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Outline

What is non-linear dimension reduction?

Metric Manifold Learning
Estimating the Riemannian metric

Riemannian Relaxation

Learning manifolds with vector fields

Understanding scientific data (in progress)
Spectra of galaxies
Exploring the configuration space of aspirin



When to do (non-linear) dimension reduction

I high-dimensional data p ∈ RD , D = 64× 64

I can be described by a small number d of continuous parameters

I Usually, large sample size n
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Why?
I To save space and computation

I n × D data matrix → n × s, s � D

I To use it afterwards in (prediction) tasks
I To understand the data better

I preserve large scale features, suppress fine scale features
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Richard Powell - The Hertzsprung Russell Diagram, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=1736396
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How? Brief intro to manifold learning algorithms

I Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ε

I Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ε
I Construct a n × n matrix: its leading eigenvectors are the coordinates
φ(p1:n)

Laplacian Eigenmaps/Diffusion Maps [Belkin,Niyogi 02, Nadler et al

05]

I Construct similarity matrix

S = [Spp′ ]p,p′∈D withSpp′ = e−
1
ε
||p−p′||2 iff p, p′ neighbors

I Construct Laplacian matrix L = I − T−1S with T = diag(S1)

I Calculate φ1...m = eigenvectors of L (smallest eigenvalues)

I coordinates of p ∈ D are (φ1(p), . . . ψm(p))



How? Brief intro to manifold learning algorithms

I Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ε

I Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ε
I Construct a n × n matrix: its leading eigenvectors are the coordinates
φ(p1:n)

Isomap [Tennenbaum, deSilva & Langford 00]

I Find all shortest paths in neighborhood graph, construct matrix of
distances

M = [distance2
pp′ ]

I use M and Multi-Dimensional Scaling (MDS) to obtain m dimensional
coordinates for p ∈ D



A toy example (the “Swiss Roll” with a hole)

points in D ≥ 3 dimensions same points reparametrized in 2D

Input Desired output
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Embedding in 2 dimensions by different manifold learning algorithms
Input

Figure by Todd Wittman



How to evaluate the results objectively?

I which of these embedding are “correct”?

I if several “correct”, how do we reconcile them?

I if not “correct”, what failed?

Algorithms Multidimensional Scaling (MDS), Principal Components (PCA), Isomap, Locally Linear Embedding (LLE), Hessian Eigenmaps
(HE), Laplacian Eigenmaps (LE), Diffusion Maps (DM)
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Preserving topology vs. preserving (intrinsic) geometry

I Algorithm maps data p ∈ RD −→ φ(p) = x ∈ Rm

I Mapping M −→ φ(M) is diffeomorphism
preserves topology
often satisfied by embedding algorithms

I Mapping φ preserves
I distances along curves in M
I angles between curves in M
I areas, volumes

. . . i.e. φ is isometry
For most algorithms, in most cases, φ is not isometry

Preserves topology Preserves topology + intrinsic geometry
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Our approach: Metric Manifold Learning

[Perrault-Joncas,M 10]

Given

I mapping φ that preserves topology

true in many cases

Objective

I augment φ with geometric information g
so that (φ, g) preserves the geometry Dominique

Perrault-Joncas

g is the Riemannian metric.

Fact All geometric quantities on M involve g

distances, volumes, angles, . . .
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All geometric quantities on M involve g

I Volume element on manifold

Vol(W ) =

∫
W

√
det(g)dx1 . . . dxd .

I Length of curve c

l(c) =

∫ b

a

√√√√∑
ij

gij
dx i

dt

dx j

dt
dt,

I Under a change of parametrization, g changes in a way that leaves
geometric quantities invariant

I Current algorithms: estimate M
I This talk: estimate g along with M

(and in the same coordinates)



g for Sculpture Faces

I n = 698 gray images of faces in D = 64× 64 dimensions
I head moves up/down and right/left

LTSA Algoritm



Isomap LTSA

Laplacian Eigenmaps



Metric Manifold Learning summary

Metric Manifold Learning = estimating (pushforward) Riemannian metric Gi

along with embedding coordinates xi
Why useful

I Measures local distortion induced by any embedding algorithm
Gi = Id when no distortion at pi

I Corrects distortion
I Integrating with the local volume/length units based on Gi
I Riemannian Relaxation (coming next)

I Algorithm independent geometry preserving method

I Outputs of different algorithms on the same data are comparable

I Models built from compressed data are more interpretable



Calculating distances in the manifold M
I Geodesic distance = shortest path on M
I should be invariant to coordinate changes

Original Isomap

Laplacian Eigenmaps



Calculating distances in the manifold M

true distance d = 1.57
Shortest Metric Rel.

Embedding ||f (p)− f (p′)|| Path dG d̂ error
Original data 1.41 1.57 1.62 3.0%
Isomap s = 2 1.66 1.75 1.63 3.7%
LTSA s = 2 0.07 0.08 1.65 4.8%

LE s = 3 0.08 0.08 1.62 3.1%



Calculating Areas/Volumes in the manifold

(Results for Hourglass data)

true area = 0.84
Rel.

Embedding Naive Metric err.
Original data 0.85 (0.03) 0.93 (0.03) 11.0%

Isomap 2.7 0.93 (0.03) 11.0%
LTSA 1e-03 (5e-5) 0.93 (0.03) 11.0%

LE 1e-05 (4e-4) 0.82 (0.03) 2.6%



Semisupervised learning with Gaussian Processes on Manifolds

Sculpture Faces: Predicting Head Rotation

Absolute Error (AE) as percentage of range

Isomap (Total AE = 3078) LTSA (Total AE = 3020)

Metric (Total AE = 660) Laplacian Eigenmaps (Total AE = 3078)
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Riemannian Relaxation

James McQueen

Can we sometimes dispense with g?

Idea

I If embedding is isometric, then push-forward metric is identity matrix Id

Idea, formalized
I Measure distortion by loss =

∑n
i=1 ||Gi − Id ||2

I where Gi is R. metric estimate at point i
I Id is identity matrix

I Iteratively change embedding x1:n to minimize loss

More details
I loss is non-convex
I || || is derived from operator norm
I Extends to s > d embeddings loss =

∑n
i=1 ||Gi − UiU

T
i ||

2
σ

I Extensions to principal curves and surfaces [Ozertem, Erdogmus 11],
subsampling, non-uniform sampling densities

Implementation
I Initialization with e.g Laplacian Eigenmaps
I Projected gradient descent to (local) optimum
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Riemannian Relaxation of a deformed sphere

target initialization algorithm
output

Mean-squared error and loss vs. noise amplitude
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Data as directed transitions

I Observations are
I transitions between (discrete) states
I or random walks on a graph
I or weighted graph

I Transitions (weights) may not be symmetric (Wij 6= Wji )

I Example: the National Longitudinal Survey of Youth (NLSY)
I “carreer” sequences of length 16 years× 4 quarters (people aged 14–16

followed to age 30–32)
I jobs (occupation, industry) represented by integer codes

person 1: 19 19 3 3 3 3 3 3 3 3 3 3 3 10 10
person 2: 3 3 3 3 3 3 3 1 3 1 3 1 3 1 35
person 3: 152 5 71 1 1 1 71 36 36 5 4 5 5 4 4
person 4: 3 3 3 3 9 3 3 8 2 8 5 5 8 239 239

I Problem how to embed a directed graph with directed edges?



The NLSY data

data matrix
7,711 paths ×64
quarters

W ∈ R356×356, Wij ≥ 0, W
asymmetric (blue is higher)

Problem how to embed a directed graph with directed edges?



Generative model

Observe a directed graph G , with n nodes, having directed weights
W = [Wij ] associated with its edges (Wij 6= Wji )

Assume Nodes of G sampled from manifold M of dimension d
I according to some distribution p(x) = e−U(x)

I edges weights Wij are assigned by a directed similarity kernel kε(xi , xj ) with

kε(x , y) = hε(x , y)︸ ︷︷ ︸
symmetric

+ aε(x , y)︸ ︷︷ ︸
skew−symmetric

I aε(xi , xj ) originates from a vector field r on M

Wanted Estimates of manifold M, density p = e−U , vector field r from W



Generative model

Wanted Estimates of manifold M, density p = e−U , vector field r from W



Directed Embedding Algorithm

Input: Affinity matrix Wi,j and embedding dimension m, (m ≥ d)

1. S ← (W + W T )/2 Estimate the Diffusion Maps embedding

2. qi ←
∑n

j=1 Si,j , Q = diag(q)

3. V ← Q−1SQ−1

4. q
(1)
i ←

∑n
j=1 Vi,j , Q(1) = diag(q(1))

5. H
(1)
ss,n ← Q(1)−1

V

6. Compute φ the m + 1 largest right eigenvectors of H
(1)
ss,n and discard φ1.

7. Compute π left principal e-vector of H
(1)
ss,n. Estimate the density

8. π ← π/
∑n

i=1 πi .

9. pi ←
∑n

j=1 Wi,j , P = diag(p) Estimate the vector field r

10. T ← P−1WP−1

11. p
(1)
i ←

∑n
j=1 Ti,j , P(1) = diag(p(1))

12. H
(1)
aa,n ← P(1)−1

T

13. R ← (H
(1)
aa,n − H

(1)
ss,n)φ/2. Columns 2 to m + 1 of R are the vector field

components in the direction of the corresponding coordinates of the
embedding.



Examples – toy data

Input Output



Kernels, renormalized kernels, transport operators

The asymmetric transition kernel

kε(x , y) = hε(x , y) + aε(x , y)

1. hε(x , y) = hε(y , x) symmetric

hε(x , y) = ε−D exp( ||x−y||2
ε2 )

ε = kernel bandwidth

2. aε(x , y) = −aε(y , x)
skew-symmetric

Set

aε(x , y) =
1

2
(y − x) · r(x , y)hε(x , y)

and r(x , y) = r(y , x) vector field
This form is generic

Transport operators

pε(x) =

∫
M

kε(x , y)p(y)dy

Tε[f ](x) =

∫
M

kε(x , y)

pε(x)
f (y)p(y)dy

Renormalized kernels [Lafon,Coifman 06]

k (α)
ε (x , y) =

kε(x , y)

pαε (x)pαε (y)
, with α ∈ [0, 1]

and p
(α)
ε (x) =

∫
M k

(α)
ε (x , y)p(y)dy .

Wanted lim
ε→0,n→∞

(Tε − I )

ε

This is the continuous limit of “diffusion maps”-type operators computed on
graphs.



Limits of diffusion operators [Perrault-Joncas, M NIPS 11]

Hε = lim
ε→0,n→∞

(Tε − I )f

ε

Operators Tε from α-renormalized, symmetric or asymmetric kernels

1. H
(α)
aa : asymmetric k

(α)
ε with assymmetric pε =

∫
M kε(x , y)p(y)dy

2. H
(α)
sa : symmetric h

(α)
ε with assymmetric pε

3. H
(α)
as : asymmetric k

(α)
ε with symmetric qε =

∫
M hε(x , y)p(y)dy

4. H
(α)
ss : symmetric h

(α)
ε with symmetric qε

H(α)
aa [f ] = ∆f − 2 (1− α)∇U ·∇f + r·∇f

H(α)
as [f ] = ∆f − 2 (1− α)∇U · ∇f − cf + (α− 1)(r · ∇U)f − (∇ · r)f + r · ∇f

H(α)
sa [f ] = ∆f − 2 (1− α)∇U · ∇f + (c +∇ · r + (α− 1)r · ∇U)f

H(α)
ss [f ] = ∆f − 2(1− α)∇U · ∇f
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Hε = lim
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M hε(x , y)p(y)dy

4. H
(α)
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H
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H
(1)
ss [f ] = ∆f Diffusion maps



Isolating the Vector Field r

Coordinate free
H(α)

aa − H(α)
ss = r · ∇

Coordinate Representation of r

I Let Φ be an diffeomorphic embedding of M
I Then

r|| = r · ∇φ ,
I and component of r along coordinate φk is r · ∇φk

I Note that only r|| is recovered



Real Data

I Source: National Longitudinal Survey of Youth (NLSY)

I Aim: obtain a representation of the job market as a diffusion process over
a manifold.

I Data: Sample of 7,816 individual career sequences of length 64, listing the
jobs a particular individual held every quarter between the ages of 20 and
36.

I Our graph G has 213 nodes - industry/occupation pairings

I Our observations consist of 7,816 walks between the 213 graph nodes.



Real Data

I Walks are converted to a directed graph with affinity matrix W .

I Wij : number of times a transition from job i to job j was observed

I Normalizing each row i of W by its outdegree di gives P = diag(di )
−1W ,

the non-parametric MLE for the Markov chain over G for the progression
of career sequences.

I This Markov chain has as limit operator H
(0)
aa .

I We want to estimate r · ∇ − 2∇U · ∇ where we can use
−2∇U · ∇ = H

(0)
ss − H

(1)
ss to complement our algorithm.



Real Data
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Embedding the job market along with field r − 2∇U over the first two non-constant

eigenvectors. The color map corresponds the mean monthly wage of each job in

dollars.



Real Data
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= 0 and female = 1).
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Manifold learning for SDSS Spectra of Galaxies

Main sample of galaxy spectra from the Sloan Digital Sky Survey (675,000
spectra originally in 3750 dimensions).

I data curated by Grace Telford,

I “noise removal” by Jake VanderPlas



Embedding into 3 dimensions



Same embedding. . .

I only high density regions

I another viewpoint

I how distorted is this embedding?



How distorted is this embedding?

(ellipses represent G
−1
i

)



Riemannian Relaxation along principal curves

Find principal curves



Riemannian Relaxation along principal curves

Points near principal curves, colored by log10(Gi ) (0 means no distortion)



Riemannian Relaxation along principal curves

Points near principal curves, colored by log10(Gi ), after Riemannian Relaxation
(0 means no distortion)



Riemannian Relaxation along principal curves

All data after Riemannian Relaxation
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Data and preprocessing

I Data

simulations of Aspirin (C9H8O4)
molecular dynamics at T = 500K
by Stefan Chmiela and Alexandre
Tkatchenko

I atoms locations R1:N ∈ R21×3

I n =210,000 states

I Computed M0 = 624 angles
between selected atomic triplets

I Selected D = 50 input features by
SVD



SVD

I SVD was used to eliminate all linear relations between the M0 = 624 angles.

Note that the first component explains almost 99% of variance.

D = 50 principal components were kept. The residual variance is < 10−4

I From here on, the data was subsampled by a factor of 12.



Choosing output dimensions and kernel radius

Data in D = 50 coordinates, UΣ

This plot suggests d = 5 therefore we embed into m = 9 dimensions.



Embedding 17K configurations

Points are colored sequentially

m = 9 embedding dimension, n = 17, 000 (every 12th configuration), method

Laplacian Eigenmaps/Diffusion Maps



Embedding for 17,000 configurations

Ploints in the embedding are colored sequentially

m = 9 embedding dimension, n = 17, 000 (every 12th configuration), method

Laplacian Eigenmaps/Diffusion Maps



Embedding coordinates, sorted by coordinate 1

Coordinates 1,2,3

I Coordinate 1 shows 2 clusters in the data

I Coordinates 2, 3 describe metastable state (cluster 2)



Embedding coordinates, sorted by coordinate 1

Coordinates 1,2,3 Coordinates 1,7,8

I Coordinate 1 shows 2 clusters in the data

I Coordinates 2, 3 describe metastable state (cluster 2)



Embedding coordinates, sorted by coordinate 1

Coordinates 1,4,5 Coordinates 1,6,9

I Coordinate 1 shows 2 clusters in the data

I Coordinates 2, 3 describe metastable state (cluster 1)

I Coordinates 4,5,6,9 describe metastable state (cluster 2)



O=C–C–H torsion

Stable state Meta-stable state
coordinates 4, 5, 6 coordinates 2, 3

cosine of torsion τ



Manifold learning should be like PCA

I tractable

I “automatic” – quantitative measures of success/accuracy

I first step in data processing pipe-line

Metric Manifold learning

I Before embedding: choice of kernel width ε, choice of intrinsic dimension d

I After embedding: estimate distortion by H and correct it by Riemannian
Relaxation

I Simultaneously with embedding: Gaussian process prediction, estimating
vector fields (coordinate free)

Future

I input data not i.i.d, side information (e.g forces, potential), on-line

I connect with topological data analysis

Python package megaman

I tractable for millions of points, incorporates

I (in progress) quantitative validation (topology preservation, choice of ε,
choice of d), Principal Curves and Surfaces

I future: extend classification, regression, clustering to the manifold setting



Manifold learning should be like PCA

I tractable

I “automatic” – quantitative measures of success/accuracy

I first step in data processing pipe-line

Metric Manifold learning

I Before embedding: choice of kernel width ε, choice of intrinsic dimension d

I After embedding: estimate distortion by H and correct it by Riemannian
Relaxation

I Simultaneously with embedding: Gaussian process prediction, estimating
vector fields (coordinate free)

Future

I input data not i.i.d, side information (e.g forces, potential), on-line

I connect with topological data analysis

Python package megaman

I tractable for millions of points, incorporates

I (in progress) quantitative validation (topology preservation, choice of ε,
choice of d), Principal Curves and Surfaces

I future: extend classification, regression, clustering to the manifold setting



Dominique-Perrault Joncas, James McQueen (PhD Statistics)
Jacob VanderPlas, Grace Telford (UW Astronomy)
Oles Isayev, Alexandre Tkatchenko, Stefan Chmiela

Sadas Shankar, Ralf Banisch, Stefan Tautz, Klaus Mueller, Christian Ratsch

Thank you
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