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Setting and Motivation
Diffusion on Graphs
Large time diffusion, eigenfunctions, spectral embeddings

Multiscale analysis

e Multiscale construction
e Geometric and functional interpretation
e Diffusion wavelets and algorithms

Examples
Conclusion
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Structured data in high-dimensional spaces

A deluge of data: documents, web searching, customer
databases, hyper-spectral imagery (satellite, biomedical, etc...),
social networks, gene arrays, proteomics data, neurobiological
signals, sensor networks, financial transactions, traffic statistics
(automobilistic, computer networks)...

Common feature/assumption: data is given in a high
dimensional space, however it has a much lower dimensional
intrinsic geometry.

() physical constraints. For example the effective state-space
of at least some proteins seems low-dimensional, at least
when viewed at the time scale when important processes
(e.g. folding) take place.
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Structured data in high-dimensional spaces

A deluge of data: documents, web searching, customer
databases, hyper-spectral imagery (satellite, biomedical, etc...),
social networks, gene arrays, proteomics data, neurobiological
signals, sensor networks, financial transactions, traffic statistics
(automobilistic, computer networks)...

Common feature/assumption: data is given in a high
dimensional space, however it has a much lower dimensional
intrinsic geometry.

() physical constraints. For example the effective state-space
of at least some proteins seems low-dimensional, at least
when viewed at the time scale when important processes
(e.g. folding) take place.

(ii) statistical constraints. For example many dependencies
among word frequencies in a document corpus force the
distribution of word frequency to low-dimensional,
compared to the dimensionality of the whole space.
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Low-dimensional sets in high-dimensional spaces

In several instances the geometry of the data can help
construct useful priors, for tasks such as classification,
regression for prediction purposes.

Some issues | am interested in:

@ geometric: find intrinsic properties, such as local
dimensionality, and local parameterizations.

@ approximation theory: approximate functions on such data,
respecting the geometry.
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Text documents

About 1100 Science News articles, from 8 different categories.
We compute about 1000 coordinates, i-th coordinate of
document d represents frequency in document d of the j-th
word in a fixed dictionary.

Documents
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Text documents

About 1100 Science News articles, from 8 different categories.
We compute about 1000 coordinates, i-th coordinate of
document d represents frequency in document d of the i-th
word in a fixed dictionary.
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Handwritten Digits

Data base of about 60,000 28 x 28 gray-scale pictures of
handwritten digits, collected by USPS. Point cloud in R28°.
Goal: automatic recognition.

Set of 10, 000 picture (28 by 28 pixels) of 10 handwritten digits. Color represents the label (digit) of each point.
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A simple example from Molecular Dynamics

[Joint with C. Clementi]

The dynamics of a small protein (12 atoms, H atoms removed)
in a bath of water molecules is approximated by a Langevin
system of stochastic equations x = —VU(x) + w. The set of
states of the protein is a noisy (w) set of points in R36.

Left: representation of an alanine dipeptide molecule. Right:
embedding of the set of configurations.
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Goals

We start by analyzing the intrinsic geometry of the data, and
then working on function approximation on the data.

@ Find parametrizations for the data: manifold learning,
dimensionality reduction. Ideally: number of parameters
comparable with the intrinsic dimensionality of data + a
parametrization should approximately preserve distances
+ be stable under perturbations/noise
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Goals

We start by analyzing the intrinsic geometry of the data, and
then working on function approximation on the data.

@ Find parametrizations for the data: manifold learning,
dimensionality reduction. Ideally: number of parameters
comparable with the intrinsic dimensionality of data + a
parametrization should approximately preserve distances
+ be stable under perturbations/noise

@ Construct useful dictionaries of functions on the data:
approximation of functions on the manifold, predictions,
learning.
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Random walks and heat kernels on the data

Assume the data X = {x;}, ¢ RP. Assume we can assign
local similarities via a kernel function W(x;, x;) > 0.
Simplest example: W, (x;, x;) = e~ IX—%l*/7,

Model the data as a weighted graph (G, E, W): vertices
represent data points, edges connect x;, x; with weight

W := W(x;, x;), when positive. Let D; = >, Wj; and

P=D'W, T=D:WD: H=et
————

random walk  symm. “random walk’’ Heat kernel

Here L = | — T is the normalized Laplacian.
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Random walks and heat kernels on the data

Assume the data X = {x;}, ¢ RP. Assume we can assign
local similarities via a kernel function W(x;, x;) > 0.
Simplest example: W, (x;, x;) = e~ IX—%l*/7,

Model the data as a weighted graph (G, E, W): vertices
represent data points, edges connect x;, x; with weight

W := W(x;, x;), when positive. Let D; = >, Wj; and

P=D'W, T=D:WD: H=et
————

random walk  symm. “random walk’’ Heat kernel

Here L = | — T is the normalized Laplacian.
Note 1: W depends on the type of data.
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Random walks and heat kernels on the data

Assume the data X = {x;}, ¢ RP. Assume we can assign
local similarities via a kernel function W(x;, x;) > 0.
Simplest example: W, (x;, x;) = e~ IX—%l*/7,

Model the data as a weighted graph (G, E, W): vertices
represent data points, edges connect x;, x; with weight

W := W(x;, x;), when positive. Let D; = >, Wj; and

P=D'W, T=D:WD: H=et
————

random walk  symm. “random walk’’ Heat kernel

Here L = | — T is the normalized Laplacian.

Note 1: W depends on the type of data.

Note 2: W should be “local”, i.e. close to 0 for points not
sufficiently close.
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Basic properties

@ P!(x,y) is the probability of jumping from x to y in t steps
@ P!(x,-)is a “probability bump” on the graph
@ P and T are similar, therefore share the same eigenvalues

{Ai} and the eigenfunctions are related by a simple
transformation. Let Typ; = Ajpj, with 1 =X; > Ao > .. ..

@ )\ e[-1,1]
@ “typically” P (or T) is large and sparse, but its high powers
are full and low-rank
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Functions on graphs

Any function f : G — R is a vector in RN. Euclidean norm and
inner product:

1[5 =D IfC)Pd(x) , (f.g) = f(x)g(x)d(x)

xeG xeG

Other choices are possible
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Functions on graphs

Any function f : G — R is a vector in RN. Euclidean norm and
inner product:

1115 =D 1) Pd(x) , (f,9) =D f(x)g(x)d(x)
xeG xeG

Other choices are possible
A Laplacian L allows to introduce a notion of smoothness

2
(LE.Fy=>") W(x, (Q’%%) N/d IV f[2dw

X y~x

Moreover,
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Dimensionality reduction and embeddings

Assume the data lies on a d-dimensional manifold M in R”
(think n >> d): how to find a map M — RP, with D << n
(hopefully D ~ d)?

Several techniques rely on a mapping

X = (pi(X))i=1,..0,

where ; are the eigenvectors of some matrix, e.g. dissimilarity
matrix (CMDS), geodesic distance matrix (ISOMAP), or some
local averaging operator (LLE, Laplacian eigenmap, Hessian
eigenmap, etc...).

Pictures above: eigenfunctions of T: Ty; = \jp;.
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Diffusion distances
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[Picture courtesy of S. Lafon]
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Diffusion distances for large time

We would like to measure distances between points on a graph
by random walks. Diffusion distance at time ¢:

d®(x,y) = ([T =Tl = IT'(x,)) = T'(y, ")l
= D ITUx,2) = Ty, 2)P
ze@G

- ¢Z N (i(x) — ily))?
i
~ IOy — (Ai(¥)) P e
Therefore &) : G — R™ with &9 (x) = (Mop(x))™, satisfies
1659(x) — G (y)|[rm ~ d®D(x, y)

at least for t large and m large.
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Analysis on the set

Equipped with good systems of coordinates on large pieces of
the set, one can start doing analysis and approximation
intrinsically on the set.

@ fFourier analysis on data: use eigenfunctions for function
approximation. Ok for globally uniformly smooth functions.
Conjecture: most functions of interest are not in this class
(Belkin, Niyogi, Coifman, Lafon).

@ Diffusion wavelets: can construct multiscale analysis of
wavelet-like functions on the set, adapted to the geometry
of diffusion, at different time scales (joint with R.Coifman).

@ The diffusion semigroup itself on the data can be used as a
smoothing kernel. We recently obtained very promising
results in image denoising and semisupervised learning (in
a few slides, joint with A.D. Szlam and R. Coifman).
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Applications

Hierarchial organization of data and of Markov chains (e.g. documents, regions
of state space of dynamical systems, etc...);

Distributed agent control, Markov decision processes (e.g.: compression of state
space and space of relevant value functions);

Machine Learning (e.g. nonlinear feature selection, semisupervised learning
through diffusion, multiscale graphical models);

Approximation, learning and denoising of functions on graphs (e.g.: machine
learning, regression, etc...)

Sensor networks: compression of measurements collected from the network
(e.g. wavelet compression on scattered sensors);

Multiscale modeling of dynamical systems (e.g.: nonlinear and multiscale PODs);
Compressing data and functions on the data;
Data representation, visualization, interaction;
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Summary for the “Fourier part”

@ it is useful to start with only local similarities between data
points;
@ it is possible to organize this local information by diffusion;

@ parametrizations can be found by looking at the
eigenvectors of a diffusion operator (Fourier modes);

@ these eigenvectors yield a nonlinear embedding into
low-dimensional Euclidean space;

@ the eigenvectors can be used for global Fourier analysis on
the set/manifold.
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Next: going multiscale

Motivation: Either very local information or very global
information: in many problems the intermediate scales are very
interesting! Would like multiscale information!

Possibility 1: proceed bottom-up: repeatedly cluster together in
a multi-scale fashion, in a way that is faithful to the operator:
diffusion wavelets.

Possibility 2: proceed top-bottom: cut greedily according to
global information, and repeat procedure on the pieces:
recursive partitioning, local cosines...

Possibility 3: do both?
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A multiscale “network”
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Multiscale elements and representation of powers of T
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Multiscale Analysis, a sketch

[Graphics by E. Monson]
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Multiscale Analysis - what do we want?

We would like to be able to perform multiscale analysis of
graphs, and of functions on graphs.

Of: produce coarser and coarser graphs, in some sense
sketches of the original at different levels of resolution. This
could allow a multiscale study of the geometry of graphs.

On: produce coarser and coarser functions on graphs, that
allow, as wavelets do in low-dimensional Euclidean spaces, to
analyse a function at different scales.

We tackle these two questions at once.
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Multiscale Analysis, the spectral picture

Let T = D2 WD~ as above be the L2-normalized symmetric
“random walk”.
The eigenvalues of T and its powers “typically” look like this:

: - 3 1
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Multiscale Analysis, a trivial example, |

We now consider a simple example of a Markov chain on a
graph with 8 states.

0.80 020 0.00 0.00 0.00 0.00 0.00 0.00
0.20 0.79 0.01 0.00 0.00 0.00 0.00 0.00
0.00 0.01 0.49 050 0.00 0.00 0.00 0.00
0.00 0.00 0.50 0.499 0.001 0.00 0.00 0.00
0.00 0.00 0.00 0.001 0.499 0.50 0.00 0.00
0.00 0.00 0.00 0.00 0.50 0.49 0.01 0.00
0.00 0.00 0.00 0.00 0.00 0.01 0.49 0.50
0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50

From the matrix it is clear that the states are grouped into four
pairs {v1,v0}, {v3,v4}, {vs, 6}, and {v7, v}, with weak
interactions between the the pairs.

Mauro Maggioni Multiscale analysis on graphs



Multiscale Analysis, a trivial e

Some powers of the Markov chain T, 8 x 8, of decreasing effective rank.

=

6 13
Compressed representations Tg := 727 (4 x 4), Ti3 = T2 (2 x 2), and corresponding soft clusters.
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Multiscale Analysis, a bit more precisely

We construct multiscale analyses associated with a
diffusion-like process T on a space X, be it a manifold, a graph,
or a point cloud. This gives:

(i) A coarsening of X at different “geometric” scales, in a
chain X — Xy — Xo — -~ — X;...;

(i) A coarsening (or compression) of the process T at all time
scales tj =2/, {T; = [Tz"]g}j, each acting on the
corresponding Xj;

(iii) A set of wavelet-like basis functions for analysis of
functions (observables) on the manifold/graph/point
cloud/set of states of the system.

All the above come with guarantees: the coarsened system X;

and coarsened process T; have random walks “e-close” to T2
on X. This comes at the cost of a very careful coarsening: up
to O(|X|?) operations (< O(|X|®)!), and only O(|X]) in certain
special classes of problems.



Construction of Diffusion Wavelets
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Figure: Diagram for downsampling, orthogonalization and operator
compression. (All triangles are e—commutative by construction)
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J—1 2/, ®j . ) ®
{¢,‘}}}:0, {W]}jzo AT ]®j };-1:1 «— DiffusionWaveletTree ([ﬂog , @0, J, SPQR, €)

@ P ) !
// Input: [7]08 : a diffusion operator, written on the o.n. basis ¢

/I ®q : an orthonormal basis which e-spans Vg
/I'J : number of levels to compute
/I'SpQR : a function compute a sparse QR decomposition, e: precision

// Output: The orthonormal bases of scaling functions, ®;, wavelets, W;, representation of 72 on @)
forj=0toJ — 1do
® j @
(®ps1lo; » [Tlgy —Sp0R(T 1 )
2l R *
Tjp1 = [T ]®j+1 — [®js1le; [T ]q;j.[¢j+1]q>j
Vjle; — SPQR(’(ol) - [¢/+1]oi[4’/+1]$,., €)

end

Q, R «— SpOR (A, €)
/[ Input: A: sparse n X n matrix ; e: precision

// Output:

/I Q, R matrices, possibly sparse, such that A =, QR,

/I Qis n x mand orthogonal,

/ Ris m x n, and upper triangular up to a permutation,

// the columns of Q e-span the space spanned by the columns of A.
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Multiresolution Analysis

Let V; = (®;), in fact ®; (scaling functions) is o.n. basis for V;.
By construction L2(X) = Vo 2 V4 2 Vo, D ..., and Vj — (p1).
Let W, be the orthogonal complement of V,_ 4 into V;. One can
construct an o.n. basis V; (wavelets) for W,.

[2(X) = Wo & ... W Vj, therefore we have

f—zz f,0ik) Yjk-

I kek; wavelet coeff.’s

Signal processing tasks by adjusting wavelet coefficients.
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Properties of Diffusion Wavelets

@ Multiscale analysis and wavelet transform

@ Compact support and estimates on support sizes (not as
good as one really would like!);

@ Vanishing moments (w.r.t. low-frequency eigenfunctions);

@ Bounds on the sizes of the approximation spaces (depend
on the spectrum of T, which in turn depends on geometry);

@ Approximation and stability guarantees of the construction
(tested in practice).

One can also construct diffusion wavelet packets, and therefore
quickly-searchable libraries of waveforms.
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Diffusion Wavelets on Dumbell manifold




Signal Processing on Graphs
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From left to Fight: function F; reconstruction of the function F with top 50 best basis
packets; reconstruction with top 200 eigenfunctions of the Beltrami Laplacian operator.

" Left to right: 50 top coefficients of F in its best diffusion wavelet basis, distribution
coefficientsF in the delta basis, first 200 coefficients of F in the best basis and in the
basis of eigenfunctions.
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Example: Multiscale text document organization




Doc/W multiscales

Scaling

Fcn

Document Titles

Words

¥2,3

Acid rain and agricultural
pollution

Nitrogen’s Increasing Im-
pact in agriculture

nitrogen,plant,
ecologist,carbon,
global

Racing the Waves Seismol-
ogists catch quakes
Tsunami! At Lake Tahoe?
How a middling quake
made a giant tsunami
Waves of Death

Seabed slide blamed for
deadly tsunami
Earthquakes: The deadly
side of geometry

earthquake,wave,
fault,quake,
tsunami

Hunting Prehistoric Hurri-
canes

Extreme weather: Massive
hurricanes

Clearing the Air About Tur-
bulence

New map defines nation’s
twister risk

Southern twisters
Oklahoma Tornado Sets
Wind Record

tornado,storm,
wind,tornadoe,
speed

Some example of scaling functions on the documents, with some of the documents in their support, and some of the

words most frequent in the documents.
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Local Discriminant Bases

One can in fact build a large dictionary of orthonormal bases
(wavelet packets) by further splitting the wavelet subspaces into
orthogonal subspaces.

Because of hierarchical organization, one can search such
dictionary fast for “best bases” for tasks such as compression,
denoising, classification.

LDB (Coifman, Saito) is the best basis for classification.
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Local Discriminant Bases

Figure: Left to right, a realization of a function from class 1 and 2
respectively. Note that the third smooth texture patch is on the back
side of the sphere, and can be viewed in semitransparency. The other
two smooth patches are decoys in random non-overlapping positions.
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Some open questions and applications

Fourier part:
@ Little known about global properties of eigenfunctions
@ Behavior of eigenfunctions under perturbations of the graph
@ Eigenfunctions on graphs different from sampled manifolds
@ Relationships between eigenfunctions of different Laplacians
Multiscale part:
@ Geometric multiscale properties of graphs
@ Visualization of these multiscale decompositions
@ Better constructions?
Applications
@ Multiscale signal processing on graphs
@ Multiscale learning and clustering on graphs

@ We will see at least a couple of applications to the analysis of
networks and network traffic in the next talks!
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