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CP: Burt-Adelson
Laplacian Pyramids (Burt and Adelson, 1983)
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CP: Burt-Adelson
Laplacian Pyramids (Burt and Adelson, 1983)
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(yj)∞j=−∞ ⊂ CZZn
s.t:

yj−1 = Cyj := (hc ∗ yj)↓, ∀j.

C is Compression
yj is then predicted from yj−1 by

yj ≈ Pyj−1 := 2n (hp ∗ (yj−1↑)) .

P is Prediction
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CP: Burt-Adelson
Laplacian Pyramids (Burt and Adelson, 1983)
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hc,hp : ZZn → IR are symmetric, normalized, lowpass filters
For each h := hc and h := hp, h(k) = h(−k),

∑
k∈ZZn h(k) = 1.

↓, ↑ are downsampling & upsampling:

y↓(k) = y(2k), k ∈ ZZn.

y↑(k) =

{
y(k/2), k ∈ 2ZZn,

0, otherwise.
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Laplacian Pyramids: summary

The pyramidal algorithm :

1 Define the detail coefficients dj := (I − PC) yj = yj − P yj−1.

2 Replace yj by the pair (yj−1, dj).
3 Continue iteratively, i.e. do Step 1 with yj−1.
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Reconstruction. Recovering y0 from yj0,dj0+1, . . . ,d0 is trivial:
yj0+1 = dj0+1 +Pyj0, yj0+2 = dj0+2 +Pyj0+1 and so on.
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More on CP

Highpass filter size is the filter size of hc ∗ hp:
Note dj := (I − PC) yj .

Redundancy ratio ≈ 2n

2n − 1:

Note that we replace yj by the pair (yj−1, dj).
Let the size of y0 be ≈ N.

After 1 step, the total size is
(

1 + 1
2n

)
N

since the size of d0 is ≈ N and the size of y−1 is ≈ N
2n .

At the final step, the total size is(
1 +

1
2n +

1

22n + · · ·+ 1

2−j0n

)
N ≈ 2n

2n − 1
N
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Laplacian Pyramid: example (cont’ed)
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Derivation of wavelets from CP pyramids
The Fast Wavelet/Framelet Transform (Mallat 1987/ DHRS 2003)

Decompose the detail map I − PC: I − PC =
∑r

i=1 RiDi

Di : yj 7→ (hi ∗ yj)↓ =: wi,j−1, Ri : y 7→ 2n (hi ∗ y↑)

with hi a real, symmetric, highpass:
∑

k∈ZZn hi(k) = 0.

y0
-

C
y−1

. . . . . . yj0+1
-

C
yj0

Z
Z -D1 w1,−1...

-Dr wr,−1

...

Z
Z -D1 w1,j0...

-Dr

...
wr,j0

We can recover y0 from yj0,w1,j0, . . . ,wr,j0, . . . ,w1,−1, . . . ,wr,−1

since yj0+1 =
∑r

i=1 Riwi,j0+Pyj0, yj0+2 =
∑r

i=1 Riwi,j0+1 +Pyj0+1

and so on.
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Laplacian pyramid vs. wavelets: Examples in 2D

Burt-Adelson CP: Let hc = hp =
[

1/4 1/4
1/4 1/4

]
.

There are four (hidden) highpass filters:[
+3/4 −1/4
−1/4 −1/4

]
,

[
−1/4 +3/4
−1/4 −1/4

]
,

[
−1/4 −1/4
+3/4 −1/4

]
,

[
−1/4 −1/4
−1/4 +3/4

]

2D Haar wavelets: There are three highpass filters:[
+1/4 −1/4
+1/4 −1/4

]
,

[
+1/4 −1/4
−1/4 +1/4

]
,

[
+1/4 +1/4
−1/4 −1/4

]
In both cases, average filter size is 4.

back to algorithms
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Laplacian pyramid vs. wavelets: example cont’ed

a1 a2

a3 a4

�
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Wavelet Why: Laplacian pyramids vs. wavelets

Question: why or why not decomposing the detail map I − PC:
I − PC =

∑r
i=1 RiDi

Pros
1 Reducing the size of the filters
2 Making it possible to be non-redundant: r = 2n − 1
3 Making it possible to be highly redundant: r >> 2n − 1

for applications in feature detection and denoising
4 Solid mathematical theory in terms of performance

Cons
1 Non-trivial to do.

Intrinsic factorizations in high-D are essentially impossible.
Neutral

1 Later: not all wavelet constructions are obtained in this
way.
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How to construct a wavelet representation?

1 Mallat’s algorithm, ’87 :
1D only. Imposes very stringent conditions on C and P.
Daubechies’ systems fall here.

2 Cohen-Daubechies-Feauveau’ algorithm, ’92:
Still 1D only.
Imposes milder, still stringent, conditions on C and P.
1D bi-orthogonal systems (5/3, 7/9) fall here.

3 The Unitary Extension Principle (UEP), R-Shen, ’97:
All spatial dimensions. No restrictions on C and P.
The wavelet decomposition of I − PC results in a frame.

4 The Oblique Ext. Pr. (OEP), Daubechies-Han-R-Shen ’03:
All spatial dimensions. back to theory

Cannot be derived by factoring Laplacian pyramids.
The most general construction of wavelet frames.
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Wavelets: mathematical theory I
Mathematical interpretation of the wavelet representation

L2 := {f : IRn → IR :
∫

IRn
|f |2 <∞}.

1 Step I: Find refinable function φ ∈ L2 with mask hc:

φ̂(2·) = ĥcφ̂, (φ̂(0) = 1), (hc: refinement filter).

2 Step II: Define mother wavelets Ψ := {ψ1, · · · , ψr} by the
rule

ψ̂i(2·) = ĥiφ̂, (hi : wavelet filter).
3 Step III: Assume that y0(k) = 〈f , φ(· − k)〉, k ∈ ZZn

Then, upon using the above filters in Decomposition, we get

wi
j(k) = 2j n

2 〈f , (ψi)j,k〉, (ψi)j,k := ψi(2j · −k).
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Wavelets: mathematical theory I, cont’ed

Ψ ⊂ L2 is finite. The wavelet system X(Ψ) is then

ψj,k := 2j n
2ψ(2j · −k), ψ ∈ Ψ, j ∈ ZZ, k ∈ ZZn

The wavelet representation of f ∈ L2 is then the discrete set of
inner products

T∗X(Ψ)f := (〈f , x〉)x∈X(Ψ), 〈f ,g〉 :=
∫

IRn
f (t)g(t) dt.

The wavelet system X(Ψ) is a frame of L2 if∑
x∈X(Ψ)

|〈f , x〉|2 ≈ ‖f‖2
L2
, ∀f ∈ L2.
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Wavelets why II: Desired properties
or, why should anyone still care about new constructions?

1 Localness in space

Quantifying “local”: the number of wavelets within a single
resolution whose support contains a given generic point t ∈ IRn.

Note: this is the same as the total volume of the mother
wavelets set Ψ:

vol(Ψ) :=
∑
ψ∈Ψ

vol(suppψ).

2 Localness in frequency: high performance.
3 Speed: Small constants in the linear complexity of the

algorithms.
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Wavelets why III: Challenges in high-D constructions
or, prevailing approaches go kaput in high-D

The Laplacian pyramid is challenged since:
1 It becomes immensely non-local.
2 There was no rigorous performance analysis, hence lack

of mathematical guidance (not even frame analysis).
3 “Feels not right”: after all, the most general wavelet

constructions cannot be associated with such pyramid.
Intrinsic wavelet constructions are challenged since:

1 They are in between very difficult and impossible: In n-D,
one needs to define ≥ 2n − 1 different highpass rules
(=mother wavelets).

Simple lifting of univariate wavelets constructions (known as
tensor products) are still challenged since:

1 They lead, again, to highly non-local constructs.
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Wavelets why IV: Challenges in high-D cont’ed
or, tearful moments for wavelet lovers

Benchmark: Tensor product of biorthogonal 9/7
The tensor biorthogonal 9/7 can analyse C1.70-function in IR10.
There are 1023 mother wavelets,
each supported in a box of volume.... 562,000,000,
and the total volume is > 575,000,000,000.

5/3 L-CAMP L-CAMP 9/7 L-CAMP
sJ 2 2 2 4 4
sB 1 1.41 2 1.70 2.02

n = 3 279 TBA TBA 2863 TBA
n = 4 2145 TBA TBA 46529 TBA
n = 5 15783 TBA TBA 726607 TBA
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The CAP representations

Step I: CAP. Generalizing the Laplacian pyramid into the
new Compression-Alignment-Prediction (CAP) pyramids:
all wavelet constructions are obtained by factoring a CAP
pyramid.
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The CAP representations

Step I: CAP. Generalizing the Laplacian pyramid into the
new Compression-Alignment-Prediction (CAP) pyramids:
all wavelet constructions are obtained by factoring a CAP
pyramid.

Step II: The alternative inversion, aka the breakthrough.
Replacing the fast inversion of CAP as by a wavelet-type
inversion.
Therefore, all the CAP pyramids are a special type of
wavelet representations (even without factoring)!!
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The CAP representations

Step I: CAP. Generalizing the Laplacian pyramid into the
new Compression-Alignment-Prediction (CAP) pyramids:
all wavelet constructions are obtained by factoring a CAP
pyramid.

Step II: The alternative inversion, aka the breakthrough.
Replacing the fast inversion of CAP as by a wavelet-type
inversion.
Therefore, all the CAP pyramids are a special type of
wavelet representations (even without factoring)!!

Step III: performance analysis. Obtaining in this way
complete performance analysis of CAP, hence of Laplacian
pyramids.
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The CAP representations

Step II: The alternative inversion, aka the breakthrough.
Replacing the fast inversion of CAP as by a wavelet-type
inversion.
Therefore, all the CAP pyramids are a special type of
wavelet representations (even without factoring)!!

Step III: performance analysis. Obtaining in this way
complete performance analysis of CAP, hence of Laplacian
pyramids.

Step IV: deriving the more local CAMP and L-CAMP.
Identifying special classes of CAP pyramids that can be
made more local in space, without losing performance.
Simple tricks allow one to transform the immensely
non-local CAP into amazingly local CAMP and L-CAMP!!
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The CAP representations

Step III: performance analysis. Obtaining in this way
complete performance analysis of CAP, hence of Laplacian
pyramids.

Step IV: deriving the more local CAMP and L-CAMP.
Identifying special classes of CAP pyramids that can be
made more local in space, without losing performance.
Simple tricks allow one to transform the immensely
non-local CAP into amazingly local CAMP and L-CAMP!!

Step V: bi-orthogonal constructions. Finding a way to
remove the redundancy from the CAMP and L-CAMP
representation
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The CAP representations

Step IV: deriving the more local CAMP and L-CAMP.
Identifying special classes of CAP pyramids that can be
made more local in space, without losing performance.
Simple tricks allow one to transform the immensely
non-local CAP into amazingly local CAMP and L-CAMP!!

Step V: bi-orthogonal constructions. Finding a way to
remove the redundancy from the CAMP and L-CAMP
representation

Step VI: numerous bi-products. For example, we had to
develop new ways for estimating smoothness of refinable
functions in high-D.
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L-CAMP: Hallmarks

1 Extreme localness.
2 Works in any spatial dimension.
3 Trivial to construct and implement.
4 Super fast algorithms:

linear complexity with tiny constants,
and the constants decay with the dimension!

5 Solid performance theory
(that shows that, at least in theory, they perform as good as
much more complicated wavelets).
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L-CAMP: Extreme localness

Benchmark: Tensor product of biorthogonal 9/7

The tensor biorthogonal 9/7 can analyse C1.70-function in IR10.
There are 1023 mother wavelets,
each supported in a box of volume.... 562,000,000,
and the total volume is > 575,000,000,000.

A competing L-CAMP system

We construct an L-CAMP system such that it analyses
C2-function in IR10.
There are 1024 mother wavelets,
each supported in a box of average volume.... 0.005857,
and the total volume is < 6.

Amos Ron Effective wavelet representations in high dimensions



Introduction to CP (aka Laplacian) pyramids
The wavelet representation

L-CAMP: a new wavelet methodology

A bird’s view of the CAP methodologies
Extreme localness
The algorithms
Mathematical Theory II: performance
Performance analysis

L-CAMP: Extreme localness

Benchmark: Tensor product of biorthogonal 9/7

The tensor biorthogonal 9/7 can analyse C1.70-function in IR10.
There are 1023 mother wavelets,
each supported in a box of volume.... 562,000,000,
and the total volume is > 575,000,000,000.

A competing L-CAMP system

We construct an L-CAMP system such that it analyses
C2-function in IR10.
There are 1024 mother wavelets,
each supported in a box of average volume.... 0.005857,
and the total volume is < 6.
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L-CAMP: The algorithms
Decomposition

Step I: choose three lowpass filters

back to haar

hc := 2−n
∑

ν∈{0,1}n

δν =: compression filter

he := n-dimensional enhancement filter

h := 1-D, supported on the odd integers main filter

Step II: build the MRA

Step III: extract detail coefficients:
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L-CAMP: The algorithms
Decomposition

Step I: choose three lowpass filters

Step II: build the MRA

↓ is downsampling:

y↓(k) = y(2k), k ∈ ZZn

(yj)∞j=−∞ ⊂ CZZn
s.t:

yj−1 = Cyj := (hc ∗ yj)↓, ∀j.

Step III: extract detail coefficients:
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L-CAMP: The algorithms
Decomposition

Step I: choose three lowpass filters

Step II: build the MRA

Step III: extract detail coefficients:

(1) For k ∈ 2ZZn, dj(k) := yj(k)− (he ∗ yj−1)(k/2).
(2) For ν ∈ {0,1}n\0, and k ∈ ν + 2ZZn,

dj(k) = yj(k)− (hJ(ν) ∗ yj)(k).

hJ(ν) =?
back to Theorem
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L-CAMP: The algorithms
Decomposition

Step I: choose three lowpass filters

Examples of h:

h = [0,1], h = [
1
2
,0,

1
2
], h =

1
16

× [−1,0,9,0,9,0,−1].

back to performance

Step II: build the MRA

Step III: extract detail coefficients:
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L-CAMP: The algorithms
Reconstruction

Step I: for k ∈ 2ZZn,

yj(k) := dj(k) + (he ∗ yj−1)(k/2).

Step II: iteratively, by suitably ordering {0,1}n\0:

yj(k) = dj(k) + (hJ(ν) ∗ yj)(k).
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L-CAMP: The algorithms
Reconstruction

Step I: for k ∈ 2ZZn,

yj(k) := dj(k) + (he ∗ yj−1)(k/2).

Step II: iteratively, by suitably ordering {0,1}n\0:

yj(k) = dj(k) + (hJ(ν) ∗ yj)(k).
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L-CAMP: The algorithms
Complexity

Denote: he is A-tap, h is B-tap

Decomposition requires for 2n details coefficients:
2n + A + 1 + (B + 1)× (2n − 1).

Reconstruction requires:A + 1 + (B + 1)× (2n − 1).

Average # of operations per one details coefficient a

aper one complete cycle of decom-recon

2B + 3 + 21−n(A + 1).
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Wavelets: mathematical theory II: performance
Jackson-type performance: definition

Wα
2 := {f ∈ L2, |f |Wα

2
:= ‖(| · |α f̂ )∨‖L2 <∞}, α > 0.

‖c‖2
`2(α) :=

∑
j∈ZZ,k∈ZZn 22jα|c(j, k)|2.

Jackson-type performance of a frame X(Ψ) :

sJ := sup{α > 0 : X(Ψ) satisfies (1) for the given α},

∑
ψ∈Ψ

‖T∗X(ψ)f‖`2(α) ≤ Aα|f |Wα
2
, ∀f ∈ L2. (1)

sJ is essentially determined by the vanishing moments of X(Ψ).
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Wavelets: mathematical theory II: performance
Bernstein-type performance: definition

Bernstein-type performance of a frame X(Ψ) :

sB := sup{α > 0 : X(Ψ) satisfies (1) and (2) for the given α},∑
ψ∈Ψ

‖T∗X(ψ)f‖`2(α) ≥ Bα|f |Wα
2
, ∀f ∈ L2. (2)

sB ≤ sJ; usually strict inequality holds.

sB is not connected directly to any property of the system
X(Ψ).
sB is essentially determined by sJ, and by the smoothness
+ Strang-Fix order of the dual system.
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L-CAMP: Performance analysis
The key components in the L-CAMP performance analysis

The accuracy of the main filter h:

h ∗ P = P, ∀ univariate polynomial P of degree < s1

The accuracy of the pair (hc, he):

(he↑∗hc)∗P = P, ∀multivariate polynomial P of degree < s2

The smoothness s3 of the refinable function φdual

whose mask is
ĥêhtensor,

with htensor the n-dimensional tensor-product of δ + h
2 .
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L-CAMP: Performance analysis
L-CAMP based performance results

Theorem (Hur-R, 2008)

Assume that we have an L-CAMP system.
Let Ψ be the mother wavelet set associated with
the highpass filters in L-CAMP Decomposition.
Let min{s1, s2} ≥ 2.
Let s3 > 0.
Then X(Ψ) has sJ ≥ min{s1, s2} and sB ≥ min{s1, s2, s3}.
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L-CAMP: Performance analysis
The Jackson-type performance chart of L-CAMP

The performance chart

−1

1 1 + s
∗

n

1

p

s

s = 1

p
− 1

s = n(1

p
− 1)

s
∗ := min{s1, s2}
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L-CAMP: Performance analysis
Example 1: extremely local MR representations for C1 characterization

h := [
1
2
,0,

1
2
], 2-tap,

ĥe(ω) :=
3
4

+
1
4

e−i1·ω, 2-tap.

The accuracy of the univariate filter h: s1 = 2.
The accuracy of the pair (hc, he): s2 = 2.
The smoothness class of the refinable function
φdual whose mask is ĥêhtensor : s3 > 1 (s3 = 1.4).

Average # of operations : 7 + 3 · 21−n.
Total volume of the wavelets’ support : < 5.
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L-CAMP: Performance analysis
Example 2: extremely local MR representations for C2 characterization

h := [
1
2
,0,

1
2
], 2-tap,

ĥe(ω) :=
1
8

ei1·ω +
1
2

+
3
8

e−i1·ω, 3-tap.

The accuracy of the univariate filter h: s1 = 2.
The accuracy of the pair (hc, he): s2 = 2.
The smoothness class of the refinable function
φdual whose mask is ĥêhtensor : s3 > 2 (s3 = 2.4).

Average # of operations : 7 + 4 · 21−n.
Total volume of the wavelets’ support : < 6.
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L-CAMP: Performance analysis
L-CAMP vs. Biorthogonal systems for n = 3, 4, 5

We compare the L-CAMP systems with biorthogonal tensor
product systems for the spatial dimension n = 3,4,5.
In the last column, properties of yet another L-CAMP is shown.
In the last 3 rows, the total volume of the mother wavelets is
listed for each n = 3,4,5.

5/3 L-CAMP 1 L-CAMP 2 9/7 L-CAMP 3
sJ 2 2 2 4 4
sB 1 1.41 2 1.70 2.02

n = 3 279 4.6 5.6 2863 14.4
n = 4 2145 4.8 5.8 46529 16.7
n = 5 15783 4.9 5.9 726607 18.8

Amos Ron Effective wavelet representations in high dimensions



Appendix

Outline

4 Appendix
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Appendix

Orienting the univariate filter

back
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Appendix

Meaning of unconditional

unconditional means that only the absolute values of the
coefficients count.

back
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Appendix

Definition of vanishing moments

Wavelet system X(Ψ) has m vanishing moments if∫
tβψ(t)dt = 0, ∀0≤ |β| ≤ m− 1,∀ψ ∈ Ψ.

back
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The 3-tap wavelet in the 5/3 system

back
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