Compressive Network Monitoring
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Path-Level Performance Monitoring

Motivating Application Access

e Voice-over-IP on an overlay Network

network with redirectors
e Multiple paths to choose from QOverIay Link Q

— select paths with minimum
mean delay or delay variance

e Send a small number of critical
packets (vocal transitions) along

s
— <~
multiple paths Z @ \\\
e Use these packets to estimate Serv

the path delays Network Gateway
Cloud
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Monitoring All-Optical Networks

Routing and Wavelength Assignment
— Choose a lightpath for each incoming call
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Monitoring All-Optical Networks

Routing and Wavelength Assignment

Choose a lightpath for each incoming call

Bit Error Rate reflects quality of service.
Knowledge facilitates selection of good lightpaths
Goals:

— Estimate BERSs of current lightpaths

— Predict those of potential lightpaths
Monitoring is

— Difficult — can only measure optical properties
— Expensive — requires high-frequency scopes



T McGill
Problem Summary

e Would like performance for all paths
— Loss rates, mean delay, delay variance, ...

e BUT we only get to measure a small subset of paths
— Full measurement infeasible # paths ~ (#nodes)?

=>» Leads to a highly ill-posed inverse problem

e Need modeling assumptions
— Routing topology: known or measured
— Path correlation: link sharing
— Temporal correlation: slowly varying metrics
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Network (Performance) Tomography

The usual setup: y=Gx
/v . .
path metrics \ link metrics
routing matrix

e Notation: Routing Matrix G
— Rows < paths

— Columns < links
— G, ;= 1if path i transits link j

v (M) .| -

Yn
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Related Work

The usual setup: y=Gx

/ ] ]
path metrics link metrics
routing matrix

e Caceres, Duffield, Horowitz & Towsley — Infocom’99
Coates, Hero, Nowak, Yu — SP Mag’02

— Estimate performance from restricted measurements

e Chen, Bindel, Song & Katz — SIGCOMM’04

— In practical scenarios, only need to observe O(n log n) pathsin a
network of n nodes

e Chua, Kolaczyk & Crovella — Infocom’05

— Linear estimation using effective rank to approximate G
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Our Approach

Our setup: y=Gz =B
T AN
path metrics A\ coefficients

“basis” vectors
(depends on routing)

e Build a good basis B for representing path metrics y
— Good if B is sparse or compressible
— Exploit correlation assumptions
e Estimate y from measurements using non-linear techniques

— Related to compressed sensing, sparse approximation, lasso
— Effective when we have a good representation
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Compressible Signals
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Approximating Compressible Signals

original signal 6500 largest wavelet
(256 x 256 =~ 65,000) coefficients (10x)

Compression: Keep the large coefficients (JPEG 2000)
Compressed Sensing: Estimate the large coefficients from a few
measurements [Candes, Romberg & Tao '04; Donoho '04]
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Representing Data on a Graph

e Need to compress path metric “signals”
— Network data has an irregular structure, no natural order of nodes

e Graph Wavelets [Crovella & Kolaczyk "03]

— Extend continuous wavelets to graphs

e Diffusion Wavelets [Coifman & Maggioni '04] . ' §

— Build wavelets from a diffusion operator N

- One vertex for each path variable

— Define a graph relating path metric variables

- Place an edge between paths that
share at least one link

e — |7Diﬂ73j|
4 |7DZ'U7DJ'|

- P, is the set of links in path ¢

- Normalize to get diffusion operator
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Compressing with Diffusion Wavelets
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Compressing with Diffusion Wavelets
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Exploiting Temporal Correlation

e Stack multiple time-steps into a vector

y(t)
y(t+1)

_y(t;FT) .
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Multiple Time-Step Diffusion Matrix
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Nonlinear Estimation

1. Measure Y, = Ay Binary matrix A picks off the
few paths we measure
2. Solve B =argmin |81 Find a simple explanation for
b the measurements

subject to ys = ABpS
3. Estimate ¥ = Bf Plugin to recover path metrics

Recent development suggest (Candes, Tao, Donoho...)

If B is really a good representation for path metrics (i.e., B is a
compressed version of y), then under appropriate conditions on A, even
with few measurements, the estimation error || — S|| will be small
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Abilene Network
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Thanks to Rick Summerhill and Mark Fullmer at Abilene for providing
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Empirical Compressibility
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Abilene Results
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Recovered Signals

Queueing delay (ms)
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All-Optical Network Monitoring

fiber spans fiber spans, eye distributions of
OXC and amplifiers OXC amplifiers, OXCs OXC  photodetector  diagram the ““0’s ““17’s
_— L o N
-~ =, o — po:vcl power

interchannel crosstalk
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e Denote by Jyand Y, the means of 0/1

e Corresponding standard deviations are 0, and O,
e Under a Gaussian noise model

py — uo)

o1+ oo

1
BER = 5erfc: (

e BER estimation: all four parameters for each lightpath
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Empirical Compressibility
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Performance Results
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All Optical Extensions
e Monitoring Equipment is expensive

— Joint monitor placement, path selection
— Actively lighting augmented paths to reach a monitor
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Active Monitoring of All-Optical Nets

Relative estimation error (RMSE)

Number of Active Paths
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Conclusions

e Multi-scale network monitoring

— Predict performance on correlated paths by building good
representations of the data

— Representations only as good as our prior knowledge
e Ongoing and Future work
— Other compressing representations for network data

— Active, online path selection algorithms
— Extension to available bandwidth estimation

michael.rabbat@mcgill.ca
http://www.ece.mcgill.ca/~mrabbal
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Diffusion Scale O
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Diffusion Scale 1
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Diffusion Scale 2
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