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A multiscale “network”
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Multiscale elements and representation of powers of T
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Multiscale Analysis - what do we want?

We would like to be able to perform multiscale analysis of
graphs, and of functions on graphs.
Of: produce coarser and coarser graphs, in some sense
sketches of the original at different levels of resolution. This
could allow a multiscale study of the geometry of graphs.
On: produce coarser and coarser functions on graphs, that
allow, as wavelets do in low-dimensional Euclidean spaces, to
analyse a function at different scales.
We tackle these two questions at once.
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Multiscale Analysis, a bit more precisely

We construct multiscale analyses associated with a
diffusion-like process T on a space X , be it a manifold, a graph,
or a point cloud. This gives:

(i) A coarsening of X at different “geometric” scales, in a
chain X → X1 → X2 → · · · → Xj . . . ;

(ii) A coarsening (or compression) of the process T at all time
scales tj = 2j , {Tj = [T 2j

]
Φj
Φj
}j , each acting on the

corresponding Xj ;
(iii) A set of wavelet-like basis functions for analysis of

functions (observables) on the manifold/graph/point
cloud/set of states of the system.

All the above come with guarantees: the coarsened system Xj

and coarsened process Tj have random walks “ε-close” to T 2j

on X . This comes at the cost of a very careful coarsening: up
to O(|X |2) operations (< O(|X |3)!), and only O(|X |) in certain
special classes of problems.
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Multiscale Analysis, the spectral picture

Let T = D−
1
2 WD−

1
2 as above be the L2-normalized symmetric

“random walk”.
The eigenvalues of T and its powers “typically” look like this:
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Multiscale Analysis, a trivial example, I

We now consider a simple example of a Markov chain on a
graph with 8 states.

T =



0.80 0.20 0.00 0.00 0.00 0.00 0.00 0.00
0.20 0.79 0.01 0.00 0.00 0.00 0.00 0.00
0.00 0.01 0.49 0.50 0.00 0.00 0.00 0.00
0.00 0.00 0.50 0.499 0.001 0.00 0.00 0.00
0.00 0.00 0.00 0.001 0.499 0.50 0.00 0.00
0.00 0.00 0.00 0.00 0.50 0.49 0.01 0.00
0.00 0.00 0.00 0.00 0.00 0.01 0.49 0.50
0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50


From the matrix it is clear that the states are grouped into four
pairs {ν1, ν2}, {ν3, ν4}, {ν5, ν6}, and {ν7, ν8}, with weak
interactions between the the pairs.
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Multiscale Analysis, a trivial example, II

Some powers of the Markov chain T , 8× 8, of decreasing effective rank.

Compressed representations T6 := T 26
(4× 4), T13 := T 213

(2× 2), and corresponding soft clusters.
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Multiscale Analysis, a sketch

[Graphics by E. Monson]
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Construction of Diffusion Wavelets, I
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Construction of Diffusion Wavelets, II

Figure: Diagram for downsampling, orthogonalization and operator
compression. (All triangles are ε−commutative by construction)
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{Φj}J
j=0, {Ψj}

J−1
j=0 , {[T 2j

]
Φj
Φj
}J

j=1 ← DiffusionWaveletTree ([T ]
Φ0
Φ0
,Φ0, J, SpQR, ε)

// Input: [T ]
Φ0
Φ0

: a diffusion operator, written on the o.n. basis Φ0

// Φ0 : an orthonormal basis which ε-spans V0
// J : number of levels to compute
// SpQR : a function compute a sparse QR decomposition, ε: precision

// Output: The orthonormal bases of scaling functions, Φj , wavelets, Ψj , representation of T 2j
on Φj .

for j = 0 to J − 1 do

[Φj+1]Φj
, [T ]

Φ1
Φ0
←SpQR([T 2j

]
Φj
Φj
, ε)

Tj+1 := [T 2j+1
]
Φj+1
Φj+1

← [Φj+1]Φj
[T 2j

]
Φj
Φj

[Φj+1]∗Φj

[Ψj ]Φj
← SpQR(I〈Φj 〉

− [Φj+1]Φj
[Φj+1]∗Φj

, ε)

end

Q,R ← SpQR (A, ε)
// Input: A: sparse n × n matrix ; ε: precision

// Output:
// Q,R matrices, possibly sparse, such that A =ε QR,
// Q is n × m and orthogonal,
// R is m × n, and upper triangular up to a permutation,
// the columns of Q ε-span the space spanned by the columns of A.
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Multiresolution Analysis

Let Vj = 〈Φj〉, in fact Φj (scaling functions) is o.n. basis for Vj .
By construction L2(X ) = V0 ⊇ V1 ⊇ V2 ⊇ . . . , and Vj → 〈ϕ1〉.
Let Wj be the orthogonal complement of Vj+1 into Vj . One can
construct an o.n. basis Ψj (wavelets) for Wj .
L2(X ) = W0 ⊕ . . .Wj ⊕ Vj , therefore we have

f =
∑

j

∑
k∈Kj

〈f , ψj,k 〉︸ ︷︷ ︸
wavelet coeff.′s

ψj,k .

Signal processing tasks by adjusting wavelet coefficients.
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Properties of Diffusion Wavelets

Multiscale analysis and wavelet transform
Compact support and estimates on support sizes (not as
good as one really would like!);
Vanishing moments (w.r.t. low-frequency eigenfunctions);
Bounds on the sizes of the approximation spaces (depend
on the spectrum of T , which in turn depends on geometry);
Approximation and stability guarantees of the construction
(tested in practice).

One can also construct diffusion wavelet packets, and therefore
quickly-searchable libraries of waveforms.
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Diffusion Wavelets on Dumbell manifold
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Signal Processing on Graphs

From left to right: function F ; reconstruction of the function F with top 50 best basis
packets; reconstruction with top 200 eigenfunctions of the Beltrami Laplacian operator.

Left to right: 50 top coefficients of F in its best diffusion wavelet basis, distribution
coefficientsF in the delta basis, first 200 coefficients of F in the best basis and in the

basis of eigenfunctions.
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Local Discriminant Bases

One can in fact build a large dictionary of orthonormal bases
(wavelet packets) by further splitting the wavelet subspaces into
orthogonal subspaces.
Because of hierarchical organization, one can search such
dictionary fast for “best bases” for tasks such as compression,
denoising, classification.
LDB (Coifman, Saito) is the best basis for classification.
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Local Discriminant Bases

Figure: Left to right, a realization of a function from class 1 and 2, top
and bottom are two views of the same realization, from two antipodal
points of view.

A CART run on the δ-basis has a test error of .175 with 300
training functions and 1000 test functions. In the top 20 LDB
coordinates, we can reduce the test error to .035. In the first
300 eigenfunctions the test error is .31.
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Local Discriminant Bases, II

Figure: Left to right, a realization of a function from class 1 and 2
respectively. Note that the third smooth texture patch is on the back
side of the sphere, and can be viewed in semitransparency. The other
two smooth patches are decoys in random non-overlapping positions.
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Example: Multiscale text document organization
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Doc/Word multiscales

Scaling
Fcn

Document Titles Words

ϕ2,3

Acid rain and agricultural
pollution
Nitrogen’s Increasing Im-
pact in agriculture

nitrogen,plant,
ecologist,carbon,
global

ϕ3,3

Racing the Waves Seismol-
ogists catch quakes
Tsunami! At Lake Tahoe?
How a middling quake
made a giant tsunami
Waves of Death
Seabed slide blamed for
deadly tsunami
Earthquakes: The deadly
side of geometry

earthquake,wave,
fault,quake,
tsunami

ϕ3,5

Hunting Prehistoric Hurri-
canes
Extreme weather: Massive
hurricanes
Clearing the Air About Tur-
bulence
New map defines nation’s
twister risk
Southern twisters
Oklahoma Tornado Sets
Wind Record

tornado,storm,
wind,tornadoe,
speed

Some example of scaling functions on the documents, with some of the documents in their support, and some of the

words most frequent in the documents.
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Potential Theory, Compressed Direct Solvers

The Laplacian L = I − T has an inverse (on ker(L)⊥) whose
kernel is the Green’s function, that if known would allow the
solution of the Dirichlet or Neumann problem (depending on the
boundary conditions imposed on the problem on L). If ||T || < 1,
one can write the Neumann series

(I − T )−1f =
∞∑

k=1

T k f =
∞∏

k=0

(I + T 2k
)f .

Since we have compressed all the dyadic powers T 2k
, we have

also computed the Green’s operator in compressed form, in the
sense that the product above can be applied directly to any
function f (or, rather, its diffusion wavelet transform). Hence this
is a direct solver, and potentially offers great advantages,
especially for computations with high precision, over iterative
solvers.
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Many open questions and applications

How do properties of diffusion wavelets relate to geometric
(multiscale) properties of graphs?
How to visualize these multiscale decompositions?
Better constructions?

Applied to
Multiscale signal processing (compression, denoising,
discrimination) on graphs
Multiscale learning on graphs
Hierarchical clustering on nonlinear data sets.
...
We will see at least a couple of applications to the analysis
of networks and network traffic in other talks!
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