- Sharad Agarwal ^(microsoft research) Chris Butcher ^(bungie) Youngki Lee ^(intern)
- Jitu Padhye (microsoft research)

Xbox360 matchmaking & predictions

Xbox360 Internet games

- most games P2P
 - Xbox Live server assists in rendezvous
 - 1 console is game host
 - 15 other consoles are clients

picking groups of 16 out of O(million)

 challenging
 called matchmaking

matchmaking

user wants to play game of type X

- weighted dice determines if it is game host
- if client
 - asks Xbox Live Server for consoles hosting X
 - probes each console sequentially
 - picks one with best network quality
 - if not found, reduce constraints of X, try again

packet pair background

- need to estimate latency, available BW
- easier to estimate RTT, capacity
- packet pair
 - 2 back-to-back packets
 - measure capacity of bottleneck link
 - suffers with interrupt coalescence
 - not a problem on our platform
 - suffers if other packet gets in between
 - use median of ~4 packet pairs

Halo background

- Halo series of games

 FPS shooter
 play locally
 play on Internet
- Halo3 recently released
- Internet play

 sensitive to delay
 must have enough BW

motivation

1. understand player population

- geography, numbers, play time, etc.
- not much known about such large population
- 2. understand packet pair performance
 - prior work : tiny testbeds, planetlab, etc
 - our work : real, live, global network of O(million) nodes
- 3. matchmaking : reduce time, improve accuracy
 - don't want users to wait
 - slow game : poor user experience
 - can spend extra time improving accuracy

Part 1: population, QoS analysis

data

- from Xbox live server
 Halo3 : alpha, beta, delta, release
- session data (per game attempted)
 time, session-id, src IP
- probe data
 - session-id, dest IP
 - # packet-pairs {sent, rcvd}
 - latency {min, med}, avg {up, down} capacity

basic stats

14.nov.2007 → 3.jan.2008 (50 days)	
sessions	39,803,350
distinct IPs	5,658,951
total probes	126,085,887

• sub-sampled by 20%

player locations

0.2

0

0

longitude

-50

100

150

200

50

-100

-150

-200

player locations

diurnal behavior

sessions per IP

delay (RTT) values

capacity values

Part 2: time-based QoS predictor

time-based predictor

- between client A and client B
 - $-t_1$: probe
 - t₂ : estimate
 - can we use previous delay value?
 - can we use previous capacity value?
 - to disqualify this pair, or
 - to select this pair, or
 - do quick re-probe
 - how close do t_1 and t_2 have to be?
- why would this work?
 - if bottleneck is last mile
 - delay should be similar over time
 - capacity should be similar over time

delay prediction

coefficient of variation

downstream capacity prediction

coefficient of variation

Part 3: prefix-based QoS predictor

prefix-based predictor

- clients A_1 , A_2 in prefix A; clients B_1 , B_2 in prefix B
 - determine prefixes by BGP table (12/27/2007 RouteViews)
 - t_1 : probe A_1 to B_1
 - t₂ : estimate A₂ to B₂
 - can we use previous delay value?
 - can we use previous capacity value?
 - to disqualify this pair, or
 - to select this pair, or
 - do quick re-probe
 - how close do t_1 and t_2 have to be?
- why would this work?
 - if bottleneck is last mile
 - perhaps clients in same prefix have similar last mile

delay prediction

coefficient of variation

delay prediction SIQR

downstream capacity prediction

coefficient of variation

Part 4: geography-based predictor

geography-based predictor

- between client A and client B
 - $-t_1$: estimate
 - calculate locations of A & B
 - large distance between A & B imply high delay?
 - large distance between A & B imply low capacity?
 - to disqualify this pair, or
 - to select this pair, or
 - do quick re-probe
- why would this work?
 - delay : if speed of light / number of hops is significant factor
 - capacity : if last mile is not bottleneck

delay prediction

summary

- online gaming is really popular
 - player characterization
 - (geographic density, time of day, games per console, ...)
 - network characterization
 - (delay distributions, capacity, ...)
 - packet pair consistency

efficient and accurate matchmaking is important

 using past history to predict future performance
 pick better hosts, reduce probe time & overhead

 using IP topology information

 remove nodes with likely poor performance
 using geography information

Sharad Agarwal ^(microsoft research) Chris Butcher ^(bungie) Youngki Lee ^(intern) Jitu Padhye ^(microsoft research)

Xbox360 matchmaking & predictions

