Geometric Manifold Learning and Collective Variables

Marina Meilă

University of Washington mmp@stat.washington.edu

im MPS2016 5/12/2016

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Outline

What is non-linear dimension reduction?

Metric Manifold Learning

Estimating the Riemannian metric

Riemannian Relaxation

Learning manifolds with vector fields

Understanding scientific data (in progress)

Spectra of galaxies Exploring the configuration space of aspirin

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

- ▶ high-dimensional data $p \in \mathbb{R}^D$, $D = 64 \times 64$
- \triangleright can be described by a small number *d* of continuous parameters

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Usually, large sample size n

Why?

- To save space and computation
 - $n \times D$ data matrix $\rightarrow n \times s$, $s \ll D$
- To use it afterwards in (prediction) tasks
- To understand the data better
 - preserve large scale features, suppress fine scale features

Why?

- To save space and computation
 - $n \times D$ data matrix $\rightarrow n \times s$, $s \ll D$
- To use it afterwards in (prediction) tasks
- To understand the data better
 - preserve large scale features, suppress fine scale features

Richard Powell - The Hertzsprung Russell Diagram, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=1736396

Why?

- To save space and computation
 - ▶ $n \times D$ data matrix $\rightarrow n \times s$, $s \ll D$
- To use it afterwards in (prediction) tasks
- To understand the data better
 - preserve large scale features, suppress fine scale features

Input Data p₁,... p_n, embedding dimension m, neighborhood scale parameter ε

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

- Input Data p₁,... p_n, embedding dimension m, neighborhood scale parameter ε
- ▶ Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$

- ▶ Input Data $p_1, ..., p_n$, embedding dimension *m*, neighborhood scale parameter ϵ
- ▶ Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$
- ► Construct a *n* × *n* matrix: its leading eigenvectors are the coordinates φ(*p*_{1:n})

- ▶ Input Data $p_1, ..., p_n$, embedding dimension *m*, neighborhood scale parameter ϵ
- ▶ Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$
- ► Construct a *n* × *n* matrix: its leading eigenvectors are the coordinates φ(*p*_{1:n})

LAPLACIAN EIGENMAPS/DIFFUSION MAPS [Belkin,Niyogi 02, Nadler et al 05]

Construct similarity matrix

$$S = [S_{\rho p'}]_{p,p' \in \mathcal{D}}$$
 with $S_{\rho p'} = e^{-rac{1}{\epsilon}||p-p'||^2}$ iff p,p' neighbors

- Construct Laplacian matrix $L = I T^{-1}S$ with T = diag(S1)
- Calculate $\phi^{1...m}$ = eigenvectors of *L* (smallest eigenvalues)
- coordinates of $p \in D$ are $(\phi^1(p), \ldots \psi^m(p))$

- Input Data p₁,... p_n, embedding dimension m, neighborhood scale parameter ε
- ▶ Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$
- ► Construct a *n* × *n* matrix: its leading eigenvectors are the coordinates φ(*p*_{1:n})

ISOMAP [Tennenbaum, deSilva & Langford 00]

 Find all shortest paths in neighborhood graph, construct matrix of distances

$$M = [distance_{pp'}^2]$$

► use *M* and Multi-Dimensional Scaling (MDS) to obtain *m* dimensional coordinates for *p* ∈ D

A toy example (the "Swiss Roll" with a hole)

points in $D \ge 3$ dimensions

same points reparametrized in 2D

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A toy example (the "Swiss Roll" with a hole)

points in $D \ge 3$ dimensions

same points reparametrized in 2D

Desired output

Embedding in 2 dimensions by different manifold learning algorithms Input

How to evaluate the results objectively?

- which of these embedding are "correct"?
- if several "correct", how do we reconcile them?

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

if not "correct", what failed?

Algorithms Multidimensional Scaling (MDS), Principal Components (PCA), Isomap, Locally Linear Embedding (LLE), Hessian Eigenmaps (HE), Laplacian Eigenmaps (LE), Diffusion Maps (DM)

Outline

What is non-linear dimension reduction?

Metric Manifold Learning

Estimating the Riemannian metric

Riemannian Relaxation

Learning manifolds with vector fields

Understanding scientific data (in progress)

Spectra of galaxies Exploring the configuration space of aspirin

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

Outline

What is non-linear dimension reduction?

Metric Manifold Learning Estimating the Riemannian metric

Riemannian Relaxation

Learning manifolds with vector fields

Understanding scientific data (in progress)

Spectra of galaxies Exploring the configuration space of aspirin

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

Preserving topology vs. preserving (intrinsic) geometry

▶ Algorithm maps data $p \in \mathbb{R}^D \longrightarrow \phi(p) = x \in \mathbb{R}^m$

- Mapping $\mathcal{M} \longrightarrow \phi(\mathcal{M})$ is diffeomorphism preserves topology often satisfied by embedding algorithms
- Mapping ϕ preserves
 - distances along curves in M
 - angles between curves in M
 - areas, volumes

Preserving topology vs. preserving (intrinsic) geometry

- ▶ Algorithm maps data $p \in \mathbb{R}^D \longrightarrow \phi(p) = x \in \mathbb{R}^m$
- ► Mapping M → φ(M) is diffeomorphism preserves topology often satisfied by embedding algorithms
- Mapping ϕ preserves
 - distances along curves in M
 - angles between curves in M
 - areas, volumes
 - ... i.e. ϕ is isometry
 - For most algorithms, in most cases, ϕ is not isometry

Preserves topology

Preserves topology + intrinsic geometry

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQの

Our approach: Metric Manifold Learning

[Perrault-Joncas,M 10]

Given

mapping \u03c6 that preserves topology true in many cases

Objective

 augment φ with geometric information g so that (φ, g) preserves the geometry

Dominique Perrault-Joncas

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

Our approach: Metric Manifold Learning

[Perrault-Joncas,M 10]

Given

mapping \u03c6 that preserves topology true in many cases

Objective

- augment φ with geometric information g so that (φ, g) preserves the geometry
- g is the Riemannian metric.
- Fact All geometric quantities on \mathcal{M} involve g distances, volumes, angles, ...

Dominique Perrault-Joncas

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQの

All geometric quantities on $\mathcal M$ involve g

Volume element on manifold

$$Vol(W) = \int_W \sqrt{\det(g)} dx^1 \dots dx^d$$
.

Length of curve c

$$l(c) = \int_{a}^{b} \sqrt{\sum_{ij} g_{ij} \frac{dx^{i}}{dt} \frac{dx^{j}}{dt}} dt,$$

- Under a change of parametrization, g changes in a way that leaves geometric quantities invariant
- Current algorithms: estimate M
- This talk: estimate g along with M (and in the same coordinates)

g for Sculpture Faces

- n = 698 gray images of faces in $D = 64 \times 64$ dimensions
 - head moves up/down and right/left

LTSA Algoritm

Laplacian Eigenmaps

Metric Manifold Learning summary

Metric Manifold Learning = estimating (pushforward) Riemannian metric G_i along with embedding coordinates x_i

Why useful

- Measures local distortion induced by any embedding algorithm $G_i = I_d$ when no distortion at p_i
- Corrects distortion
 - Integrating with the local volume/length units based on G_i
 - Riemannian Relaxation (coming next)
- Algorithm independent geometry preserving method
- Outputs of different algorithms on the same data are comparable

Models built from compressed data are more interpretable

Calculating distances in the manifold $\ensuremath{\mathcal{M}}$

- Geodesic distance = shortest path on \mathcal{M}
- should be invariant to coordinate changes

Laplacian Eigenmaps

Calculating distances in the manifold $\ensuremath{\mathcal{M}}$

true distance d = 1.57

		Shortest	Metric	Rel.
Embedding	f(p) - f(p')	Path <i>d</i> _G	â	error
Original data	1.41	1.57	1.62	3.0%
Isomap <i>s</i> = 2	1.66	1.75	1.63	3.7%
LTSA <i>s</i> = 2	0.07	0.08	1.65	4.8%
LE <i>s</i> = 3	0.08	0.08	1.62	3.1%

Calculating Areas/Volumes in the manifold

(Results for Hourglass data)

	true area $= 0.84$				
			Rel.		
Embedding	Naive	Metric	err.		
Original data	0.85 (0.03)	0.93 (0.03)	11.0%		
Isomap	2.7	0.93 (0.03)	11.0%		
LTSA	1e-03 (5e-5)	0.93 (0.03)	11.0%		
LE	1e-05 (4e-4)	0.82 (0.03)	2.6%		

<□> <圖> <圖> < => < => < => < => <0 < 0<</p>

Semisupervised learning with Gaussian Processes on Manifolds

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへ()・

Outline

What is non-linear dimension reduction?

Metric Manifold Learning Estimating the Riemannian metric

Riemannian Relaxation

Learning manifolds with vector fields

Understanding scientific data (in progress)

Spectra of galaxies Exploring the configuration space of aspirin

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Can we sometimes dispense with g?

Idea

> If embedding is isometric, then push-forward metric is identity matrix I_d

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

Can we sometimes dispense with g?

Idea

> If embedding is isometric, then push-forward metric is identity matrix I_d

Idea, formalized

- Measure distortion by loss = $\sum_{i=1}^{n} ||G_i I_d||^2$
 - where G_i is R. metric estimate at point i
 - I_d is identity matrix
- Iteratively change embedding x_{1:n} to minimize loss

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQの

Can we sometimes dispense with g?

Idea

> If embedding is isometric, then push-forward metric is identity matrix I_d

Idea, formalized

- Measure distortion by loss = $\sum_{i=1}^{n} ||G_i I_d||^2$
 - where G_i is R. metric estimate at point i
 - I_d is identity matrix
- Iteratively change embedding x_{1:n} to minimize loss

More details

- loss is non-convex
- || || is derived from operator norm
- Extends to s > d embeddings loss $= \sum_{i=1}^{n} ||G_i U_i U_i^T||_{\sigma}^2$
- Extensions to principal curves and surfaces [Ozertem, Erdogmus 11], subsampling, non-uniform sampling densities

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQの

Can we sometimes dispense with g?

Idea

> If embedding is isometric, then push-forward metric is identity matrix I_d

Idea, formalized

- Measure distortion by loss = $\sum_{i=1}^{n} ||G_i I_d||^2$
 - where G_i is R. metric estimate at point i
 - I_d is identity matrix
- Iteratively change embedding x_{1:n} to minimize loss

More details

- loss is non-convex
- II II is derived from operator norm
- Extends to s > d embeddings loss $= \sum_{i=1}^{n} ||G_i U_i U_i^T||_{\sigma}^2$
- Extensions to principal curves and surfaces [Ozertem, Erdogmus 11], subsampling, non-uniform sampling densities

Implementation

- Initialization with e.g Laplacian Eigenmaps
- Projected gradient descent to (local) optimum

Riemannian Relaxation of a deformed sphere

Riemannian Relaxation of a deformed sphere

SAR
Outline

What is non-linear dimension reduction?

Metric Manifold Learning Estimating the Riemannian metric

Riemannian Relaxation

Learning manifolds with vector fields

Understanding scientific data (in progress)

Spectra of galaxies Exploring the configuration space of aspirin

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

Data as directed transitions

- Observations are
 - transitions between (discrete) states
 - or random walks on a graph
 - or weighted graph
- ▶ Transitions (weights) may not be symmetric ($W_{ij} \neq W_{ji}$)
- Example: the National Longitudinal Survey of Youth (NLSY)
 - "carreer" sequences of length 16 years × 4 quarters (people aged 14–16 followed to age 30–32)
 - jobs (occupation, industry) represented by integer codes

person 1:	19	19	3	3	3	3	3	3	3	3	3	3	3	10	10
person 2:	3	3	3	3	3	3	3	1	3	1	3	1	3	1	35
person 3:	152	5	71	1	1	1	71	36	36	5	4	5	5	4	4
person 4:	3	3	3	3	9	3	3	8	2	8	5	5	8	239	239

Problem how to embed a directed graph with directed edges?

The NLSY data

data matrix 7,711 paths $\times 64$ quarters

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problem how to embed a directed graph with directed edges?

Generative model

Observe a directed graph G, with n nodes, having directed weights $W = [W_{ij}]$ associated with its edges $(W_{ij} \neq W_{ji})$ Assume Nodes of G sampled from manifold \mathcal{M} of dimension d

- according to some distribution $p(x) = e^{-U(x)}$
- edges weights W_{ij} are assigned by a directed similarity kernel $k_{\epsilon}(x_i, x_j)$ with

$$k_{\epsilon}(x,y) = \underbrace{h_{\epsilon}(x,y)}_{\text{symmetric}} + \underbrace{a_{\epsilon}(x,y)}_{\text{skew-symmetric}}$$

• $a_{\epsilon}(x_i, x_j)$ originates from a vector field **r** on \mathcal{M}

Wanted Estimates of manifold \mathcal{M} , density $p = e^{-U}$, vector field **r** from W

Generative model

Wanted Estimates of manifold \mathcal{M} , density $p = e^{-U}$, vector field **r** from W

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Directed Embedding Algorithm

Input: Affinity matrix $W_{i,j}$ and embedding dimension m, $(m \ge d)$

1. $S \leftarrow (W + W^T)/2$ Estimate the Diffusion Maps embedding 2. $q_i \leftarrow \sum_{i=1}^n S_{i,i}, \ Q = diag(q)$ 3. $V \leftarrow Q^{-1}SQ^{-1}$ 4. $q_i^{(1)} \leftarrow \sum_{i=1}^n V_{i,i}, \ Q^{(1)} = diag(q^{(1)})$ 5. $H_{ss,n}^{(1)} \leftarrow Q^{(1)^{-1}}V$ 6. Compute ϕ the m + 1 largest right eigenvectors of $H_{ss.n}^{(1)}$ and discard ϕ_1 . 7. Compute π left principal e-vector of $H_{ss,n}^{(1)}$. Estimate the density 8. $\pi \leftarrow \pi / \sum_{i=1}^{n} \pi_i$. 9. $p_i \leftarrow \sum_{i=1}^n W_{i,i}, P = diag(p)$ Estimate the vector field r 10. $T \leftarrow P^{-1}WP^{-1}$ 11. $p_i^{(1)} \leftarrow \sum_{i=1}^n T_{i,i}, P^{(1)} = diag(p^{(1)})$ 12. $H_{aa,n}^{(1)} \leftarrow P^{(1)^{-1}}T$ 13. $R \leftarrow (H_{aa,n}^{(1)} - H_{ss,n}^{(1)})\phi/2$. Columns 2 to m+1 of R are the vector field components in the direction of the corresponding coordinates of the

embedding.

Examples – toy data

Input Output

・ロ・・ (四・・ (田・・ (日・))

Kernels, renormalized kernels, transport operators

The asymmetric transition kernel

 $k_{\epsilon}(x,y) = h_{\epsilon}(x,y) + a_{\epsilon}(x,y)$

- 1. $h_{\epsilon}(x, y) = h_{\epsilon}(y, x)$ symmetric $h_{\epsilon}(x, y) = \epsilon^{-D} \exp(\frac{||x-y||^2}{\epsilon^2})$ ϵ = kernel bandwidth
- 2. $a_{\epsilon}(x, y) = -a_{\epsilon}(y, x)$ skew-symmetric

Set

$$a_{\epsilon}(x,y) = \frac{1}{2}(y-x) \cdot \mathbf{r}(x,y)h_{\epsilon}(x,y)$$

and $\mathbf{r}(x, y) = \mathbf{r}(y, x)$ vector field This form is generic Transport operators

7

$$p_{\epsilon}(x) = \int_{\mathcal{M}} k_{\epsilon}(x, y) p(y) dy$$
$$F_{\epsilon}[f](x) = \int_{\mathcal{M}} \frac{k_{\epsilon}(x, y)}{p_{\epsilon}(x)} f(y) p(y) dy$$

Renormalized kernels [Lafon,Coifman 06]

$$k_{\epsilon}^{(lpha)}(x,y) = rac{k_{\epsilon}(x,y)}{p_{\epsilon}^{lpha}(x)p_{\epsilon}^{lpha}(y)}\,, ext{ with } rac{lpha}{lpha} \in [0,1]$$

and
$$p_{\epsilon}^{(\alpha)}(x) = \int_{\mathcal{M}} k_{\epsilon}^{(\alpha)}(x,y)p(y)dy.$$

Wanted
$$\lim_{\epsilon \to 0, n \to \infty} \frac{(T_{\epsilon} - I)}{\epsilon}$$

This is the continuous limit of "diffusion maps"-type operators computed on graphs.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Limits of diffusion operators [Perrault-Joncas, M NIPS 11]

$$H_{\epsilon} = \lim_{\epsilon \to 0, n \to \infty} \frac{(T_{\epsilon} - I)f}{\epsilon}$$

Operators T_{ϵ} from α -renormalized, symmetric or asymmetric kernels 1. $H_{aa}^{(\alpha)}$: asymmetric $k_{\epsilon}^{(\alpha)}$ with assymmetric $p_{\epsilon} = \int_{M} k_{\epsilon}(x, y) p(y) dy$ 2. $H_{sa}^{(\alpha)}$: symmetric $h_{\epsilon}^{(\alpha)}$ with assymmetric p_{ϵ} 3. $H_{as}^{(\alpha)}$: asymmetric $k_{\epsilon}^{(\alpha)}$ with symmetric $q_{\epsilon} = \int_{M} h_{\epsilon}(x, y) p(y) dy$ 4. $H_{ss}^{(\alpha)}$: symmetric $h_{\epsilon}^{(\alpha)}$ with symmetric q_{ϵ} $H_{aa}^{(\alpha)}[f] = \Delta f - 2(1-\alpha)\nabla U \cdot \nabla f + \mathbf{r} \cdot \nabla f$ $H_{\rm as}^{(\alpha)}[f] = \Delta f - 2(1-\alpha)\nabla U \cdot \nabla f - cf + (\alpha-1)(\mathbf{r} \cdot \nabla U)f - (\nabla \cdot \mathbf{r})f + \mathbf{r} \cdot \nabla f$ $H_{sa}^{(\alpha)}[f] = \Delta f - 2(1-\alpha)\nabla U \cdot \nabla f + (c + \nabla \cdot r + (\alpha - 1)\mathbf{r} \cdot \nabla U)f$ $H_{ss}^{(\alpha)}[f] = \Delta f - 2(1-\alpha)\nabla U \cdot \nabla f$

Limits of diffusion operators [Perrault-Joncas, M NIPS 11]

$$H_{\epsilon} = \lim_{\epsilon \to 0, n \to \infty} \frac{(T_{\epsilon} - I)f}{\epsilon}$$

Operators T_{ϵ} from α -renormalized, symmetric or asymmetric kernels 1. $H_{aa}^{(\alpha)}$: asymmetric $k_{\epsilon}^{(\alpha)}$ with assymmetric $p_{\epsilon} = \int_{M} k_{\epsilon}(x, y) p(y) dy$ 2. $H_{sa}^{(\alpha)}$: symmetric $h_{\epsilon}^{(\alpha)}$ with assymmetric p_{ϵ} 3. $H_{as}^{(\alpha)}$: asymmetric $k_{\epsilon}^{(\alpha)}$ with symmetric $q_{\epsilon} = \int_{M} h_{\epsilon}(x, y) p(y) dy$ 4. $H_{ss}^{(\alpha)}$: symmetric $h_{\epsilon}^{(\alpha)}$ with symmetric q_{ϵ} $\alpha = 1$ $H_{aa}^{(1)}[f] = \Delta f - 2(1-1)\nabla U \cdot \nabla f + \mathbf{r} \cdot \nabla f$ $H_{\rm ac}^{(1)}[f] = \Delta f - 2(1-1)\nabla U \cdot \nabla f - cf + (1-1)(\mathbf{r} \cdot \nabla U)f - (\nabla \cdot \mathbf{r})f + \mathbf{r} \cdot \nabla f$ $H_{s_2}^{(1)}[f] = \Delta f - 2(1-1)\nabla U \cdot \nabla f + (c + \nabla \cdot r + (1-1)\mathbf{r} \cdot \nabla U)f$ $H_{ss}^{(1)}[f] = \Delta f - 2(1-1)\nabla U \cdot \nabla f$

Limits of diffusion operators [Perrault-Joncas, M NIPS 11]

$$H_{\epsilon} = \lim_{\epsilon \to 0, n \to \infty} \frac{(T_{\epsilon} - I)f}{\epsilon}$$

Operators T_{ϵ} from α -renormalized, symmetric or asymmetric kernels 1. $H_{aa}^{(\alpha)}$: asymmetric $k_{\epsilon}^{(\alpha)}$ with assymmetric $p_{\epsilon} = \int_{\mathcal{M}} k_{\epsilon}(x, y) p(y) dy$ 2. $H_{sa}^{(\alpha)}$: symmetric $h_{\epsilon}^{(\alpha)}$ with assymmetric p_{ϵ} 3. $H_{as}^{(\alpha)}$: asymmetric $k_{\epsilon}^{(\alpha)}$ with symmetric $q_{\epsilon} = \int_{\mathcal{M}} h_{\epsilon}(x, y) p(y) dy$ 4. $H_{ss}^{(\alpha)}$: symmetric $h_{\epsilon}^{(\alpha)}$ with symmetric q_{ϵ} $\alpha = 1$

 $\begin{aligned} & \mathcal{H}_{aa}^{(1)}[f] = \Delta f + \mathbf{r} \cdot \nabla f & \text{new operator, contains } \mathbf{r} \\ & \mathcal{H}_{ss}^{(1)}[f] = \Delta f & \text{Diffusion maps} \end{aligned}$

Isolating the Vector Field r

Coordinate free

$$H_{aa}^{(\alpha)} - H_{ss}^{(\alpha)} = \mathbf{r} \cdot \nabla$$

Coordinate Representation of ${\bf r}$

- \blacktriangleright Let Φ be an diffeomorphic embedding of ${\cal M}$
- Then

$$\mathbf{r}_{||} = \mathbf{r} \cdot \nabla \phi \,,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- and component of **r** along coordinate ϕ_k is $\mathbf{r} \cdot \nabla \phi_k$
- Note that only r_{||} is recovered

- Source: National Longitudinal Survey of Youth (NLSY)
- Aim: obtain a representation of the job market as a diffusion process over a manifold.
- Data: Sample of 7,816 individual career sequences of length 64, listing the jobs a particular individual held every quarter between the ages of 20 and 36.

- Our graph G has 213 nodes industry/occupation pairings
- Our observations consist of 7,816 walks between the 213 graph nodes.

- ▶ Walks are converted to a directed graph with *affinity matrix* W.
- W_{ij}: number of times a transition from job i to job j was observed
- ▶ Normalizing each row *i* of *W* by its outdegree *d_i* gives *P* = diag(*d_i*)⁻¹*W*, the non-parametric MLE for the Markov chain over *G* for the progression of career sequences.

- This Markov chain has as limit operator $H_{aa}^{(0)}$.
- We want to estimate $\mathbf{r} \cdot \nabla 2\nabla U \cdot \nabla$ where we can use $-2\nabla U \cdot \nabla = H_{ss}^{(0)} H_{ss}^{(1)}$ to complement our algorithm.

Embedding the job market along with field $\mathbf{r} - 2\nabla U$ over the first two non-constant eigenvectors. The color map corresponds the mean monthly wage of each job in dollars.

Embedding of the job market along with field $\mathbf{r} - 2\nabla U$ over the first two non-constant eigenvectors. The color map corresponds the gender proportion in each job (with male = 0 and female = 1).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

What is non-linear dimension reduction?

Metric Manifold Learning Estimating the Riemannian metric

Riemannian Relaxation

Learning manifolds with vector fields

Understanding scientific data (in progress)

Spectra of galaxies Exploring the configuration space of aspirin

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

Outline

What is non-linear dimension reduction?

Metric Manifold Learning Estimating the Riemannian metric

Riemannian Relaxation

Learning manifolds with vector fields

Understanding scientific data (in progress) Spectra of galaxies Exploring the configuration space of aspir

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

Manifold learning for SDSS Spectra of Galaxies

Main sample of galaxy spectra from the Sloan Digital Sky Survey (675,000 spectra originally in 3750 dimensions).

(日)、

- data curated by Grace Telford,
- "noise removal" by Jake VanderPlas

Embedding into 3 dimensions

Same embedding...

- only high density regions
- another viewpoint

<ロ> (四) (四) (日) (日) (日)

э

how distorted is this embedding?

How distorted is this embedding?

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

Find principal curves

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Points near principal curves, colored by $\log_{10}(G_i)$ (0 means no distortion)

Points near principal curves, colored by $\log_{10}(G_i)$, after Riemannian Relaxation (0 means no distortion)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

All data after Riemannian Relaxation

Outline

What is non-linear dimension reduction?

Metric Manifold Learning Estimating the Riemannian metric

Riemannian Relaxation

Learning manifolds with vector fields

Understanding scientific data (in progress) Spectra of galaxies Exploring the configuration space of aspirin

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

Data and preprocessing

Data

simulations of Aspirin ($C_9 H_8 O_4$) molecular dynamics at T = 500Kby Stefan Chmiela and Alexandre Tkatchenko

- atoms locations $R_{1:N} \in \mathbb{R}^{21 \times 3}$
- n =210,000 states
- Computed M₀ = 624 angles between selected atomic triplets
- Selected D = 50 input features by SVD

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQの

SVD was used to eliminate all linear relations between the $M_0 = 624$ angles.

Note that the first component explains almost 99% of variance.

D = 50 principal components were kept. The residual variance is $< 10^{-4}$

From here on, the data was subsampled by a factor of 12.

Choosing output dimensions and kernel radius

Data in D = 50 coordinates, $U\Sigma$

This plot suggests d = 5 therefore we embed into m = 9 dimensions.

Embedding 17K configurations

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

Points are colored sequentially

m = 9 embedding dimension, n = 17,000 (every 12th configuration), method Laplacian Eigenmaps/Diffusion Maps

Embedding for 17,000 configurations

(日)、

э

Ploints in the embedding are colored sequentially

m = 9 embedding dimension, n = 17,000 (every 12th configuration), method Laplacian Eigenmaps/Diffusion Maps

Embedding coordinates, sorted by coordinate 1

Coordinates 1,2,3

- Coordinate 1 shows 2 clusters in the data
- Coordinates 2, 3 describe metastable state (cluster 2)

(日)、

э

Embedding coordinates, sorted by coordinate 1

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Coordinate 1 shows 2 clusters in the data

Coordinates 2, 3 describe metastable state (cluster 2)

Embedding coordinates, sorted by coordinate 1

- Coordinate 1 shows 2 clusters in the data
- Coordinates 2, 3 describe metastable state (cluster 1)
- Coordinates 4,5,6,9 describe metastable state (cluster 2)

O=C-C-H torsion

cosine of torsion $\boldsymbol{\tau}$

・ロト ・四ト ・ヨト ・ヨト ・ヨ
Manifold learning should be like PCA

- tractable
- "automatic" quantitative measures of success/accuracy

first step in data processing pipe-line

Manifold learning should be like PCA

- tractable
- "automatic" quantitative measures of success/accuracy
- first step in data processing pipe-line

Metric Manifold learning

- Before embedding: choice of kernel width ϵ , choice of intrinsic dimension d
- ► After embedding: estimate distortion by *H* and correct it by Riemannian Relaxation
- Simultaneously with embedding: Gaussian process prediction, estimating vector fields (coordinate free)

Future

- input data not i.i.d, side information (e.g forces, potential), on-line
- connect with topological data analysis

Python package megaman

- tractable for millions of points, incorporates
- (in progress) quantitative validation (topology preservation, choice of *ϵ*, choice of *d*), Principal Curves and Surfaces
- future: extend classification, regression, clustering to the manifold setting

Dominique-Perrault Joncas, James McQueen (PhD Statistics) Jacob VanderPlas, Grace Telford (UW Astronomy) Oles Isayev, Alexandre Tkatchenko, Stefan Chmiela Sadas Shankar, Ralf Banisch, Stefan Tautz, Klaus Mueller, Christian Ratsch

Thank you