Sparsity and Scarcity in Discrete Event Data Analysis

Rebecca Willett, University of Wisconsin-Madison Joint work with

Eric Hall

Xin Jiang

Paul Voyles

Garvesh Raskutti

Photon limited imaging

Fluorescence or electron microscopy

Spectral imaging

https://srogers.cartodb.com/viz/4a5eb582-23ed-11e4-bd6b-0e230854a1cb/embed_map

Discrete event data is prevalent

- Seismic shocks
- Financial transations
- Neurons firing
- Adverse drug events
- Crime

In all these settings, incorporating physical models into inference is essential

Today: three examples

- Electron microscopy in materials science
- Photon-limited compressive sensing
- Social and biological neural network inference

Example 1: Electron microscopy in materials science

Case study: electron disperson spectroscopy imaging Calcium-doped neodymium titanate¹ (perovskite ceramic)

¹Raw data courtesy of Thomas Slater and Sarah Haigh at University of Manchester. Non-rigid alignment and averaging by Yankovich, Berkels, Dahmen, Binev, Sanchez, Bradley, Li, Szlufarska & Voyles (2014)

Naïve estimate

smoothing

Case study: EDS imaging

Long exposure times can damage samples

Short exposure times result in small numbers of detected photons per pixel. Statistical model:

 $y \sim \text{Poisson}(x^*),$

where x^* is the spectral image and y is the noisy observation

Goal: estimate x^* from y using Poisson model for noise and structural models for x^*

Spectral image model

Consider this phantom image:

Spectral image model

Consider this phantom image:

We want to exploit the redundancy in the image.

Key model idea: the (spectral) image patches lie in a union of subspaces

Patch subspaces

Each patch is a weighted sum of representative patches.

Image model

Collection of patches

These ideas extend naturally to spectral images (need to use 3-D patches)

Patch subspaces

Each patch is a weighted sum of representative patches.

Image model

Collection of patches

Union of subspaces

Cluster 2

Cluster 3

Mathematical model of union of subspaces

Matrix factorization associated with a union of subspaces model. The matrix U has K = 3 groups, each with r/K = 3 columns corresponding to three representative patches per group or nine total representative patches. U_k is the set of representative patches for the $k^{\rm th}$ group. $v_{i,k}$ is the set of weights for the $i^{\rm th}$ patch projected onto the $k^{\rm th}$ subspace. Note that each patch has nonzero weights for only *one* of the K subspaces.

Nonlocal PCA for photon-limited imaging²

- Divide image into patches
- Cluster patches

 (using Poisson Bregman divergence to measure similarity of patches)
- Perform Poisson PCA on each cluster of patches to find low-dimensional patch subspace (by minimizing the negative Poisson log-likelihood with rank constraint)
- For each patch, estimate sparse PCA coefficients (by minimizing the negative Poisson log-likelihood + sparsity regularizer)

²Salmon, Deledalle, Harmany & Willett (2012)

Do not underestimate the power of the dark side

Original data

Anscombe + BM3D; PSNR = 18.99.Mäkitalo & Foi (2011) Poisson non-local PCA; PSNR = 23.27. Salmon, Deledalle, Harmany & Willett (2012)

EDS Imaging Experimental Results³

EDS Imaging Comparison⁴

⁴Yankovich, Zhang, Oh, Slater, Azough, Freer, Haigh, Willett, and Voyles (2016)

Example 2: Photon-limited compressive sensing

Compressive optical systems⁵

If we fix our total data acquisition time to T, then we have an explicit tradeoff between the number of projections, n, and the number of photons collected per projection, O(T/n). As n increases, photon-limitations dominate errors.

⁵Duarte, Davenport, Laska, Sun, Takhar, Sarvotham, Baron, Wakin & Kelly, Baraniuk (2006)

The LASSO for sparse inverse problems

The LASSO estimator:

$$\min_{x} \frac{1}{2} \|y - Ax\|^2 + \gamma \|x\|_1$$

Sensing model

We observe

$$y \sim \mathsf{Poisson}(TAx^*)$$

 $y_i \sim \mathsf{Poisson}\left(T\sum_{j=1}^p A_{i,j}x_j^*\right), \qquad i \in \{1, \dots, n\},$

where

- ▶ $y \in \mathbb{Z}^n_+$
- $T \in \mathbb{R}_+$ is the total data acquisition time
- $A \in [0,1]^{n \times p}$ is a known sensing matrix
- $x^* \in \mathcal{X}$, where

 $\mathcal{X} = \left\{ x \in \mathbb{R}^p_+ : \|x\|_1 = 1, \|D^T x\|_0 \le s + 1 \right\}$

for an orthonormal basis \boldsymbol{D}

This is not your ordinary CS problem

Sensing matrix \boldsymbol{A} has several physical constraints

Think of $A_{i,j}$ as likelihood of photon from location j in x^* hitting detector at location i:

$$\begin{array}{ll} A_{i,j} \in [0,1] \\ \mathbbm{1}^\top A \preceq \mathbbm{1} & \text{(columns sum to at most one)} \\ \|Ax\|_1 \leq \|x\|_1 & \forall x \end{array}$$

Typical CS sensing matrices do not satisfy these constraints!

Sensing matrix

Start with a sensing matrix $\widetilde{A} \in \frac{1}{\sqrt{n}} \{-1,1\}^{n \times p}$ such that the product $\widetilde{A}D$ satisfies the RIP:

 $(1-\delta_s)\|\theta\|_2^2 \le \|\widetilde{A}D\theta\|_2^2 \le (1+\delta_s)\|\theta\|_2^2 \quad \forall \quad 2s - \text{sparse } \theta$

Let

$$A \triangleq (\widetilde{A} + \frac{3}{\sqrt{n}} \mathbb{1}_{n \times p})/4\sqrt{n}.$$

Sensing matrix

Start with a sensing matrix $\widetilde{A} \in \frac{1}{\sqrt{n}} \{-1,1\}^{n \times p}$ such that the product \overline{AD} satisfies the RIP: $(1-\delta_s)\|\theta\|_2^2 \leq \|\widetilde{A}D\theta\|_2^2 \leq (1+\delta_s)\|\theta\|_2^2 \quad \forall \quad 2s-\text{sparse } \theta$ Let $A \triangleq (\widetilde{A} + \frac{3}{\sqrt{n}} \mathbb{1}_{n \times p})/4\sqrt{n}.$ - "Ideal" zero-mean CS signal - Renormalized zero-mean CS signal We observe Constant offset 20 Observed intensity $y \sim \text{Poisson}(TAx^*)$ 15 $\sim \mathsf{Poisson}\Big(\frac{T\widetilde{A}x^*}{4\sqrt{n}} + \frac{3T}{4n}\mathbb{1}_{n\times 1}\Big)$ 10 determines variance -10 -15 -20 20 40 60 80 100

25 / 53

Rates for high-intensity settings (large T) ⁶

Theorem:

$$\inf_{\widehat{x}} \sup_{x^* \in \mathcal{X}} \mathbb{E}[\|\widehat{x} - x^*\|_2^2] \asymp \frac{s \log p}{T}$$

where

$$\mathcal{X} = \left\{ x \in \mathbb{R}^p_+ : \|x\|_1 = 1, \|D^T x\|_0 \le s + 1 \right\}$$

- The data acquisition time T, which reflects the signal-to-noise ratio, controls the error decay
- Once the number of measurements, n, is sufficiently large to ensure a RIP-like sensing matrix, it does not impact errors

⁶Jiang, Raskutti & Willett (2014)

MSE vs. T: An elbow in the rates

So far we have only considered high-intensity (large T) settings. What happens in low intensities?

Low-intensity settings (small T)⁷

Let
$$\overline{x^*} \equiv \mathbbm{1}_{p imes 1} / \sqrt{p}$$
 be the average of x^* . Then

$$\mathbb{E}[\|\widehat{x} - x^*\|_2^2] \asymp \|x^* - \overline{x^*}\|_2^2$$

Rates depend on how much x^* deviates from its mean ("residual energy"), subject to the constraint that $||x^*||_1 = 1$ for $x^* \in \mathcal{X}$.

For different sparsifying bases D, this residual energy falls in different ranges, giving different rates.

⁷Jiang, Raskutti & Willett (2014)

MSE vs. T: An elbow in the rates

CS can be suboptimal at low intensities

s' = number of non-zero coarse-scale wavelet coefficients, s = 10 is total number of non-zero wavelet coefficients.

Ramifications

CS conventional wisdom (for Gaussian noise settings) tells us rates are

- Independent of sparsifying basis
- Not much worse than if we collected non-compressive measurements

In Poisson noise settings, because of the interaction between physical constraints and sparsity assumptions

- Rates are highly dependent on sparsifying basis
- Depending on the sparsity assumptions, we can do far better using non-compressive measurements

Example 3: Social and biological neural network inference

Cascading chains of interactions

- Internet memes quickly propagate^a
- Gang violence begets retaliations^b
- Nation-state conflicts are accompanied by proxy wars^c

^aK. Zhou, H. Zha, and L. Song, 2013

^bA. Stomakhin, M. B. Short, and A. Bertozzi, 2011

^cC. Blundell, K. A. Heller, and J. M. Beck, 2012

Can we infer the underlying network of influences from observations of individual events?

Functional neural network connectivity⁸

We record neurons firing in response to different stimuli. Can we estimate the functional network?

⁸Smith & Brown, 2003; Pillow, Shlens, Paninski, Sher, Litke, Chichilnisky, & Simoncelli. 2008

Functional neural network connectivity

			BE DE LIBERT	1111 1 100	DESCRIPTION OF THE T			LA DESCRIPTION DE LA COMPANY	NO NON COLOR DURING
COMPANY CONTRACTOR OF BUILDING AND									
TERMENT FOR DEPENDENT OF THE THEORY OF							THE REPORT OF THE PARTY OF THE	HALF FREE PRESENCE IN TH	LICE DISCUSSION HAR FOR
TAT I MANAGEMENT AND AN AN ANALYSIS OF ANY									
			1 1101100 000			11 11 11 11 11 11 11 11 11		101 100 0 1001 1 10000	
				HART HALL MALL IN A LINE OF			THE LOOP IN THE MET COMPANY		
					11.111				
			100 I III II						
THE THREE I	1	E 10.2 E E T	11.1			DI LI COMPLEXE	M 2011 1 1 1 1 1	1 11 1	I I FIN LEFT
1 10 0000000 0	N 1982 IN	the second se	1 10 10 10 10						e la la deservation des
the second s	n den in comine	or if for a secondary	The second	T THEFT I	1 11 11 11 11 11 1	1 1 0111 1001 101	11 11 11 1 1 11 10		transferr in a manual
	1 11 11			W 1 10 10 10 10 10 10 10 10 10 10 10 10 1					
THE PROPERTY AND A COMPANY OF THE PROPERTY OF	1 11 10 111	THERE IS NOT BE	manual rate				T CITER THE MORE		i to be the to e
		CH HOLE FREEMEN D							
						COMPANY OF THE OWNER OF THE OWNER OF THE OWNER			THE COMPANY PROPERTY AND AND A COMPANY
									100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	100 00 00 00 00 00000 1 0 00 00 00 00 1 0 00 00 00 00 00						001 11000 1 0110 01000 11000 1 01 10001 1 000 1 1 100 1 1 00 010 1 100 1 100 00		
	.5				.5	1		2.5	3
).5			1		2		2.5	
).5			1 1	.5 me (s)	2		2.5	3

Raster plot of M = 36 spike trains. Each row corresponds to a spike train, with small, black, vertical lines indicating the time of individual spikes. The vertical red lines indicate the start and end of a maze exploration period.⁹

9 http://seis.bris.ac.uk/~mb0184/projects/dtsonn/

	E E	3 I	1	1	E
					1 10 10031 00 00000 1 0 00010 000 001 1 0 00010 0001 0011
		15		25	
0	.5 1	Time (s)	2	2.0	x 10 ⁴

Log-linear Poisson autoregressive process

$$x_{t+1} \sim \text{Poisson}\left(\exp\{\nu - A^* x_t\}\right), \qquad t = 1, \dots, T$$

Log-linear Poisson autoregressive process

$$x_{t+1} \sim \mathsf{Poisson}\left(\exp\{\nu - A^* x_t\}\right), \qquad t = 1, \dots, T$$

How should we estimate A^* ?

- How much sensing time is required for a desired level of accuracy?
- How do network properties influence achievable accuracy?

Sparsity

• We assume A^* is non-negative and bounded:

 $A^* \in [0, A_{\max}]^{M \times M}$

- ▶ s is the number of non-zero elements in A* (e.g. number of network edges)
- ρ is the maximum number of non-zero elements in any row
 A* (e.g. maximum in-degree of any node)

$$M = 5, \ s = 7, \ \rho = 2$$

Autoregressive challenges

Let $y_m = \begin{bmatrix} X_{1,m} & X_{2,m} & \cdots & X_{T,m} \end{bmatrix}^\top$ be the time series of observations at the m^{th} node and let

$$\boldsymbol{X}_{\backslash m} = \begin{bmatrix} X_{1,1} & X_{1,2} & \cdots & X_{1,m-1} & X_{1,m+1} & \cdots & X_{1,M} \\ X_{2,1} & X_{2,2} & \cdots & X_{2,m-1} & X_{2,m+1} & \cdots & X_{2,M} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ X_{T,1} & X_{T,2} & \cdots & X_{T,m-1} & X_{T,m+1} & \cdots & X_{T,M} \end{bmatrix}$$

be the observations at all other nodes, corresponding to the potential influences on node m.

Consider estimating each row a_m^* via the LASSO:

$$\hat{a}_m = \operatorname*{arg\,min}_a \|y_m - X_{\backslash m}a\|_2^2 + \lambda \|a\|_1$$

node *m* obs node *m* inputs

Regularized maximum likelihood estimator

Let a_m be the m^{th} row of A and

$$\hat{A} := \arg\min_{A} \underbrace{\sum_{t=0}^{T-1} \sum_{m=1}^{M} \exp(\nu_m - \langle a_m, x_t \rangle) - \langle a_m, x_t \rangle x_{t+1,m}}_{\text{negative log-likelihood}} + \underbrace{\lambda \|A\|_{1,1}}_{\text{regularizer}}$$

or, row-wise

$$\hat{a}_m := \arg\min_{a} \underbrace{\sum_{t=0}^{T-1} \sum_{m=1}^{M} \exp(\nu_m - \langle a, x_t \rangle) - \langle a, x_t \rangle x_{t+1,m}}_{\text{negative log-likelihood}} + \underbrace{\lambda \|a\|_1}_{\text{regularizer}}$$

Main result (sample complexity bound)

lf

$$T \gtrsim \rho^2 s \log M$$

and

$$\lambda \approx \frac{\log^2(MT)}{\sqrt{T}},$$

then with probability at least $1-1/M \ensuremath{$

$$\|\hat{A} - A^*\|_F^2 \le O\left(\frac{e^{\rho_s}\log^6(MT)}{T}\right).$$

Theory does not depend on all observations coming from stationary distribution!

For constant ρ , error grows linearly in s, but only polylogarithmically in M, showing the benefit of sparsity

Up to log factors, error decreases like 1/T, which will dictate how much data needs to be collected for a desired accuracy

In both plots the median value of 100 trials is shown, with error bars denoting the $25^{\text{th}} - 75^{\text{th}}$ percentile. M = 20, 100 trials, $\lambda = 0.1/\sqrt{T}$.

The role of ρ

Our bounds scale like e^{ρ} . Is this tight?

Recall that ρ is the maximum in-degree of any node in the network. If ρ is large, many nodes can simultaneously inhibit a single node.

Example: star network

Here

$$\mathbb{E}[x_{t+1}] = \exp(\nu - Ax_t) \approx [0, \nu_2, \nu_3, ..., \nu_M]^{\top}$$

rare events on center node \Rightarrow cannot infer inhibitions \Rightarrow large errors

Proof elements

Lasso analysis

- 1. Bound $||X^{\top} \epsilon||_{\infty}$; require λ to exceed this bound
- 2. Show $\|X(a^* \hat{a})\|_2^2 \lesssim \lambda \sqrt{s} \|a^* \hat{a}\|_2$
- 3. Show/assume $\|X(a^* - \hat{a})\|_2^2 \ge \kappa \|a^* - \hat{a}\|_2^2$
- 4. Algebra: $||a^* \hat{a}||_2 \lesssim \frac{\lambda\sqrt{s}}{\kappa}$

Sparse PAR analysis 1. $\left\| \frac{1}{T} \sum_{t=1}^{T-1} x_{t-1} \epsilon_{t,m} \right\|_{\infty} \leq \frac{C \log^3(MT)}{\sqrt{T}} \leq \lambda$

- 2. Show $\|a_m^* \hat{a}_m\|_T^2 \triangleq \frac{1}{T} \sum_t \langle a_m^* \hat{a}_m, x_t \rangle^2 \leq \lambda \sqrt{\rho_m} \|a_m^* \hat{a}_m\|_2$
- 3. Lower bound $\omega = \min \max$ eigenvalue of $\mathbb{E}[x_t x_t^\top | x_{t-1}]$ to show $\|a_m^* - \hat{a}_m\|_2^2 \le \max\{\|a_m^* - \hat{a}_m\|_2^2, \|a_m^* - \hat{a}_m\|_T^2\} \le \frac{\rho_m \lambda^2}{\omega^2}$

Experimental results

Ground Truth A Matrix

Estimate for T = 100

Estimate for T = 316

Estimate for T = 1000

Even for a relatively low amount of data we have picked out most of the support but with several spurious artifacts. As the amount of data increases, fewer of the erroneous elements are estimated.

Conclusions

- Principled mechanisms for analyzing discrete event data arising in real physical systems
- Results provide new insights into how different sensor or network characteristics influence sample complexities and recovery guarantees
- Interesting open questions remain!

Thank you.

Backup slides

EDS Imaging Phantom Experiment¹⁰

 $[\]mathbf{^{10}}_{\mathsf{Yankovich}}$ Zhang, Oh, Slater, Azough, Freer, Haigh, Willett, and Voyles (2016)

Main result (sample complexity bound)

Let $\delta \in (0,1)$. There exist constants $c_1, c_2 > 0$ independent of M, δ, ρ and s such that if

$$T > c_1 \max\left\{\rho^2 [s \log M + \log(1/\delta)], 1/(M\delta)\right\}$$

and

$$\lambda = \frac{c_2 \log^2(MT)}{\sqrt{T}},$$

then with probability at least $1-\delta$

$$\|\hat{A} - A^*\|_F^2 \le O\left(\frac{e^{\rho}s\log^6(MT)}{T}\right)$$

Theory does not depend on all observations coming from stationary distribution!

For constant ρ , error grows linearly in s, but only polylogarithmically in M, showing the benefit of sparsity

Up to log factors, error decreases like 1/T, which will dictate how much data needs to be collected for a desired accuracy

In both plots the median value of 100 trials is shown, with error bars denoting the $25^{\text{th}} - 75^{\text{th}}$ percentile. M = 20, 100 trials, $\lambda = 0.1/\sqrt{T}$.

Beyond inhibitory interactions

We needed to bound two key terms in our analysis:

$$\left\|\sum_{t} x_{t-1} \left(x_{t,m} - \mathbb{E}[x_{t,m} | x_{t-1}] \right) \right\|_{\infty} \quad \text{and} \quad \mathbb{E}[x_{t} x_{t}^{\top} | x_{t-1}]$$

This is tractable when all the elements of A^* are non-negative (i.e. inhibitory interactions).

Can theory admit stimulatory interactions? Challenge is that processes become non-stationary and observations unbounded.