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Photon limited imaging

Fluorescence or electron microscopy

Spectral imaging

Atmosphere

Night vision




https://srogers.cartodb.com/viz/4a5eb582-23ed-11e4-bd6b-0e230854alcb/embed_map
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Discrete event data is prevalent
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In all these settings, incorporating physical models into

inference is essential
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Today: three examples

> Electron microscopy in
materials science

» Photon-limited compressive
sensing

» Social and biological neural
network inference

NLPCA Denoised N-R Registration
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Example 1:

Electron microscopy in materials science
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Case study: electron disperson spectroscopy imaging
Calcium-doped neodymium titanate! (perovskite ceramic)

Nd Lo

Nd Lj4

1Raw data courtesy of Thomas Slater and Sarah Haigh at University of Manchester. Non-rigid alignment and
averaging by Yankovich, Berkels, Dahmen, Binev, Sanchez, Bradley, Li, Szlufarska & Voyles (2014)



Nalve estimate

Nd Lo observations Estimate via Gaussian
smoothing

Can we
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Case study: EDS imaging

Long exposure times can damage samples

Short exposure times result in small numbers of detected photons
per pixel. Statistical model:

y ~ Poisson(z™),

where z* is the spectral image and y is the noisy observation

Goal: estimate z* from y using Poisson model for noise and

structural models for z*
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Spectral image model

Consider this phantom image:
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Spectral image model

Consider this phantom image:

We want to exploit the redundancy in the image.

Key model idea: the (spectral) image patches lie in a union of

subspaces
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Patch subspaces
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Each patch is a weighted sum of representative patches.
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Image model

Vectorized Patch

Collection of patches

These ideas extend naturally to spectral images
(need to use 3-D patches)
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Patch subspaces

Each patch is a weighted sum of representative patches.
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Image model
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Mathematical model of union of subspaces

U \Val

Y — }r/K

\

Uk Vik}

Matrix factorization associated with a union of subspaces model. The
matrix U has K = 3 groups, each with /K = 3 columns corresponding
to three representative patches per group or nine total representative
patches. U} is the set of representative patches for the k' group. Uik IS
the set of weights for the i*" patch projected onto the k™" subspace. Note
that each patch has nonzero weights for only one of the K subspaces.

15/53



Nonlocal PCA for photon-limited imaging?

> Divide image into patches

» Cluster patches
(using Poisson Bregman divergence to measure similarity of
patches)

» Perform Poisson PCA on each cluster of patches to find
low-dimensional patch subspace
(by minimizing the negative Poisson log-likelihood with rank
constraint)

» For each patch, estimate sparse PCA coefficients
(by minimizing the negative Poisson log-likelihood + sparsity
regularizer)

QSaImon‘ Deledalle, Harmany & Willett (2012)
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Do not underestimate the power of the dark side

Original data Anscombe + BM3D; Poisson non-local
PSNR = 18.99. PCA; PSNR = 23.27.
Makitalo & Foi (2011) Salmon, Deledalle,
Harmany & Willett
(2012)
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EDS Imaging Experimental Results?

Overlaid

NLPCA Denoised N-R Registration

ORI

3Yankovich. Zhang, Oh, Slater, Azough, Freer, Haigh, Willett, and Voyles (2016)
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EDS Imaging Comparison*

CPCA

BM3D

4Yankovich. Zhang, Oh, Slater, Azough, Freer, Haigh, Willett, and Voyles (2016)
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Example 2: Photon-limited compressive
sensing
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Compressive optical systems®

i Scene

Low-cost, fast, sensitive

optical detection with Compressed, encoded
single photodiode image data

Reconstruction Image

Image encoded by DMD
and random basis

Digital Micromirror
Device (DMD) Array T 1 1

Random Number
Generators (RNG)

If we fix our total data acquisition time to 7', then we have an
explicit tradeoff between the number of projections, n, and the

number of photons collected per projection, O(T/n). As n
increases, photon-limitations dominate errors.

5Duarte. Davenport, Laska, Sun, Takhar, Sarvotham, Baron, Wakin & Kelly, Baraniuk (2006)
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The LASSO for sparse inverse problems
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The LASSO estimator:

o1
min ||y — Az|| + 7llz|h
z 2
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Sensing model

We observe
y ~ Poisson(T' Az™)
P
y; ~ Poisson TZAZ;]-Q:; , ie{l,...,n},
j=1
where

>y ezl
» T € R, is the total data acquisition time
» A€ ]0,1]"*P is a known sensing matrix

» ¥ € X, where
X = {:c S ]Rﬁ szl =1, HDTxHo <s+ 1}

for an orthonormal basis D
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This is not your ordinary CS problem

Sensing matrix A has several physical constraints

Think of A;; as likelihood of photon from location j in x* hitting
detector at location :

Am‘ S [0, 1]
1"T4=<1 (columns sum to at most one)
[Azl[r < [l][x vz

Typical CS sensing matrices do not satisfy these constraints!
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Sensing matrix
Start with a sensing matrix A € ﬁ{—l, 1}™*P such that the

product AD satisfies the RIP:
(1= 8116113 < [IADO]5 < (1+6,)[16]3 ¥ 25— sparse §
Let

AL (A+ jﬁnnxpvm.
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Sensing matrix
Start with a sensing matrix A € ﬁ{—l, 1}™*P such that the

product AD satisfies the RIP:
(1= 8116113 < [IADO]5 < (1+6,)[16]3 ¥ 25— sparse §

Let 5
A
AL (A+ %nw) /4.
— “Ideal” zero-mean CS signal
— Renormalized zero-mean CS signal
We observe 201] 1=1Constant offset
— Observed intensity
y ~ Poisson(T'Ax™) 151
~ 10}
. TAx* 3T
~ Poisson + —1,x1 5
4v/n 4n
R,—/ oF
determines 5
variance 1ol

20 40 60 80 100
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Rates for high-intensity settings (large T') °

Theorem:

. I
inf sup E[|7 — 2*3] < T2F
xT J)*GX T

where

X={zeR: : |z]1 =1, |[D"z|o < s+1}

» The data acquisition time 7', which reflects the signal-to-noise
ratio, controls the error decay

» Once the number of measurements, n, is sufficiently large to
ensure a RIP-like sensing matrix, it does not impact errors

6Jiang‘ Raskutti & Willett (2014)
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MSE vs. T": An elbow in the rates

7| =—MSE - DCT sparsity
——MSE - DWT sparsity

10

° 10

10

So far we have only considered high-intensity (large T')

settings. What happens in low intensities?
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Low-intensity settings (small T')

Let z* = 1,x1//P be the average of z*. Then
E[llz — «*(|3] < [l=* — 2¥13

Rates depend on how much z* deviates from its mean ( “residual
energy”), subject to the constraint that ||z*||; = 1 for z* € X

For different sparsifying bases D, this residual energy falls in

different ranges, giving different rates.

7Jiang, Raskutti & Willett (2014)
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MSE vs. T": An elbow in the rates

10'5,

MSE

\l

7/ =—MSE - DCT sglgarsity

107 - fx - 32 - sparsity

—+MSE - DWT sparsity

---||x* - ¥||3 - DWT sparsity |

10° 10"
T
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CS can be suboptimal at low intensities

-5
10 ‘
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s’ = number of non-zero coarse-scale wavelet coefficients, s = 10
is total number of non-zero wavelet coefficients.
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Ramifications

CS conventional wisdom (for Gaussian noise settings) tells us rates
are

» Independent of sparsifying basis

» Not much worse than if we collected non-compressive
measurements

In Poisson noise settings, because of the interaction between
physical constraints and sparsity assumptions

» Rates are highly dependent on sparsifying basis

» Depending on the sparsity assumptions, we can do far better
using non-compressive measurements
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Example 3:

Social and biological neural network
inference
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Cascading chains of interactions

> Internet memes
quickly propagate?

» Gang violence
begets

retaliations?

» Nation-state
conflicts are
accompanied by
proxy wars®

K. Zhou, H. Zha, and L. Song, 2013
bA. Stomakhin, M. B. Short, and A. Bertozzi, 2011
CC. Blundell, K. A. Heller, and J. M. Beck, 2012

Can we infer the underlying network of influences from
observations of individual events?
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Functional neural network connectivity®

We record neurons firing in response to different stimuli.
Can we estimate the functional network?

8Smith & Brown, 2003; Pillow, Shlens, Paninski, Sher, Litke, Chichilnisky, & Simoncelli. 2008

34
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Functional neural network connectivity

Raster plot of M = 36 spike trains. Each row corresponds to a
spike train, with small, black, vertical lines indicating the time of
individual spikes. The vertical red lines indicate the start and end

of a maze exploration period.®

9
http://seis.bris.ac.uk/~mb0184/projects/dtsonn/
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Autoregressive point processes
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Autoregressive point processes
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Autoregressive point processes
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Autoregressive point processes
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Autoregressive point processes
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Autoregressive point processes
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Autoregressive point processes
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Autoregressive point processes
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Autoregressive point processes
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Log-linear Poisson autoregressive process

x441 ~ Poisson (exp{v — A*x}), t=1,...

()
o
o
=

T

0

0

0 20 40 60 80

100

O = O
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Log-linear Poisson autoregressive process

x441 ~ Poisson (exp{v — A*x}), t=1,...,T

N

0 0 0

0 0 1

How should we estimate A*?

» How much sensing time is required for a desired level of
accuracy?

» How do network properties influence achievable accuracy?
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Sparsity
» We assume A* is non-negative and bounded:
A* c [O,Amax}MX]w

> s is the number of non-zero elements in A* (e.g. number of
network edges)

> pis the maximum number of non-zero elements in any row
A* (e.g. maximum in-degree of any node)
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Autoregressive challenges
T . .
Let v, = [X1m Xosm -+ Xp|  be the time series of
observations at the m™ node and let

X1 X2 o Xim—1 Ximtr - Xaiwm
Xo1 Xoo - Xopmo1r Xomgr - Xowm
Xr1 Xro o Xrm—1 X1 - Xroom

be the observations at all other nodes, corresponding to the
potential influences on node m.

Consider estimating each row a},, via the LASSO:

ap, = arg min ||y, — X\maH% + M|l

N

node m obs node m inputs
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Regularized maximum likelihood estimator

Let a,, be the m™ row of A and

T-1 M
A= argmin 3 3 exptm — (ams2)) — (ams 2071 1m+ Al Al
A =0 m=1 et
regularizer
negative log-likelihood
or, row-wise
T-1 M

iy = argmin Y~ > exp(vm — (a.20)) = (@ 2)zerim+ Ml

t=0 m=1 .
regularizer

negative IoE—IikeIihood
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Main result (sample complexity bound)

If

T > p*slog M
and

\ ~ log?(MT)

vT
then with probability at least 1 — 1/M
; Pslog®(MT
JA— a7z <0 <gT()> .

Theory does not depend on all observations coming from

stationary distribution!
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For constant p, error grows linearly in s, but only
polylogarithmically in M, showing the benefit of sparsity

Up to log factors, error decreases like 1/T', which will dictate how
much data needs to be collected for a desired accuracy

—T =100 1 —s=5
5 [l —T=316 _ 10 —3Il3s
5 6 T =1000 S s =50
L |l —1=3162 oo
© 5||—T=10000 g 10
[ ]
z 4 3
o
) 3 4
% 3 c 10
I
] 5}
= 2 =
1

M 107

0
0 10 20 30 40 50 60 10" 10° 10° 10* 10°
s T

MSE vs s MSE vs. T

In both plots the median value of 100 trials is shown, with error bars
denoting the 25" — 75t percentile. M = 20, 100 trials, A = 0.1/v/T.
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The role of p
Our bounds scale like €. Is this tight?

Recall that p is the maximum in-degree of any node in the network.
If p is large, many nodes can simultaneously inhibit a single node.

Example: star network

Here
Elzit1] = exp(v — Axy) =~ [0,v0, 13, ..., Un

rare events on center node = cannot infer inhibitions
= large errors
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Proof elements

Lasso analysis Sparse PAR analysis

1. Bound || X "€||o0; require A 1. H%Z?;ll xt—lét,mH <
. o
to exceed this bound Clog3(MT) <
VT =

2. Show [ X(a" —a)|3 S
Ailla® — il 2. Show |lai, =l -
F 3@, — iy w0)? <

/\\/PmHa;n — Q|2

3. Show/assume
X (a* —a)3 > &lla* — all3
3. Lower bound w = minimum

: T
. A eigenvalue of E[z,z, |z_1]
4. Algebra: ||a* — a2 < ‘f to show
lay, = am|3 < max{|laz, —

~ N 22
a3 llag, — aml7} < P25~
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Experimental results

Even for a relatively low amount
ol of data we have picked out most
Ground Truth A Estimate for of the support but with several
Matrix T =100 spurious artifacts. As the amount
of data increases, fewer of the
erroneous elements are
estimated.

Estimate for Estimate for
T =316 T = 1000
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Conclusions

» Principled mechanisms for
analyzing discrete event data
arising in real physical systems

> Results provide new insights
into how different sensor or
network characteristics influence
sample complexities and
recovery guarantees

> Interesting open questions
remain!

Overlaid

NLPCA Denoised N-R Registration

é
3
8
g
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Thank you.

Big Data to
Knowledge(BD2K)

48/
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Backup slides
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EDS Imaging Phantom Experiment!?

Nd La NPs Ca Ka NPs

Ca Ka Random Ca Ka UniformJO Ko Uniform Ti Ka Uniform

Truth

Noised

Denoised

10Yankovich. Zhang, Oh, Slater, Azough, Freer, Haigh, Willett, and Voyles (2016)
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Main result (sample complexity bound)

Let 6 € (0,1). There exist constants ¢1,ce > 0 independent of
M, é,p and s such that if

T>c max{pQ[slogM—i—log(l/(S)], 1/(Mb)}

and
P log?(MT)
vT
then with probability at least 1 — §
. P 6
4~ 2 < 0 (R ).

Theory does not depend on all observations coming from

stationary distribution!
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For constant p, error grows linearly in s, but only
polylogarithmically in M, showing the benefit of sparsity

Up to log factors, error decreases like 1/T', which will dictate how
much data needs to be collected for a desired accuracy

—T =100 1 —s=5
5 [l —T=316 _ 10 —3Il3s
5 6 T =1000 S s =50
L |l —1=3162 oo
© 5||—T=10000 g 10
[ ]
z 4 3
o
) 3 4
% 3 c 10
I
] 5}
= 2 =
1

M 107

0
0 10 20 30 40 50 60 10" 10° 10° 10* 10°
s T

MSE vs s MSE vs. T

In both plots the median value of 100 trials is shown, with error bars
denoting the 25" — 75t percentile. M = 20, 100 trials, A = 0.1/v/T.
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Beyond inhibitory interactions

We needed to bound two key terms in our analysis:

and Elzx, |2_1]

Z -1 (Ttm — E[ze m|2i—1])
f

o

This is tractable when all the elements of A* are non-negative (i.e.
inhibitory interactions).

Can theory admit stimulatory interactions? Challenge is that
processes become non-stationary and observations unbounded.
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