Towards optimal algorithms for prediction with expert advice

Nick Gravin, Yuval Peres, Balasubramanian Sivan Microsoft Research

Prediction with expert advice

- Sequential decision process in adversarial setting
- For each time t = 1 to stopping time:
 - Player picks one of k experts to follow, say J = J(t)
 - Adversary sets gain $g_{it} \in [0,1]$ for each expert i (without knowing J(t))
 - Player gains g_{Jt} ; all gains are revealed to player

 11	2	 tt-11	ťť	
H 111	H 1122	 99 11, <i>tt</i> —11	g ?1t	
H 2211	G 7272	 H2, #—11	<i>9</i> 2t	

Finite and Geometric Horizons

- \succ Finite horizon: Stopping time is T
- \succ Geometric horizon: At each step, stop with probability δ
 - Stopping time is geometric with mean $\frac{1}{\delta}$
 - Equivalent to time discounted future

Strategies

- > $\boldsymbol{g}_{[0,t-1]}$: Vector of gains for all steps before t
- > $G_i(t) = \sum_{s=1}^t g_{is}$ (cumulative gains)
- ➢ Adversary strategy: A distribution D_t for $g_t ∈ [0,1]^k$ (depending on $g_{[0,t-1]}$)
 - <u>Binary adversaries are most powerful</u>: Restrict to $\boldsymbol{g}_t \in \{0,1\}^k$
- Player strategy: A distribution A_t for $J_t \in \{1, ..., k\}$ (depending on $\boldsymbol{g}_{[0,t-1]}$)
 - Player's gain at time t is $g_{J_t,t}$

Regret:
$$R_T(D, A) = \boldsymbol{E}[\max_{i \in [k]} G_i(T) - \sum_{t=1}^T g_{J_t, t}]$$

Minimax regret

- Worst-case regret for $A: \max_{D} R_T(D, A)$
- Minimax regret: $\min_{A} \max_{D} R_T(D, A)$
- > <u>von Neumann's Minimax theorem</u> $\min_{A} \max_{D} R_T(D, A) = \max_{D} \min_{A} R_T(D, A)$
- Randomization is crucial!
 - deterministic player will get -1 payoff
 - 50/50 randomization will get 0 payoff

		Heads	Tails			
Row	Heads	(1, -1)	(-1, 1)			
	Tails	(-1, 1)	(1, -1)			

Column

What's known?

Multiplicative weights algorithm:

- Given cumulative gains $G_1(t-1), \dots, G_k(t-1)$, follow expert *i* at *t* with probability $\frac{e^{\eta G_i(t-1)}}{\sum_j e^{\eta G_j(t-1)}}$, where $\eta = \sqrt{\frac{8 \ln k}{T}}$
- > Multiplicative weights algorithm yields regret at most $\sqrt{\frac{T \ln k}{2}}$
- Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, Warmuth (1997)
- Asymptotically optimal as $T, k \rightarrow \infty$

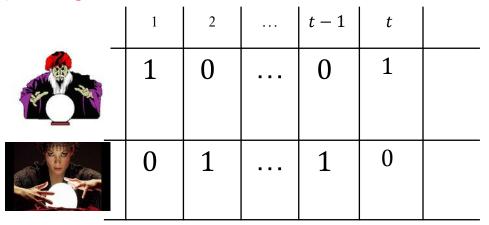
The question

For a constant number of experts:

- 1. What is the optimal algorithm?
- 2. What is the optimal adversary?
- 3. What is the optimal regret value?

Two experts (Cover'1965)

Optimal adversary: Advance expert 1 alone w.p. ¹/₂ and expert 2 alone w.p. ¹/₂ (experts always disagree)



• Optimal regret (finite horizon): Optimal regret R_T is precisely half the expected distance travelled by a simple random walk in T steps.

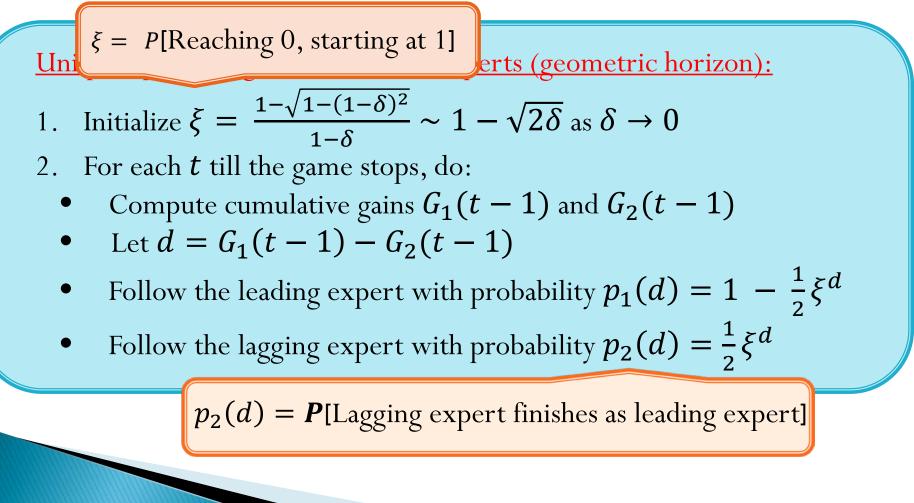
• As
$$T \to \infty$$
, the optimal regret $R_T \sim \sqrt{\frac{T}{2\pi}}$

Optimal regret (geometric horizon): Optimal regret R_{δ} is $\frac{1-\delta}{2\sqrt{1-(1-\delta)^2}}$

As $\delta \to 0$, the optimal regret $R_{\delta} \sim \frac{1}{2} \sqrt{\frac{1}{2\delta}}$

Our results (2 experts, geometric horizon)

Convention: Number experts in descending order of cumulative gains



2 experts, geometric horizon

<u>Unique optimal algorithm for two experts (geometric horizon):</u> For each *t* till the game stops, do:

- Follow laggard with the probability he finishes as leader
 - Depends on *d*
- Follow leader with remaining probability

2 experts, finite horizon

<u>Unique optimal algorithm for two experts (finite horizon)</u>: For each $t = 1 \dots T$, do:

- Follow laggard with the probability he finishes as leader
 - Depends on d and T t
- Follow leader with remaining probability

Comparison with multiplicative weights

Optimal algorithm for two experts (geometric horizon):

- Follow the leading expert with probability $p_1(d) = 1 \frac{1}{2}\xi^d$
- Follow the lagging expert with probability $p_2(d) = \frac{1}{2}\xi^d$

<u>Multiplicative weights algorithm for two experts (geometric horizon):</u>

- Follow the leading expert with probability $p_1(d) = \frac{e^{\eta d}}{e^{\eta d} + 1}$
- Follow the lagging expert with probability $p_2(d) = \frac{1}{e^{\eta d} + 1}$

Optimal algorithm cannot be expressed as a MWA

MWA's known regret of $\sqrt{\frac{T \ln 2}{2}}$ is 47.5% larger (prove a tight lower bound)

Lower bound for multiplicative weights

k = Number of expertsFinite horizon: T = No. of stepsGeometric horizon: $\delta = P[\text{Stopping in any given round}]$ > What was known: As $T \to \infty, k \to \infty$, MWA regret $\sim \sqrt{\frac{T \ln k}{2}}$ As $\delta \to 0, k \to \infty$, MWA regret $\sim \sqrt{\frac{\ln k}{2\delta}}$

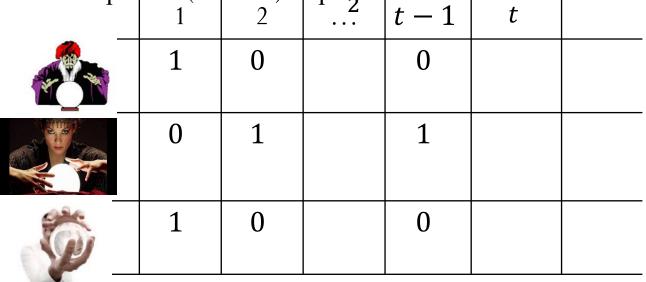
> We show:

• As
$$T \to \infty$$
, MWA regret $\ge \frac{1}{2} \sqrt{\frac{T \ln k}{2}}$ for every k
• As $\delta \to 0$, MWA regret $\ge \frac{1}{2} \sqrt{\frac{\ln k}{2\delta}}$ for every k

MWA's regret for k = 2 is more than 10% larger than optimal regret

Our results (three experts)

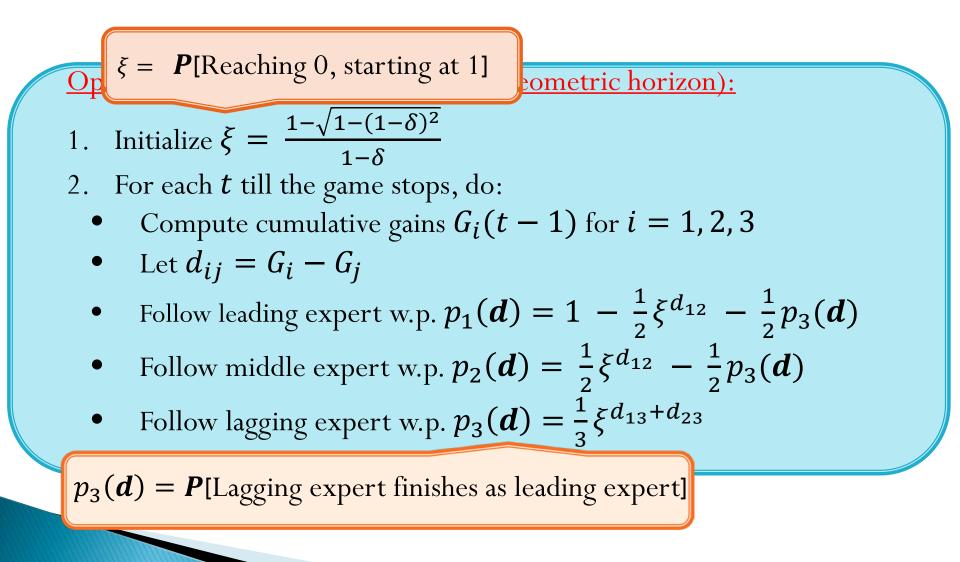
- Optimal adversary (geometric horizon, $\delta \rightarrow 0$):
 - Advance experts 1 and 3 (leading and lagging) together w.p. $\frac{1}{2}$
 - Advance expert 2 (middle) w.p. $\frac{1}{2}$



Our results (three experts)

- Optimal adversary (geometric horizon, $\delta \rightarrow 0$):
- Advance experts 1 and 3 (leading and lagging) together w.p. $\frac{1}{2}$
- Advance expert 2 (middle) w.p. $\frac{1}{2}$
- <u>Optimal regret (geometric horizon)</u>: Optimal regret R_{δ} is $\frac{2}{3} \frac{1-\delta}{\sqrt{1-(1-\delta)^2}}$ • As $\delta \to 0$, the optimal regret $R_{\delta} \sim \frac{2}{3} \sqrt{\frac{1}{2\delta}}$

Our results (three experts)



Conjectured algorithm for k experts

Optimal algorithm for k experts;

For each $t = 1 \dots$ stopping-time, do:

• Follow expert *i* w.p. *P* [Expert *i* finishes as leader]

Q: How to compute P [Expert i finishes as leader]? A: We need to know how the optimal adversary sets expert gains

Q: What is the optimal adversary? A: Coming soon

Connections between finite and geometric horizons

Finite and geometric horizons

- Q: Suppose in the geometric horizon model, the precise stopping time is revealed to both player and adversary. Who benefits from this?
 - a) adversary benefits: $R_{\delta} \leq \sum_{T=0}^{\infty} \delta(1-\delta)^T R_T$?
 - b) player benefits: \geq ? • c) neither benefits: = ?

 \succ Conjecture: As $\delta \rightarrow 0$, neither benefits

$$R_{\delta} \sim \sum_{T=0}^{\infty} \delta (1-\delta)^T R_T$$
 as $\delta \to 0$

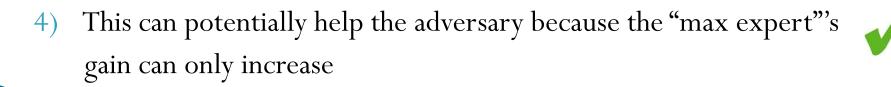
True for k = 2 for all \$\delta\$; Supported by simulations for larger k
If true, \$R_{\delta} ~ R_T \frac{\sqrta \pi}{2}\$ as \$\delta = \frac{1}{T} \rightarrow 0\$

Computing the optimal adversary

Optimal adversary is balanced

<u>Balanced adversary</u>: The distribution D_t advances all experts equally in expectation, <u>irrespective of the history of cumulative gains</u> <u>Proof</u>:

- 1) If an optimal adversary is not balanced at t, the best-response algorithm for this adversary will follow the expert with the largest expected gain
- 2) At time t, increase the expected gains of all other experts to match the <u>largest expected gain</u>
- 3) This doesn't increase gain of the best-response algorithm 🗙



Balanced adversary

We saw: Optimal player forces optimal adversary to be balanced

> Against balanced adversary, regret is independent of player algorithm

Computational device: Simple-minded algorithm that follows each expert w.p. ¹/_k
 Regret: R_T = E [max G_i(T) - ¹/_k∑^k_{i=1}G_i(T)]

max – average

Why does adversary alone benefit?

- Q: Suppose in the geometric horizon model, the precise stopping time is revealed to both player and adversary. Who benefits from this?
 - a) adversary benefits: $R_{\delta} \leq \sum_{T=0}^{\infty} \delta (1-\delta)^T R_T$
 - b) player benefits:
 - c) neither benefits:

Optimal adversary for k = 2 \gg Regret: $R_T = E\left[\max(G_1(T), G_2(T)) - \frac{G_1(T) + G_2(T)}{2}\right]$ $= E\left[\frac{|G_1(T) - G_2(T)|}{2}\right]$ $= \frac{1}{2}E\left[\sum_{i=1}^T X_i\right]$ where $X_t = g_{1t} - g_{2t} \in \{-1, 0, 1\}$

 $\geq E[X_t] = 0$ (Balanced adversary)

> Only choice: what is the probability of $X_t = 0$?

 \succ To maximize expected absolute distance from origin this probability is 0

Optimal adversary for k = 2 (Cover'65)

- > Adversary's available actions: $\{1\}, \{2\}, \{12\}, \{\}$
- Goal: Construct a balanced distribution <u>at every step</u> over these 4 actions to optimize regret
- > Actions {12} and {} result in $g_{1t} g_{2t} = 0$, and should receive 0 probability

Optimal adversary:

• w.p. $\frac{1}{2}$ advance expert 1 alone: $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

w.p. $\frac{1}{2}$ advance expert 2 alone: $\begin{pmatrix} 0\\1 \end{pmatrix}$

1	2	 t-1	t	
1	0	 0	1	
0	1	 1	0	

Optimal adversary for general k

> Adversary's available actions: All subsets of $\{1, 2, ..., k\}$

> Goal: Construct a balanced distribution <u>at every step</u> over these 2^k actions to optimize regret

- At every step, we have a convex polytope of balanced distributions to pick from
- > Exponentially many vertices for this polytope

Optimal Adversary + Algorithm

Optimal alg (k = 2, geometric horizon)

 \succ Normalize cumulative gain of leading expert to be 0;

- > Lagging expert's gain is $x \leq 0$
- > Optimal algorithm's probabilities: $p_1(x)$, $p_2(x)$
- > f(x): Max regret starting at (0, x)

Optimal alg (
$$k = 2$$
, geometric horizon)

$$f(x) = \delta \cdot 0 + (1 - \delta) \cdot \max = \begin{cases} f(x - 1) + 1 - p_1(x) & \text{when } \{1\} \\ f(x + 1) - p_2(x) & \text{when } \{2\} \end{cases}$$

 \blacktriangleright Optimal alg makes the optimal adversary indifferent between $\{1\}$ and $\{2\}$

So
$$f(x) = (1 - \delta) \left[\frac{f(x-1) + f(x+1)}{2} \right]$$

Solve the 2-step recurrence: $p_2(x) = \frac{1}{2}\xi^{-x} = 1 - p_1(x)$

> where $\xi \in [0,1]$ satisfies $\xi^2 - \frac{2}{1-\delta}\xi + 1 = 0$

Optimal adversary for k = 3

Adversary maximizes: E[Max – average]

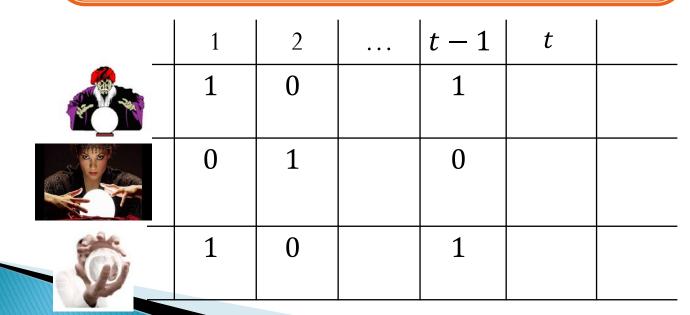
- \geq E[Max average] grows only when top 2 experts collide
- How to maximize such collisions?
- \geq Push expert 2 up by collisions with expert 3

Optimal adversary for k = 3

- $\succ Adversary's available actions: \{1\}, \{2\}, \{3\}, \{12\}, \{13\}, \{23\}, \{123\}, \{\}\}$
- Goal: Construct a balanced distribution <u>at every step</u> over these 8 actions to optimize regret

Optimal adversary (as $\delta \rightarrow 0$):

- Advance experts 1 and 3 w.p. 1/2
- Advance expert 2 w.p. 1/2

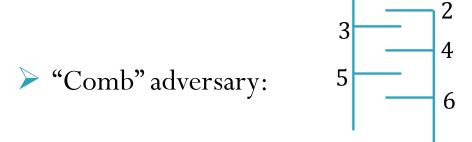


Optimal adversary conj. for general \boldsymbol{k}

- > Adversary's available actions: all subsets of $\{1, 2, ..., k\}$
- Sol: Construct a balanced distribution <u>at every step</u> over these 2^k actions to optimize regret

Optimal adversary conjecture (as $\delta \rightarrow 0$):

- Advance experts $\{1,3,5,\ldots\}$ w.p. 1/2
- Advance experts $\{2,4,6,\ldots\}$ w.p. 1/2



Generalizes the optimal adversary for k = 2,3

Optimality supported by computer simulations

Computing regret for comb adversary

Our results (four experts)

• We compute the regret for the comb adversary for k = 4

Comb adversary:

- Advance experts $\{1,3\}$ w.p. 1/2
- Advance experts {2,4} w.p. 1/2

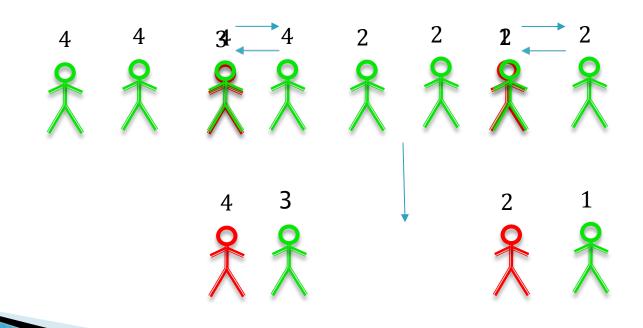
• Comb adversary's regret $\sim \frac{\pi}{4} \frac{1}{\sqrt{2\delta}}$

• Conjecture: $\frac{\pi}{4} \frac{1}{\sqrt{2\delta}}$ is the asymptotically minimax regret

Comb adversary for k = 4

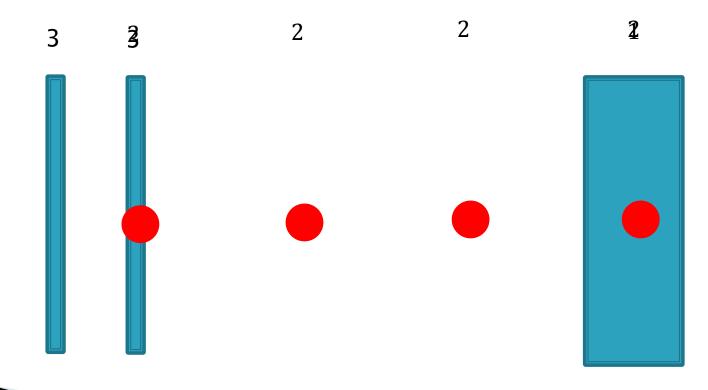
Comb adversary:

- Advance experts $\{1,3\}$ w.p. 1/2
- Advance experts {2,4} w.p. 1/2



Comb adversary for k = 4

- \triangleright Distance between 1 and 3, is same as distance between 2 and 4
- \succ Keep track of just 1, 2 and 3
- Mapping to random walk of a particle between a fixed reflecting wall and movable wall



Comb adversary's regret Simulations: $R_{\delta} \sim R_{\delta}(\text{comb}) \sim \frac{0.785}{\sqrt{2\delta}}$ > Max-average increases in expectation by $\frac{1}{2}$ exactly when W_1 (fixed wall) and P_2 (the particle) coincide > To compute: $R_{\delta}(\text{comb}) = \frac{1}{2}E[\# \text{ of visits of } P_2 \text{ to } W_1]$ \succ Let ℓ = dist(W_1, W_3) Random walk magic: ∞ ſ∞ 1 1 dx

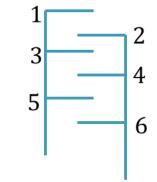
$$R_{\delta}(\text{comb}) \sim \sum_{\ell=1}^{\infty} \overline{\cosh^3(\ell\sqrt{2\delta})} \sim \overline{\sqrt{2\delta}} \int_0^{\infty} \overline{\cosh^3(x)}$$

$$\frac{\pi}{4} = 0.785 \dots$$

Conjectured optimal algorithm+adversary

Optimal adversary: Comb adversary?

- Advance experts $\{1,3,5,...\}$ w.p. 1/2
- Advance experts $\{2, 4, 6, ...\}$ w.p. 1/2



<u>Optimal algorithm: Probability matching?</u> For each t till the game stops, do:

Follow expert *i* w.p. *P*_{comb} [Expert *i* finishes as leader]

Thanks for listening!