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Photon limited imaging
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Discrete event data is prevalent

I Seismic shocks

I Financial transations

I Neurons firing

I Adverse drug events

I Crime

In all these settings, incorporating physical models into
inference is essential
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Today: three examples

I Electron microscopy in
materials science

I Photon-limited compressive
sensing

I Social and biological neural
network inference

A/D

Digital Micromirror
Device (DMD) Array

Random Number
Generators (RNG)

Image encoded by DMD
and random basis

Scene

Low-cost, fast, sensitive
optical detection with 

single photodiode

Reconstruction

Compressed, encoded
image data

Image

RNG
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Example 1:
Electron microscopy in materials science
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Case study: electron disperson spectroscopy imaging
Calcium-doped neodymium titanate1 (perovskite ceramic)

O Kα Ca Kα Ti Kα Ti Kβ

Nd Lα Nd Lβ Nd Lβ4

1
Raw data courtesy of Thomas Slater and Sarah Haigh at University of Manchester. Non-rigid alignment and

averaging by Yankovich, Berkels, Dahmen, Binev, Sanchez, Bradley, Li, Szlufarska & Voyles (2014)
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Näıve estimate

Nd Lα observations Estimate via Gaussian
smoothing

Can we do better?
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Case study: EDS imaging

Long exposure times can damage samples

Short exposure times result in small numbers of detected photons
per pixel. Statistical model:

y ∼ Poisson(x∗),

where x∗ is the spectral image and y is the noisy observation

Goal: estimate x∗ from y using Poisson model for noise and
structural models for x∗
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Spectral image model

Consider this phantom image:

We want to exploit the redundancy in the image.

Key model idea: the (spectral) image patches lie in a union of
subspaces
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Patch subspaces
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Each patch is a weighted sum of representative patches.
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Image model

Image
Patch

Vectorized Patch

Collection of patches

These ideas extend naturally to spectral images
(need to use 3-D patches)
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Patch subspaces

T

Y

Each patch is a weighted sum of representative patches.
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Image model

Collection of patches

Union of subspaces

Cluster 1

Cluster 2 Cluster 3
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Mathematical model of union of subspaces

i

r/K

T

Y

Matrix factorization associated with a union of subspaces model. The
matrix U has K = 3 groups, each with r/K = 3 columns corresponding

to three representative patches per group or nine total representative
patches. Uk is the set of representative patches for the kth group. vi,k is
the set of weights for the ith patch projected onto the kth subspace. Note

that each patch has nonzero weights for only one of the K subspaces.
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Nonlocal PCA for photon-limited imaging2

I Divide image into patches

I Cluster patches
(using Poisson Bregman divergence to measure similarity of
patches)

I Perform Poisson PCA on each cluster of patches to find
low-dimensional patch subspace
(by minimizing the negative Poisson log-likelihood with rank
constraint)

I For each patch, estimate sparse PCA coefficients
(by minimizing the negative Poisson log-likelihood + sparsity
regularizer)

2
Salmon, Deledalle, Harmany & Willett (2012)
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Do not underestimate the power of the dark side

Original data Anscombe + BM3D;
PSNR = 18.99.

Mäkitalo & Foi (2011)

Poisson non-local
PCA; PSNR = 23.27.
Salmon, Deledalle,
Harmany & Willett

(2012)
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EDS Imaging Experimental Results3

3
Yankovich, Zhang, Oh, Slater, Azough, Freer, Haigh, Willett, and Voyles (2016)
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EDS Imaging Comparison4

4
Yankovich, Zhang, Oh, Slater, Azough, Freer, Haigh, Willett, and Voyles (2016)
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Example 2: Photon-limited compressive
sensing
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Compressive optical systems5

A/D

Digital Micromirror
Device (DMD) Array

Random Number
Generators (RNG)

Image encoded by DMD
and random basis

Scene

Low-cost, fast, sensitive
optical detection with 

single photodiode

Reconstruction

Compressed, encoded
image data

Image

RNG

If we fix our total data acquisition time to T , then we have an
explicit tradeoff between the number of projections, n, and the

number of photons collected per projection, O(T/n). As n
increases, photon-limitations dominate errors.

5
Duarte, Davenport, Laska, Sun, Takhar, Sarvotham, Baron, Wakin & Kelly, Baraniuk (2006)
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The LASSO for sparse inverse problems

+=

The LASSO estimator:

min
x

1

2
‖y −Ax‖2 + γ‖x‖1
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Sensing model

We observe

y ∼ Poisson(TAx∗)

yi ∼ Poisson

T p∑
j=1

Ai,jx
∗
j

 , i ∈ {1, . . . , n},

where

I y ∈ Zn+
I T ∈ R+ is the total data acquisition time

I A ∈ [0, 1]n×p is a known sensing matrix

I x∗ ∈ X , where

X =
{
x ∈ Rp+ : ‖x‖1 = 1, ‖DTx‖0 ≤ s+ 1

}
for an orthonormal basis D
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This is not your ordinary CS problem

Sensing matrix A has several physical constraints

Think of Ai,j as likelihood of photon from location j in x∗ hitting
detector at location i:

Ai,j ∈ [0, 1]

1
>A � 1 (columns sum to at most one)

‖Ax‖1 ≤ ‖x‖1 ∀x

Typical CS sensing matrices do not satisfy these constraints!
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Sensing matrix
Start with a sensing matrix Ã ∈ 1√

n
{−1, 1}n×p such that the

product ÃD satisfies the RIP:

(1− δs)‖θ‖22 ≤ ‖ÃDθ‖22 ≤ (1 + δs)‖θ‖22 ∀ 2s− sparse θ

Let

A , (Ã+
3√
n
1n×p)/4

√
n.

We observe

y ∼ Poisson(TAx∗)

∼ Poisson
(TÃx∗
4
√
n

+
3T

4n
1n×1︸ ︷︷ ︸

determines
variance

)
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n
{−1, 1}n×p such that the
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Rates for high-intensity settings (large T ) 6

Theorem:

inf
x̂

sup
x∗∈X

E[‖x̂− x∗‖22] �
s log p

T

where

X =
{
x ∈ Rp+ : ‖x‖1 = 1, ‖DTx‖0 ≤ s+ 1

}

I The data acquisition time T , which reflects the signal-to-noise
ratio, controls the error decay

I Once the number of measurements, n, is sufficiently large to
ensure a RIP-like sensing matrix, it does not impact errors

6
Jiang, Raskutti & Willett (2014)
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MSE vs. T : An elbow in the rates

105 1010

10-7

10-6

10-5

T

M
S

E

MSE - DCT sparsity

MSE - DWT sparsity

So far we have only considered high-intensity (large T )
settings. What happens in low intensities?
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Low-intensity settings (small T ) 7

Let x∗ ≡ 1p×1/
√
p be the average of x∗. Then

E[‖x̂− x∗‖22] � ‖x∗ − x∗‖22

Rates depend on how much x∗ deviates from its mean (“residual
energy”), subject to the constraint that ‖x∗‖1 = 1 for x∗ ∈ X .

For different sparsifying bases D, this residual energy falls in
different ranges, giving different rates.

7
Jiang, Raskutti & Willett (2014)
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MSE vs. T : An elbow in the rates

x  - x
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CS can be suboptimal at low intensities

106 108 101010−8

10−7

10−6

10−5

T

M
SE

 

 

DS, s ′=1
DS, s ′=4
DS, s ′=6
DS, s ′=8
DS, s ′=10
CS

s′ = number of non-zero coarse-scale wavelet coefficients, s = 10
is total number of non-zero wavelet coefficients.

30 / 53



Ramifications

CS conventional wisdom (for Gaussian noise settings) tells us rates
are

I Independent of sparsifying basis

I Not much worse than if we collected non-compressive
measurements

In Poisson noise settings, because of the interaction between
physical constraints and sparsity assumptions

I Rates are highly dependent on sparsifying basis

I Depending on the sparsity assumptions, we can do far better
using non-compressive measurements
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Example 3:
Social and biological neural network

inference
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Cascading chains of interactions

I Internet memes
quickly propagatea

I Gang violence
begets
retaliationsb

I Nation-state
conflicts are
accompanied by
proxy warsc

a
K. Zhou, H. Zha, and L. Song, 2013

b
A. Stomakhin, M. B. Short, and A. Bertozzi, 2011

c
C. Blundell, K. A. Heller, and J. M. Beck, 2012

Can we infer the underlying network of influences from
observations of individual events?
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Functional neural network connectivity8

We record neurons firing in response to different stimuli.
Can we estimate the functional network?

8
Smith & Brown, 2003; Pillow, Shlens, Paninski, Sher, Litke, Chichilnisky, & Simoncelli. 2008
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Functional neural network connectivity

Raster plot of M = 36 spike trains. Each row corresponds to a
spike train, with small, black, vertical lines indicating the time of
individual spikes. The vertical red lines indicate the start and end

of a maze exploration period.9

9
http://seis.bris.ac.uk/~mb0184/projects/dtsonn/
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Autoregressive point processes
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Log-linear Poisson autoregressive process

xt+1 ∼ Poisson (exp{ν −A∗xt}) , t = 1, . . . , T

a b

e d

c

2

1 6

1

5

1

3

A∗ =


0 0 0 0 0
2 0 0 0 0
0 5 0 3 0
0 1 0 0 1
1 6 0 0 0



time0 20 40 60 80 100

no
de

e
d
c
b
a
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Log-linear Poisson autoregressive process

xt+1 ∼ Poisson (exp{ν −A∗xt}) , t = 1, . . . , T

a b

e d

c

2

1 6

1

5

1

3

A∗ =


0 0 0 0 0
2 0 0 0 0
0 5 0 3 0
0 1 0 0 1
1 6 0 0 0


How should we estimate A∗?

I How much sensing time is required for a desired level of
accuracy?

I How do network properties influence achievable accuracy?
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Sparsity

I We assume A∗ is non-negative and bounded:

A∗ ∈ [0, Amax]
M×M

I s is the number of non-zero elements in A∗ (e.g. number of
network edges)

I ρ is the maximum number of non-zero elements in any row
A∗ (e.g. maximum in-degree of any node)

a b

e d

c

2

1 6

1

5

1

3

M = 5, s = 7, ρ = 2
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Autoregressive challenges
Let ym =

[
X1,m X2,m · · · XT,m

]>
be the time series of

observations at the mth node and let

X\m =


X1,1 X1,2 · · · X1,m−1 X1,m+1 · · · X1,M

X2,1 X2,2 · · · X2,m−1 X2,m+1 · · · X2,M

...
...

. . .
...

...
. . .

...
XT,1 XT,2 · · · XT,m−1 XT,m+1 · · · XT,M


be the observations at all other nodes, corresponding to the
potential influences on node m.

Consider estimating each row a∗m via the LASSO:

âm = argmin
a
‖ym −X\ma‖22 + λ‖a‖1

node m obs node m inputs
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Regularized maximum likelihood estimator

Let am be the mth row of A and

Â := argmin
A

T−1∑
t=0

M∑
m=1

exp(νm − 〈am, xt〉)− 〈am, xt〉xt+1,m︸ ︷︷ ︸
negative log-likelihood

+ λ‖A‖1,1︸ ︷︷ ︸
regularizer

or, row-wise

âm := argmin
a

T−1∑
t=0

M∑
m=1

exp(νm − 〈a, xt〉)− 〈a, xt〉xt+1,m︸ ︷︷ ︸
negative log-likelihood

+ λ‖a‖1︸ ︷︷ ︸
regularizer
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Main result (sample complexity bound)

If
T & ρ2s logM

and

λ ≈ log2(MT )√
T

,

then with probability at least 1− 1/M

‖Â−A∗‖2F ≤ O
(
eρs log6(MT )

T

)
.

Theory does not depend on all observations coming from
stationary distribution!
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For constant ρ, error grows linearly in s, but only
polylogarithmically in M , showing the benefit of sparsity

Up to log factors, error decreases like 1/T , which will dictate how
much data needs to be collected for a desired accuracy

s
0 10 20 30 40 50 60

M
ea

n 
Sq

ua
re

d 
Er

ro
r

0

1
2
3
4
5
6
7 T = 100

T = 316
T = 1000
T = 3162
T = 10000

MSE vs s

T
101 102 103 104 105

M
ea

n 
Sq

ua
re

d 
Er

ro
r

10-2

10-1

100

101 s = 5
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In both plots the median value of 100 trials is shown, with error bars

denoting the 25th − 75th percentile. M = 20, 100 trials, λ = 0.1/
√
T .
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The role of ρ
Our bounds scale like eρ. Is this tight?

Recall that ρ is the maximum in-degree of any node in the network.
If ρ is large, many nodes can simultaneously inhibit a single node.

Example: star network

A =


0 1 1 . . . 1
1 0 0 . . . 0
...

...
...

. . .
...

1 0 0 . . . 0


Here

E[xt+1] = exp(ν −Axt) ≈ [0, ν2, ν3, ..., νM ]>

rare events on center node ⇒ cannot infer inhibitions
⇒ large errors
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Proof elements

Lasso analysis

1. Bound ‖X>ε‖∞; require λ
to exceed this bound

2. Show ‖X(a∗ − â)‖22 .
λ
√
s‖a∗ − â‖2

3. Show/assume
‖X(a∗ − â)‖22 ≥ κ‖a∗ − â‖22

4. Algebra: ‖a∗ − â‖2 . λ
√
s

κ

Sparse PAR analysis

1.
∥∥∥ 1
T

∑T−1
t=1 xt−1εt,m

∥∥∥
∞
≤

C log3(MT )√
T

≤ λ

2. Show ‖a∗m − âm‖2T ,
1
T

∑
t〈a∗m − âm, xt〉2 ≤

λ
√
ρm‖a∗m − âm‖2

3. Lower bound ω = minimum
eigenvalue of E[xtx>t |xt−1]
to show
‖a∗m − âm‖22 ≤ max{‖a∗m −
âm‖22, ‖a∗m − âm‖2T } ≤

ρmλ2

ω2
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Experimental results

Ground Truth A
Matrix

Estimate for
T = 100

Estimate for
T = 316

Estimate for
T = 1000

Even for a relatively low amount
of data we have picked out most
of the support but with several
spurious artifacts. As the amount
of data increases, fewer of the
erroneous elements are
estimated.
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Conclusions

I Principled mechanisms for
analyzing discrete event data
arising in real physical systems

I Results provide new insights
into how different sensor or
network characteristics influence
sample complexities and
recovery guarantees

I Interesting open questions
remain!

A/D

Digital Micromirror
Device (DMD) Array

Random Number
Generators (RNG)

Image encoded by DMD
and random basis

Scene

Low-cost, fast, sensitive
optical detection with 

single photodiode

Reconstruction

Compressed, encoded
image data

Image

RNG
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Thank you.
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Backup slides
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EDS Imaging Phantom Experiment10

10
Yankovich, Zhang, Oh, Slater, Azough, Freer, Haigh, Willett, and Voyles (2016)

50 / 53



Main result (sample complexity bound)

Let δ ∈ (0, 1). There exist constants c1, c2 > 0 independent of
M, δ, ρ and s such that if

T > c1max
{
ρ2[s logM + log(1/δ)], 1/(Mδ)

}
and

λ =
c2 log

2(MT )√
T

,

then with probability at least 1− δ

‖Â−A∗‖2F ≤ O
(
eρs log6(MT )

T

)
.

Theory does not depend on all observations coming from
stationary distribution!
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For constant ρ, error grows linearly in s, but only
polylogarithmically in M , showing the benefit of sparsity

Up to log factors, error decreases like 1/T , which will dictate how
much data needs to be collected for a desired accuracy
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Beyond inhibitory interactions

We needed to bound two key terms in our analysis:∥∥∥∥∥∑
t

xt−1 (xt,m − E[xt,m|xt−1])

∥∥∥∥∥
∞

and E[xtx>t |xt−1]

This is tractable when all the elements of A∗ are non-negative (i.e.
inhibitory interactions).

Can theory admit stimulatory interactions? Challenge is that
processes become non-stationary and observations unbounded.
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