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Setting and Motivation

Diffusion on Graphs
Large time diffusion

e Eigenfunctions, spectral embeddings
e Good parametrizations of manifolds, heat kernels

Machine learning example: semisupervised learning
Conclusion
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Structured data in high-dimensional spaces

A deluge of data: documents, web searching, customer
databases, hyper-spectral imagery (satellite, biomedical, etc...),
social networks, gene arrays, proteomics data, neurobiological
signals, sensor networks, financial transactions, traffic statistics
(automobilistic, computer networks)...

Common feature/assumption: data is given in a high
dimensional space, however it has a much lower dimensional
intrinsic geometry.

() physical constraints. For example the effective state-space
of at least some proteins seems low-dimensional, at least
when viewed at the time scale when important processes
(e.g. folding) take place.
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Structured data in high-dimensional spaces

A deluge of data: documents, web searching, customer
databases, hyper-spectral imagery (satellite, biomedical, etc...),
social networks, gene arrays, proteomics data, neurobiological
signals, sensor networks, financial transactions, traffic statistics
(automobilistic, computer networks)...

Common feature/assumption: data is given in a high
dimensional space, however it has a much lower dimensional
intrinsic geometry.

() physical constraints. For example the effective state-space
of at least some proteins seems low-dimensional, at least
when viewed at the time scale when important processes
(e.g. folding) take place.

(ii) statistical constraints. For example many dependencies
among word frequencies in a document corpus force the
distribution of word frequency to low-dimensional,
compared to the dimensionality of the whole space.
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Low-dimensional sets in high-dimensional spaces

In several instances the geometry of the data can help
construct useful priors, for tasks such as classification,
regression for prediction purposes.

Some issues | am interested in:

@ geometric: find intrinsic properties, such as local
dimensionality, and local parameterizations.

@ approximation theory: approximate functions on such data,
respecting the geometry.
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Text documents

About 1100 Science News articles, from 8 different categories.
We compute about 1000 coordinates, i-th coordinate of
document d represents frequency in document d of the j-th
word in a fixed dictionary.
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Text documents

About 1100 Science News articles, from 8 different categories.
We compute about 1000 coordinates, i-th coordinate of
document d represents frequency in document d of the i-th
word in a fixed dictionary.
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Handwritten Digits

Data base of about 60,000 28 x 28 gray-scale pictures of
handwritten digits, collected by USPS. Point cloud in R28°.
Goal: automatic recognition.

Set of 10, 000 picture (28 by 28 pixels) of 10 handwritten digits. Color represents the label (digit) of each point.

Mauro Maggioni Random Walks on Graphs



A simple example from Molecular Dynamics

[Joint with C. Clementi]

The dynamics of a small protein (12 atoms, H atoms removed)
in a bath of water molecules is approximated by a Langevin
system of stochastic equations x = —VU(x) + w. The set of
states of the protein is a noisy (w) set of points in R36.

Left: representation of an alanine dipeptide molecule. Right:
embedding of the set of configurations.
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Goals

We start by analyzing the intrinsic geometry of the data, and
then working on function approximation on the data.

@ Find parametrizations for the data: manifold learning,
dimensionality reduction. Ideally: number of parameters
comparable with the intrinsic dimensionality of data + a
parametrization should approximately preserve distances
+ be stable under perturbations/noise
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Goals

We start by analyzing the intrinsic geometry of the data, and
then working on function approximation on the data.

@ Find parametrizations for the data: manifold learning,
dimensionality reduction. Ideally: number of parameters
comparable with the intrinsic dimensionality of data + a
parametrization should approximately preserve distances
+ be stable under perturbations/noise

@ Construct useful dictionaries of functions on the data:
approximation of functions on the manifold, predictions,
learning.
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Random walks and heat kernels on the data

Assume the data X = {x;}, ¢ RP. Assume we can assign
local similarities via a kernel function W(x;, x;) > 0.
Simplest example: W, (x;, x;) = e~ IX—%l*/7,

Model the data as a weighted graph (G, E, W): vertices
represent data points, edges connect x;, x; with weight

W := W(x;, x;), when positive. Let D; = >, Wj; and

P=D'W, T=D:WD: H=et
————

random walk  symm. “random walk’’ Heat kernel

Here L = | — T is the normalized Laplacian.
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Random walks and heat kernels on the data

Assume the data X = {x;}, ¢ RP. Assume we can assign
local similarities via a kernel function W(x;, x;) > 0.
Simplest example: W, (x;, x;) = e~ IX—%l*/7,

Model the data as a weighted graph (G, E, W): vertices
represent data points, edges connect x;, x; with weight

W := W(x;, x;), when positive. Let D; = >, Wj; and

P=D'W, T=D:WD: H=et
————

random walk  symm. “random walk’’ Heat kernel

Here L = | — T is the normalized Laplacian.
Note 1: W depends on the type of data.
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Random walks and heat kernels on the data

Assume the data X = {x;}, ¢ RP. Assume we can assign
local similarities via a kernel function W(x;, x;) > 0.
Simplest example: W, (x;, x;) = e~ IX—%l*/7,

Model the data as a weighted graph (G, E, W): vertices
represent data points, edges connect x;, x; with weight

W := W(x;, x;), when positive. Let D; = >, Wj; and

P=D'W, T=D:WD: H=et
————

random walk  symm. “random walk’’ Heat kernel

Here L = | — T is the normalized Laplacian.

Note 1: W depends on the type of data.

Note 2: W should be “local”, i.e. close to 0 for points not
sufficiently close.
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Basic properties

@ P!(x,y) is the probability of jumping from x to y in t steps
@ P!(x,-)is a “probability bump” on the graph
@ P and T are similar, therefore share the same eigenvalues

{Ai} and the eigenfunctions are related by a simple
transformation. Let Typ; = Ajpj, with 1 =X; > Ao > .. ..

@ )\ e[-1,1]
@ “typically” P (or T) is large and sparse, but its high powers
are full and low-rank
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Functions on graphs

Any function f : G — R is a vector in RN. Euclidean norm and
inner product:

1[5 =D IfC)Pd(x) , (f.g) = f(x)g(x)d(x)

xeG xeG

Other choices are possible
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Functions on graphs

Any function f : G — R is a vector in RN. Euclidean norm and
inner product:

1115 =D 1) Pd(x) , (f,9) =D f(x)g(x)d(x)
xeG xeG

Other choices are possible
A Laplacian L allows to introduce a notion of smoothness

2
(LE.Fy=>") W(x, (Q’%%) N/d IV f[2dw

X y~x

Moreover,

Mauro Maggioni Random Walks on Graphs



Dimensionality reduction and embeddings

Assume the data lies on a d-dimensional manifold M in R”
(think n >> d): how to find a map M — RP, with D << n
(hopefully D ~ d)?

Several techniques rely on a mapping

X = (pi(X))i=1,..0,

where ; are the eigenvectors of some matrix, e.g. dissimilarity
matrix (CMDS), geodesic distance matrix (ISOMAP), or some
local averaging operator (LLE, Laplacian eigenmap, Hessian
eigenmap, etc...).

Pictures above: eigenfunctions of T: Ty; = \jp;.
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Diffusion distances
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Diffusion distances for large time

We would like to measure distances between points on a graph
by random walks. Diffusion distance at time ¢:

d®(x,y) = ([T =Tl = IT'(x,)) = T'(y, ")l
= D ITUx,2) = Ty, 2)P
ze@G

- ¢Z N (i(x) — ily))?
i
~ IOy — (Ai(¥)) P e
Therefore &) : G — R™ with &9 (x) = (Mop(x))™, satisfies
1659(x) — G (y)|[rm ~ d®D(x, y)

at least for t large and m large.
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Go LIVE with some “simple” examples!

Mauro Maggioni Random Walks on Graphs



Spectral embeddings - what else do we know?

Many open questions about these spectral embeddings.

If we give up seeking global embeddings, we can prove some
strong results.

Another map gains relevance, based on the heat kernel

e A~ T

Large portions of a manifold M into R, where d is exactly the
intrinsic dimension of M, can be mapped by x — (Ki(x, x;)),,
for carefully chosen points {x;}, depending on x, in such a way
that this map has low-distortion on roughly the largest ball
around x which can be at all embedded in RY with low
distortion.
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Connections with the continuous case

When N points are randomly sampled from a Riemannian
manifold M, uniformly w.r.t. volume, then the behavior of the
above operators, as N — +oo, is quite well understood. In
particular, T approximates the heat kernel on M, and

L = 1— T, the normalized Laplacian, approximates (up to
rescaling), the Laplace-Beltrami operator on M.

These approximations should be taken with a grain of salt:
typically the number of points is not large enough to guarantee
that the discrete operators above are close to their continuous
counterparts.
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Parametrization of point clouds

One can try to use the operator T, or its eigenfunctions, which
is intrinsic to the data, to construct parametrizations of the data.
This is indeed possible; in fact, we [P.W. Jones, R. Schul, MM]
showed one can obtain even better parametrizations by using
T itself, or heat kernels.

When the data is nonlinear, these embedding are more
powerful, and have stronger guarantees, and wider applicability,
when M is nonlinear, of both standard linear embeddings
(PCA, random projections,...) and nonlinear embeddings
(ISOMAP, LLE, Hessian eigenmap, etc...).
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Charts and local parametrizations, |
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Charts and local parametrizations, |l

d
K (><\Jw heal W recoives
R - fromx, s‘F‘V|me'QL

O

N
Sowne (BV“\= SLAATDIW

w i (Ry K 2 (Xi> W))i=t
for d reasonably chosen points x1, . . ., X4.
The heat kernel computes distances by averaging along all paths, weighted by their probability of happening

(Wiener measure for Brownian motion), with paths of length ~ d(x;, w) having the highest probability.
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Charts and local parametrizations, Il

L3 ¥ B Q.b_\— 'v‘l\ahau\i_—\:\_i\_

daF=4a

Note: this can be interpret as a “kernel map” that linearizes the data
to the “largest extent possible” under a distortion constraint.
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Robust parametrizations through heat kernels

Theorem (Heat Triangulation Theorem - with PW. Jones, R. Schul)

Let (M, g) be a Riemannian manifold, with g at leastC*, « > 0, and
z € M. Let R; be the radius of the largest ball on M, centered at z,
which is bi-Lipschitz equivalent to a Euclidean ball. Let py, ..., pg be d
linearly independent directions. There are constants cy,...,cs > 0,
depending on d, Cmin, Cmax, ||9||ant, @ A 1, and the smallest and
largest eigenvalues of the Gramian matrix ({p;, pj))i=1,...,a, such that
the following holds. Let y; be so that y; — z is in the direction p;, with
c4R; < dm(yi,2) < csR, foreachi=1,...,d and lett, = csR2. The
map

®: B g, (2) — RY

X = (REK, (X, 1)), - RZKL (X, ya))

satisfies, for any xi, Xo € Bg,p,(2),

C: C:
ﬁz A (X1, X2) < [|D(x1) — D(x)]| < ﬁ‘” A (X1, X2) .
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Parametrizations through eigenfunctions

Eigenfunctions of T also can be used to obtain an embedding
with similar properties.
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Figure: Top left: a non-simply connected domain in R?, and the point
z with its neighborhood to be mapped. Top right: the image of the
neighborhood under the map. Bottom: Two eigenfunctions for
mapping.
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Analysis on the set

Equipped with good systems of coordinates on large pieces of
the set, one can start doing analysis and approximation
intrinsically on the set.

@ fFourier analysis on data: use eigenfunctions for function
approximation. Ok for globally uniformly smooth functions.
Conjecture: most functions of interest are not in this class
(Belkin, Niyogi, Coifman, Lafon).

@ Diffusion wavelets: can construct multiscale analysis of
wavelet-like functions on the set, adapted to the geometry
of diffusion, at different time scales (joint with R.Coifman).

@ The diffusion semigroup itself on the data can be used as a
smoothing kernel. We recently obtained very promising
results in image denoising and semisupervised learning (in
a few slides, joint with A.D. Szlam and R. Coifman).
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Applications

Hierarchial organization of data and of Markov chains (e.g. documents, regions
of state space of dynamical systems, etc...);

Distributed agent control, Markov decision processes (e.g.: compression of state
space and space of relevant value functions);

Machine Learning (e.g. nonlinear feature selection, semisupervised learning
through diffusion, multiscale graphical models);

Approximation, learning and denoising of functions on graphs (e.g.: machine
learning, regression, etc...)

Sensor networks: compression of measurements collected from the network
(e.g. wavelet compression on scattered sensors);

Multiscale modeling of dynamical systems (e.g.: nonlinear and multiscale PODs);
Compressing data and functions on the data;
Data representation, visualization, interaction;
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Semi-supervised Learning on Graphs

[Joint with A.D.Szlam]

Given:
@ X: all the data points

o (X, {xi(X)}xexim1...,): @ Small subset of X, with labels:
xi(x) = 1if x is in class i, 0 otherwise.

Objective:
@ guess yi(x) for x € X\ X.
Motivation:

@ data can be cheaply acquired (X large), but it is expensive
to label (X small). If data has useful geometry, then it is a
good idea to use X to learn the geometry, and then
perform regression by using dictionaries on the data,
adapted to its geometry.
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Semi-supervised Learning on Graphs, cont’d

Algorithm:

@ use the geometry of X to design a smoothing kernel (e.g.
heat kernel), and apply such smoothing to the x;’s, to
obtain ¥;, soft class assignments on all of X. This is
already pretty good.

@ The key to success is to repeat: incorporate the g;’s into
the geometry graph, and design a new smoothing kernel K
that takes into account the new geometry. Use K to
smooth the initial label, to obtain final classification.

Experiments on standard data sets show this technique is very
competitive.
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Semi-supervised Learning on Graph (cont’d)

FAKS | FAHC | FAEF | Best of other meth-

ods

digit1 2.0 2.1 1.9 2.5 (LapEig)

USPS 4.0 3.9 3.3 47  (LapRLS, Disc.
Reg.)

BCI 455 45.3 47.8 31.4 (LapRLS)

g241c 19.8 21.5 18.0 22.0 (NoSub)

COIL 12.0 11.1 15.1 9.6 (Disc. Reg.)

gc241n 11.0 12.0 9.2 5.0 (ClusterKernel)

text 223 22.3 22.8 23.6 (LapSVM)

In the first column we chose, for each data set, the best performing method with model
selection, among all those discussed in Chapelle’s book. In each of the remaining
columns we report the performance of each of our methods with model selection, but
with the best settings of parameters for constructing the nearest neighbor graph,
among those considered in other tables. The aim of this rather unfair comparison is to
highlight the potential of the methods on the different data sets. The training setis 1/15
of the whole set.
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Summary for the “Fourier part”

@ it is useful to start with only local similarities between data
points;
@ it is possible to organize this local information by diffusion;

@ parametrizations can be found by looking at the
eigenvectors of a diffusion operator (Fourier modes);

@ these eigenvectors yield a nonlinear embedding into
low-dimensional Euclidean space;

@ the eigenvectors can be used for global Fourier analysis on
the set/manifold.
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A (short) list of open problems

@ Little is understood about global properties of global
eigenfunctions

@ Behavior of eigenfunctions under perturbations of the
graph

@ Properties of eigenfunctions on graphs which are very
different from sampled manifolds

@ Relationships between eigenfunctions of different
Laplacians
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Next: going multiscale

Motivation: Either very local information or very global
information: in many problems the intermediate scales are very
interesting! Would like multiscale information!

Possibility 1: proceed bottom-up: repeatedly cluster together in
a multi-scale fashion, in a way that is faithful to the operator:
diffusion wavelets.

Possibility 2: proceed top-bottom: cut greedily according to
global information, and repeat procedure on the pieces:
recursive partitioning, local cosines...

Possibility 3: do both!
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A multiscale network
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R.R. Coifman, [Diffusion geometry; Diffusion wavelets; Uniformization via eigenfunctions; Multiscale Data
Analysis], PW. Jones (Yale Math), S.W. Zucker (Yale CS) [Diffusion geometry];

P.W. Jones (Yale Math), R. Schul (UCLA) [Uniformization via eigenfunctions; nonhomogenous Brownian
motion];

S. Mahadevan (U.Mass CS) [Markov decision processes];

A.D. Szlam (UCLA) [Diffusion wavelet packets, top-bottom multiscale analysis, linear and nonlinear image
denoising, classification algorithms based on diffusion];

G.L. Davis (Yale Pathology), R.R. Coifman, F.J. Warner (Yale Math), F.B. Geshwind , A. Coppi, R. DeVerse
(Plain Sight Systems) [Hyperspectral Pathology];

H. Mhaskar (Cal State, LA) [polynomial frames of diffusion wavelets];
J.C. Bremer (Yale) [Diffusion wavelet packets, biorthogonal diffusion wavelets];
M. Mahoney, P. Drineas (Yahoo Research) [Randomized algorithms for hyper-spectral imaging]

J. Mattingly, S. Mukherjee and Q. Wu (Duke Math,Stat,|ISDS) [stochastic systems and learning]; A. Lin, E.
Monson (Duke Phys.) [Neuron-glia cell modeling]; D. Brady, R. Willett (Duke EE) [Compressed sensing and
imaging]

Funding: ONR, NSF.

Thank you!

www.math.duke.edu/~mauro
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