $g_2(1) = 1$.
 - $g_2(3) = 0$.
 - $g_2(2) = ?$

Image Policy cont.

To derive g₂(2):

$$g_2(2) = \text{Prob[a reciprocator will grant a request]}$$

$$= \sum_{i=1}^{3} \text{Prob[the requester is of type } s_i] \times \\ \text{Prob[granting the request|type } s_i \text{ requests]}$$

$$= x_1(t)g_2(1) + x_2(t)g_2(2) + x_3(t)g_2(3)$$

$$= x_1(t) + x_2(t)g_2(2).$$

Solving the above equation, we have

$$g_2(2) = \frac{x_1(t)}{1 - x_2(t)}. (7)$$

Proportional Policy \mathcal{P}_{prop}

- Three types of peers:

 - s₂ (reciprocator);
 - \circ s_3 (defector);
- Reciprocative peers serve the requester with the probability equal to the requester's consumption to contribution ratio, or $E[S_j]/E[R_j]$.
- In case the ratio is larger than one, the probability to serve the request is set to one.

Proportional Policy \mathcal{P}_{prop} : continue

• For s_1 (pure cooperation), we have:

$$g_1(j) = 1$$
 $j = 1, 2, 3$.

• For s_3 (pure defection), we have:

$$g_3(j) = 0$$
 $j = 1, 2, 3.$

- For s₂ (reciprocator)
 - If the requester is a cooperator, its ratio is ≥ 1 , thus $g_2(1) = 1$.
 - If the requester is a defector, its ratio is zero, hence $g_2(3) = 0$.
 - $g_2(2) = ?$

Proportional Policy (\mathcal{P}_{prop}) cont.

• For $g_2(2)$, we have:

$$E[R_2(t)] = x_1(t)g_1(2) + x_2(t)g_2(2) + x_3(t)g_3(2)$$

$$= x_1(t) + x_2(t)g_2(2),$$

$$E[S_2(t)] = x_1(t)g_2(1) + x_2(t)g_2(2) + x_3(t)g_2(3)$$

$$= x_1(t) + x_2(t)g_2(2).$$

• Since $E[R_2(t)] = E[S_2(t)], g_2(2) = 1.$

Linear Incentive Policy Class C_{LIP}

- \mathcal{P}_{prop} belongs to the *linear incentive policy class*.
- Any policy in C_{LIP} has a constant generosity matrix $G = [G_{ij}]$.
- Any incentive policy of C_{LIP} , we have

$$\mathbf{G} = \left[\begin{array}{ccc} 1 & 1 & 1 \\ p_c & p_r & p_d \\ 0 & 0 & 0 \end{array} \right]$$

This gives us a larger design space for incentive protocol.

Dynamics and Robustness of Image Policy \mathcal{P}_{image}

Consider the performance gap of different strategies:

$$\mathcal{G}_{3}(t) - \mathcal{G}_{1}(t) = 1 - \alpha x_{2}(t),
\mathcal{G}_{3}(t) - \mathcal{G}_{2}(t) = [x_{1}(t)(1 - \alpha x_{2}(t))][1 - x_{2}(t)]^{-1},
\mathcal{G}_{2}(t) - \mathcal{G}_{1}(t) = [(1 - \alpha x_{2}(t))(1 - x_{1}(t) - x_{2}(t))][1 - x_{2}(t)]^{-1}.$$

- Case A: when $x_2(t) > 1/\alpha$, $\mathcal{G}_1(t) > \mathcal{G}_2(t) > \mathcal{G}_3(t)$. Defectors and reciprocative peers will continue to adapt to cooperative strategy until $x_2(t) = 1/\alpha$ which is case B.
- Case B: when $x_2(t) = 1/\alpha$, it is an unstable equilibrium. Either go to A or go to C.
- Case C: when $x_2(t) < 1/\alpha$, $\mathcal{G}_3(t) > \mathcal{G}_2(t) > \mathcal{G}_1(t)$, cooperators and reciprocative peers switch to defective strategy. System collapses.

Dynamics and Robustness of Image Policy \mathcal{P}_{image}

Dynamics and Robustness of Proportional Policy \mathcal{P}_{prop}

Consider the performance gap of different strategies:

$$\mathcal{G}_{3}(t) - \mathcal{G}_{2}(t) = x_{1}(t) - (\alpha - 1)x_{2}(t),
\mathcal{G}_{2}(t) - \mathcal{G}_{1}(t) = 1 - x_{1}(t) - x_{2}(t) \ge 0,
\mathcal{G}_{3}(t) - \mathcal{G}_{1}(t) = 1 - \alpha x_{2}(t).$$

- Case A: when $x_2(t) > \frac{1}{\alpha-1}x_1(t)$, $\mathcal{G}_2(t) > \mathcal{G}_3(t)$, so the fraction of reciprocative peers $x_2(t)$ will keep increasing until they dominate the P2P system.
- Case B: when $x_2(t) = \frac{1}{\alpha 1} x_1(t)$, $\mathcal{G}_3(t) = \mathcal{G}_2(t) > \mathcal{G}_1(t)$, so cooperators peers adapt to s_2 and s_3 . The system go to case A.
- Case C: when $x_2(t) < \frac{1}{\alpha-1}x_1(t)$, defectors win. Since s_2 has a higher performance than s_1 , $x_1(t)$ will decrease at a faster rate than $x_2(t)$, and the system will go to case B.

Dynamics and Robustness of Proportional Policy

Dynamics and Robustness of \mathcal{C}_{LIP}

Consider the performance gap of different strategies:

$$G_{1}(t) = \alpha(x_{1}(t) + p_{c}x_{2}(t)) - 1,$$

$$G_{2}(t) = \alpha(x_{1}(t) + p_{r}x_{2}(t)) - (p_{c}x_{1}(t) + p_{r}x_{2}(t) + p_{d}x_{3}(t)),$$

$$G_{3}(t) = \alpha(x_{1}(t) + p_{d}x_{2}(t))$$

• The sufficient condition for robustness is:

$$p_d=0; \quad p_r\geq p_c.$$
 (8)

- When p_c is small, the system is more likely to be robust.
- Blind altruism of cooperator helps defectors to survive thus damages the system.

Dynamics and Robustness of $\mathcal{C}_{\mathit{LIP}}$

- Now we restrict our attention to linear strategies with $p_r, p_c > p_d > 0$.
- The robustness of these policies depends on the initial population, and this is especially true for the reciprocators.
- Let $c_{upper} = \frac{p_c}{(\alpha-1)(p_r-p_d)+p_c-p_d}$ and $c_{lower} = \frac{p_d}{(\alpha-1)(p_r-p_d)}$. It can be shown that for the given learning model,
 - when $x_2(0) > c_{upper}$, the system is robust.
 - when $x_2(0) < c_{lower}$, the system will collapse.
 - other initial conditions, the robustness depends on the learning mechanism and the fraction of other strategies.

Dynamics and Robustness of C_{LIP}

Connection to Evolutionary Game Theory

Theorem

A linear incentive policy can be mapped to a two-player symmetric game, and the Evolutionary stable strategy (ESS) of this game is an asymptotically stable fixed point (ASF).

Conclusion

- We present a simple mathematical framework to model the evolution and performance of incentive policies. Peers are assumed to be rational and are able to learn about the behavior of other peers.
- Image incentive policy usually leads to a complete system collapse.
- Proportional incentive policy, which takes into account of service consumption, can lead to a robust system.
- ullet Performance and Dynamics of \mathcal{C}_{LIP}
- Connection with evolutionary game theory.
- Framework to design and analyze distributed incentive protocols.

Interesting Questions

- How do we model other learning algorithms?
- How about other incentive policies?
- How can we extend this framework to wireless mesh networks?
- How about incentive protocols for ISPs to cooperate?
- Once we know the dynamics and robustness of a given incentive policy, how can we enhance it?