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Low-rate Denial-of-Service (DoS) Attacks

• Victim overwhelmed with traffic
easy detection

Early detection of DDoS
attacks, link congestions 
and traffic anomalies
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Low-rate Denial-of-Service (DoS) Attacks

Early detection of DDoS
attacks, link congestions 
and traffic anomalies

• Victim overwhelmed with traffic
easy detection

• Detect low-rate attacks further back in the network
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The Case for a Spectral Approach

• A rich set of periodic patterns in Internet traffic
– Congestion along bottlenecks 
– DoS attack streams
– TCP windowing behavior 

• Applications for charactering periodicities
– Better understanding of traffic dynamics
– Detecting bottlenecks, DoS attacks, useful for traffic 

engineering, capacity planning, and network security 

• Spectral techniques appear promising
– Mature, and widely used in many other fields
– Recently been applied to Internet traffic, e.g. detecting DoS

and network anomalies
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Time Series Representations



6

• Maximum Likelihood Detection
– determine empirical statistics of key features
– binary hypotheses test:H0 (without bottleneck) and HB (with bottleneck)

• Classify a new trace as either H0 or HB via
if Pr(x|H0 ) > Pr(x|HB ), select H0     otherwise, select HB

• Our features and statistical models, optimal test is a threshold test 
– feature > threshold bottleneck exists

Hypothesis Testing

log-normal for FFT magnitude
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TCP flow through 10Mbps link

• Strong energy around the Base Frequency

=  Link Bandwidth
Packet Size

• Connected through a 
10Mbps switched hub
• A TCP flow with 1500-
byte packets
• No cross traffic

=  10Mbps
(1500+38) x 8b

5.1 x 105 at
813Hz

=  812.74Hz

Bottleneck Signatures
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spectrum of an Mstream attack stream

• Much higher frequency component

=  Link Bandwidth
Packet Size =  10Mbps

(46+38) x 8b

• Connected through a 
10Mbps switched hub
• Mstream sends 40-byte 
TCP packets as fast as 
possible
• No cross traffic

5.8 x 107 at
14881Hz

=  14880.95Hz

DoS attack signatures
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• Unobserved non-bottleneck traffic
– Least impact on the observed traffic spectrum

• Observed non-bottleneck traffic
– Introduces its own frequency component to the observed traffic spectrum

• Effects
– changing spectral peak width
– shifting peak

1: unobserved bottleneck traffic
2: unobserved non-bottleneck traffic
3: observed non-bottleneck traffic

R1 R2 R3 O

S

A1 A2 A3 A4

I II III

D
Observed bottleneck traffic

Impact of Cross Traffic
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Type I: unobserved bottleneck traffic

• weaker peak amplitude
• wider spread of energy 
• changing location of the peak 
amplitude

2.5*10
5

4.8*10
4

1.9*10
4

A1 A2 A3 A4

D

R1 R2 R3 O

S

4.45Mps, 371pps5.19Mbps, 606pps

6.15Mbps, 513pps3.56Mbps, 379pps

8.93Mbps, 745pps0.82Mbps, 85pps

Iperf TCP FlowWeb Traffic
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Internet

UCSB Host 

USC Host

Router

Tracing machine 
with a DAG card

Port 
Mirroring10Mbps 1Gbps

Wide Area Network Experiments

• With bottleneck flow
– the aggregate has larger amplitudes around predicted base 

frequency

• Periodic patterns have unique signatures
– High amplitude around the predicted base frequency

• Cross traffic introduces noise to the spectral signature of 
periodic patterns
– The signature is still visually detectable in most cases
– Need automatic detection
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1. Single-Frequency Alg. 2. Top-Frequency Alg.

4. All-Frequencies Alg.
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amplitude at the base frequency shift location of peak amplitude

all features best accuracy

Detection Features
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• Approximate PDFs with log-normal distributions
– Good fit with simple parameters

Actual distribution 
for HB

Actual distribution 
for H0

Approximate 
distribution for H0

Approximate 
distribution for HB

Cut-off 
threshold

Peak amplitude in [780Hz, 800Hz] for a trace pair in T10L

Top Frequency Algorithm
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• Variables in experiment setup:
– Link bandwidth: 10Mbps, 100Mbps
– Cross traffic volume: low, high
– Protocol: TCP, UDP

• Four Experiment Scenarios:
– U10L: 10Mbps  UDP flow, low cross traffic 
– T10L: 10Mbps  TCP flow, low cross  traffic
– T10H: 10Mbps  TCP flow, high cross traffic
– T100H: 100Mbps TCP flow, high cross traffic

• Pairs of 5-minute long traces
– One pair every 2 hours for 24 hours
– One pair for training, and the other for evaluation

Experimental Setup
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73.4
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70.1

Performance Comparisons

• Impact of different parameters
– Window location, size, Training data, S/N ratio

• Sensitivity to training matching (what time of day)

He, Papadopoulos, Heidemann, M, & Riaz , Remote Detection of Bottleneck Links 
Using Spectral and Statistical Methods, Computer Networks, accepted 9/08
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Drawbacks of Alternative Methods

• Packet contents used to detect attack
– Entropy of source/destination port # and IP address 

[Feinstein03, Lakhina05, Wagner05]
– Filter packets using SYN flag in TCP header [Wang02]
– Detection using TTL field [Jin03, Rodriguez07]

• Aggregate traffic analyzed, but
– Requires empirical tuning of parameters [Tartakovsky06]
– Computational overhead [Barford02, He08]
– sensitivity to training data
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Modeled Attack Detector

• Previous spectral method very 
sensitive to matching between 
training data and detection data

• An alternative approach
– apply simple statistical models 

to traffic
– estimate key parameters
– implement a sequential 

probability ratio test (detect as 
you)

– Thatte, M & Heidemann, 
“Detection of Low-Rate Attacks 
in Computer Networks,” IEEE 
Global Internet Symposium, 
4/08

• Poisson/shifted Poisson model 
(MAD)
– train for no attack
– estimate on-line for attack
– can’t do purely on-line
– issues with false alarms

• SPRT version of spectral (PAD)
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A New Model – back to Hypothesis Testing

• Choose between

• Focus on two types of error
– False positive, PFA = α
– False negative, PM = β

• Performance criteria defined using these two quantities
– exact design challenging for sequential detector
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Sequential Probability Ratio Test (SPRT)

• Given N iid observations

• Likelihood ratio
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bivariate Parametric Detection Mechanism (bPDM)

• Operates on aggregate 
traffic with no flow-
separation

• No dedicated training-phase

• Develop parametric models 
for packet rate and sample 
entropy of packet size 
distribution
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bPDM detects low-rate attacks

• 6% synthetic TCP SYN attack starts at 9.0 seconds; 
not visually distinguishable

• Both packet rate and packet size SPRTs simultaneously
cross threshold to detect attack
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The packet rate model

• Background packet rate modeled using generalized 
Poisson distribution [Consul89]

x = 0,1,… is number of packet arrivals

• Attack is modeled as a constant rate attack
x|H1 = r + x|H0

modeled using the shifted GPD

x = r,r+1,… is number of packet arrivals
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Modeling Internet Traffic?

• We do not believe that these are accurate models 
for internet traffic

• BUT – they do enable high performance attack 
detection with relatively low rate attacks
– also enable on-line attack detection
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The packet size distribution model

• Sample entropy of packet sizes

qj denotes proportion of packets of specific size

• yi is modeled as Gaussian

for both the background (i=0) and 
attack (i=1) hypotheses
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Eliminating the Training Phase 1/3

• Model parameters estimated in real-time
• Non-overlapping growing and sliding windows used to 

estimate parameters

• bPDM must be initially deployed in the absence of an 
attack
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Eliminating the Training Phase 2/3

• Parameter estimates for the GPD [Consul89]

where unbiased estimators are employed

• Parameter estimates for sGPD
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Eliminating the Training Phase 3/3

• Parameter estimates for packet size SPRT

are unbiased estimators
• Parameter estimates under null hypothesis are 

recursively computed
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bPDM Operation

• Both SPRTs must simultaneously cross threshold for 
bPDM to declare attack

• Currently incorporating ASN function to develop more 
robust detection mechanism
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Model Validation

• Use synthetic traces to methodically evaluate 
sensitivity to low-rate attacks

• bPDM also tested on real network attacks
• Define attack rate as:
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Synthetic Traces

• Synthetic traces created using stream merger application 
[Kamath02]

• Simulate real attacks (constant attack packet size) with 
varying attack strength
– Synthetic TCP SYN attacks use minimum packet size of 68 

bytes
– Synthetic DNS reflector attacks use maximum packet size of 

1518 bytes

• Smart adversary considered
– Attack packet size distribution is bimodal [Sinha07]
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Does Packet Size help?

more false alarms with packet rate only
6% synthetic TCP SYN attack starts at 9.0 seconds

packet rate only
packet rate and size
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Performance Comparisons

24% reflector attack
[1] Thatte, M, Heidemann, IEEE GI 4/08
[2] Tartakovsky, Rozovskii, Blazek, & Kim 

IEEE Trans. Sig. Proc., 9/06
[3] Feinstein, Schnackenberg, Balupari & 

Kindred, Proc. DARPA Information 
Survivability Conf. and Exposition, ’03 

[4] He, Papadopoulos, Heidemann, M, & Riaz, 
Computer Networks, accepted 9/08
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Detection Results

• For the bPDM, synthetic traces are 
good proxy for real attacks for model 
characterization

• attack sources (via PREDICT)
– [a] DoS traces 20020629
– [b] attack-servpath-udp22-20061106
– [c] DoS 80 timeseries-20020629

• reflector attack:  packet size 
distributions very similar in attack vs. 
no attack cases
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24% Reflector Attack

• packet size distribution does not change much
• Kullback-Leibler distance between two distributions
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Comparisons with Previous Methods

• bPDM (new/(s) generalized 
Poisson) appears worse than 
MAD ((s)Poisson models)

• sometimes better than  PAD 
(SPRT spectral)

• not a fair comparison
– PAD has no on-line analog has 

to train for both hypotheses
– MAD can be on-line for attack 

parameters if you know the no-
attack statistics, still needs a 
training phase

synthetic TCP SYN attack
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Future Work

• Incorporating ASN function of SPRT to develop more 
robust bPDM

• Real-time deployment of bPDM
• Characterizing performance of shifted GPD parameter 

estimates
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Summary

• Developed several attack detection methods
– spectrally based
– modeled:  Poisson/shifted Poisson; generalized Poisson/shifted 

generalized Poisson
– additionally consider packet size distributions

• The bivariate Parametric Detection Mechanism (bPDM)
– detects low-rate attacks further back in the network
– achieves fast detection with lower computational overhead
– does not require flow-separation
– estimates model parameters in real time – dedicated training 

phase not required

http://www.isi.edu/ant/madcat/


