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Protein function regulation

Protein function is regulated at

1) transcriptional level

2) translational level

3) post-translational level 



Post-translational regulation of protein function

Regulators

(a) non-covalent interactions

(b) covalent modifications
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Mechanism of protein function
Understanding how a protein works requires a systematic assessment of relationships 

between the structure, dynamics and energetics of its various states 
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Pioneers
Pioneers: Molecular simulation methods for biomolecules

Energy 
H

Structure Dynamics

Activity

The 1970’s revolutionary vision...

Since energy drives structure, dynamics and 
activity, shouldn’t we be able to predict them 

directly, provided we truly understand the 
energetics of underlying interactions?



Direct estimation of activity from energy 
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Solve Hamilton’s equation of motion to get 
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Example:



How well do we understand inter-atomic interactions?

Reliability test: ab initio protein folding

Qin et al PNAS 2015



Pioneers



Does this imply that we can now blindly apply 
molecular simulations to any protein? 

NO!
While there is a lot that we can model, which we couldn’t just a decade ago, 

there remains a lot more that we still cannot...
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Our interests

Applications: Understand the 
fundamental atomically-detailed principles 
underlying

1) Selective ion transport by channels

2) Protein assembly 

3) Allosteric regulation of protein activity

Development

1) Enhance reliability of atomistic 
models to describe interactions 
of proteins with ions

2) New methods to study 
allosteric activation of proteins
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by the molecule. Additionally, a molecule’s configurational space can be altered by the binding of other
molecules, such as in protein-protein or DNA-protein complexes. Moreover, the extent of the change
in configurational density or population shift, �R, depends on multiple factors, including properties of
the molecule and the nature of the perturbation or external potential. Such induced changes are critical
to regulating the functions of biomolecules, and play viral roles in biological signal transduction. A
quantitative characterization of �R is, therefore, important for understanding the molecular basis of
functional regulation.

Here we analyze the receptor-induced �R in the attachment protein of Nipah virus to understand
how Nipah fusion is regulated. Nipah (family Paramyxoviridae, genus Henipavirus) are emerging zoonotic
pathogens that cause illness and fatality in livestock and humans [15–20]. Their fusion with host cells is
initiated by the binding of their attachment glycoproteins (G) to specific ephrin receptors on host cells,
B2 and B3 [21–23]. This binding triggers changes in G that signals the activation of another viral protein,
F, which, in turn, mediates viral fusion. The G protein consists of an N-terminus cytoplasmic tail, a
transmembrane domain, a stalk domain and a globular head domain. While the G head domain binds to
ephrins [24, 25], the G stalk domain is responsible for F specificity and activation [26–37]. However, the
precise location of where F binds on the G stalk domain is unknown, and also remains unknown is how
the ephrin binding signal is transmitted from the head domain to the stalk domain of G.

X-ray crystallography suggests that the head domain of G folds as a propeller with a central cavity
surrounded by six blades �1–6 (Figure 1) [25]. When expressed on the virion or the surface of an infected
cell, G exists as a tetramer, rather than a monomer [38, 39]. The tetramer is organized as a dimer-of-
dimers. The x-ray structure of the G protein of the Hendra virus, which is closely related to Nipah,
indicates that the G head domains dimerize using residues in blades �1 and �6 [39]. This dimerization
results in only minor changes in the monomer structure, and the changes are limited to residues forming
the interface. The crystallographic structure of the Newcastle disease (NDV) paramyxovirus attachment
protein in its tetrameric state suggests that the head domains of the two dimers do not form contact
interfaces [37]. In addition, homology modeling, using this tetrameric structure as a template, indicates
that the four G stalk domains in the tetramer wrap around each other to form a helical bundle [19]. This
helical bundle also interacts with the head domains, but on the side that is opposite to the side where
ephrins bind.

These findings suggest that the ephrin-binding signal can transduce to the G stalk domain through
three possible pathways: directly through individual G head domains, and/or via the head-stalk interface,
and/or through the interface between the G head domains of a dimer. The last of the three possibil-
ities has also been suggested in the case of the Measles paramyxovirus [40] as well as in the case of
the Newcastle disease paramyxovirus [41], although these studies remain inconclusive [42, 43]. Alanine
scanning mutagenesis studies have also identified numerous residues in the G head domain that a↵ect
F regulation [44–48]. While many of these residues are at the G-ephrin interface, some, as indicated in
Figure 1, are distant from the ephrin binding interface [45, 47].

Further insight into these issues can be gained by comparing ensembles of the G head domain in
its apo and ephrin bound states. In fact, a corollary of the ensemble/thermodynamic view of allosteric
signaling is that the �R induced by ephrins must contain the signal �Rsignal that connects G-ephrin
binding to F activation, that is, �Rsignal ⇢ �R [49–59]. This is also essentially the central idea that
unites the various methods constructed for determining allosteric pathways [60–65], although almost all
these methods utilize currently only a partial knowledge of �R. Here we quantify the �R induced by
three di↵erent ephrins, B2, B3 and a biochemically well-characterized mutant of B2 [23]. The ectodomains
of ephrins B2 and B3 share only a ⇠50% sequence identity and the B2 mutant di↵ers from B2 in the
identities of two amino acids, L281Y and W282M (Figure 1). This mutant, which we refer to as B2m,
binds weakly to G compared to B2 or B3, but it does trigger viral fusion [23].

X-ray crystallography also suggests that the G head domain binds to ephrins B2 and B3 along it’s
6-fold pseudo symmetry axis [24,25]. The interfaces of G with ephrins B2 and B3 are extensive (> 2500
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Abstract

The fusion of Nipah viruses with host cells is facilitated by two of their membrane proteins, the attachment
protein (G) and the fusion protein (F). G binds to specific ephrin receptors on the host membrane. Ephrin
binding changes the configurational density of G that activates F, which, in turn, mediates fusion. To
understand how ephrin binding causes G to activate F, we use molecular dynamics in conjunction with
machine learning and filter out the set of amino acids in the G head domain whose configurational
densities are shifted equivalently by di↵erent ephrins. In particular, we consider the natural human
ephrins B2 and B3, both of which trigger viral fusion despite sharing only a modest sequence identity
of ⇠50%. We consider also a biochemically well-characterized double mutant of B2 (L281W282 !YM)
that triggers viral fusion, but binds weakly to G in comparison to B2. We find that the three ephrins
induce statistically equivalent shifts in the configurational densities of about one-quarter of the residues
in the G head domain. This surprisingly expansive communal change in G includes most of the residues
that have been shown experimentally to be important to F activation. This suggests that this set of
residues contain the signaling pathways that connect the G-ephrin interface to the G stalk domain that
activates F. The distribution of these residues in the G head domain is consistent with two models of
signal transduction, one in which the F-activating signal transduces from the head to the stalk domain
via changes in specific interactions between the head and the stalk domain, and the other in which the
signal transduces from the head to the stalk domain via changes in the G head domain dimer interface.
In general, this study also shows how machine learning can be utilized along with molecular simulations
to filter out quantitatively conserved patterns in changes in protein structure and dynamics.

Author Summary

Introduction

The ensemble of 3-dimensional (3D) configurations, R, exhibited by a biomolecule is essential to its
function and is correlated tightly with the properties of its environment [1–12]. Changes in intensive
variables, such as temperature and ionic strength, modify the configurational space (R ! R0) sampled
by the molecule. Additionally, a molecule’s configurational space can be altered by the binding of other
molecules, such as in protein-protein or DNA-protein complexes. Moreover, the extent of the change or
population shift, �R, depends on multiple factors, including properties of the molecule and the nature
of the perturbation or external potential. Such induced changes are critical to regulating the functions
of biomolecules, and play viral roles in biological signal transduction. A quantitative characterization of
�R is, therefore, important for understanding the molecular basis of functional regulation.

Here we analyze the changes �R in the Nipah virus G glycoprotein that are induced by the binding
of its host receptors, ephrins. Nipah (family Paramyxoviridae, genus Henipavirus) are emerging zoonotic
pathogens that cause illness and fatality in livestock and humans [13–18]. Their fusion with host cells is
initiated by the binding of their G proteins to specific ephrin receptors on host cells, B2 and B3 [19–21].
This binding triggers changes in G that signals the activation of another viral protein, F, which, in
turn, mediates viral fusion. The G protein consists of an N-terminus cytoplasmic tail, a transmembrane
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that triggers viral fusion, but binds weakly to G in comparison to B2. We find that the three ephrins
induce statistically equivalent shifts in the configurational densities of about one-quarter of the residues
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that have been shown experimentally to be important to F activation. This suggests that this set of
residues contain the signaling pathways that connect the G-ephrin interface to the G stalk domain that
activates F. The distribution of these residues in the G head domain is consistent with two models of
signal transduction, one in which the F-activating signal transduces from the head to the stalk domain
via changes in specific interactions between the head and the stalk domain, and the other in which the
signal transduces from the head to the stalk domain via changes in the G head domain dimer interface.
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by the molecule. Additionally, a molecule’s configurational space can be altered by the binding of other
molecules, such as in protein-protein or DNA-protein complexes. Moreover, the extent of the change
in configurational density or population shift, �R, depends on multiple factors, including properties of
the molecule and the nature of the perturbation or external potential. Such induced changes are critical
to regulating the functions of biomolecules, and play viral roles in biological signal transduction. A
quantitative characterization of �R is, therefore, important for understanding the molecular basis of
functional regulation.

Here we analyze the receptor-induced �R in the attachment protein of Nipah virus to understand
how Nipah fusion is regulated. Nipah (family Paramyxoviridae, genus Henipavirus) are emerging zoonotic
pathogens that cause illness and fatality in livestock and humans [15–20]. Their fusion with host cells is
initiated by the binding of their attachment glycoproteins (G) to specific ephrin receptors on host cells,
B2 and B3 [21–23]. This binding triggers changes in G that signals the activation of another viral protein,
F, which, in turn, mediates viral fusion. The G protein consists of an N-terminus cytoplasmic tail, a
transmembrane domain, a stalk domain and a globular head domain. While the G head domain binds to
ephrins [24, 25], the G stalk domain is responsible for F specificity and activation [26–37]. However, the
precise location of where F binds on the G stalk domain is unknown, and also remains unknown is how
the ephrin binding signal is transmitted from the head domain to the stalk domain of G.

X-ray crystallography suggests that the head domain of G folds as a propeller with a central cavity
surrounded by six blades �1–6 (Figure 1) [25]. When expressed on the virion or the surface of an infected
cell, G exists as a tetramer, rather than a monomer [38, 39]. The tetramer is organized as a dimer-of-
dimers. The x-ray structure of the G protein of the Hendra virus, which is closely related to Nipah,
indicates that the G head domains dimerize using residues in blades �1 and �6 [39]. This dimerization
results in only minor changes in the monomer structure, and the changes are limited to residues forming
the interface. The crystallographic structure of the Newcastle disease (NDV) paramyxovirus attachment
protein in its tetrameric state suggests that the head domains of the two dimers do not form contact
interfaces [37]. In addition, homology modeling, using this tetrameric structure as a template, indicates
that the four G stalk domains in the tetramer wrap around each other to form a helical bundle [19]. This
helical bundle also interacts with the head domains, but on the side that is opposite to the side where
ephrins bind.

These findings suggest that the ephrin-binding signal can transduce to the G stalk domain through
three possible pathways: directly through individual G head domains, and/or via the head-stalk interface,
and/or through the interface between the G head domains of a dimer. The last of the three possibil-
ities has also been suggested in the case of the Measles paramyxovirus [40] as well as in the case of
the Newcastle disease paramyxovirus [41], although these studies remain inconclusive [42, 43]. Alanine
scanning mutagenesis studies have also identified numerous residues in the G head domain that a↵ect
F regulation [44–48]. While many of these residues are at the G-ephrin interface, some, as indicated in
Figure 1, are distant from the ephrin binding interface [45, 47].

Further insight into these issues can be gained by comparing ensembles of the G head domain in
its apo and ephrin bound states. In fact, a corollary of the ensemble/thermodynamic view of allosteric
signaling is that the �R induced by ephrins must contain the signal �Rsignal that connects G-ephrin
binding to F activation, that is, �Rsignal ⇢ �R [49–59]. This is also essentially the central idea that
unites the various methods constructed for determining allosteric pathways [60–65], although almost all
these methods utilize currently only a partial knowledge of �R. Here we quantify the �R induced by
three di↵erent ephrins, B2, B3 and a biochemically well-characterized mutant of B2 [23]. The ectodomains
of ephrins B2 and B3 share only a ⇠50% sequence identity and the B2 mutant di↵ers from B2 in the
identities of two amino acids, L281Y and W282M (Figure 1). This mutant, which we refer to as B2m,
binds weakly to G compared to B2 or B3, but it does trigger viral fusion [23].

X-ray crystallography also suggests that the G head domain binds to ephrins B2 and B3 along it’s
6-fold pseudo symmetry axis [24,25]. The interfaces of G with ephrins B2 and B3 are extensive (> 2500
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The ensemble of 3-dimensional (3D) configurations, R, exhibited by a biomolecule is essential to its

function and is correlated tightly with the properties of its environment [1–14]. Changes in intensive

variables, such as temperature and ionic strength, modify the configurational space (R ! R0) sampled

by the molecule. Additionally, a molecule’s configurational space can be altered by the binding of other

molecules, such as in protein-protein or DNA-protein complexes. Moreover, the extent of the change

in configurational density or population shift, �R, depends on multiple factors, including properties of

the molecule and the nature of the perturbation or external potential. Such induced changes are critical

to regulating the functions of biomolecules, and play viral roles in biological signal transduction. A

quantitative characterization of �R is, therefore, important for understanding the molecular basis of

functional regulation.

Here we analyze the receptor-induced �R in the attachment protein of Nipah virus to understand

how Nipah fusion is regulated. Nipah (family Paramyxoviridae, genus Henipavirus) are emerging zoonotic

pathogens that cause illness and fatality in livestock and humans [15–20]. Their fusion with host cells is

initiated by the binding of their attachment glycoproteins (G) to specific ephrin receptors on host cells,

B2 and B3 [21–23]. This binding triggers changes in G that signals the activation of another viral protein,

F, which, in turn, mediates viral fusion. The G protein consists of an N-terminus cytoplasmic tail, a

transmembrane domain, a stalk domain and a globular head domain. While the G head domain binds to

ephrins [24, 25], the G stalk domain is responsible for F specificity and activation [26–37]. However, the

precise location of where F binds on the G stalk domain is unknown, and also remains unknown is how

the ephrin binding signal is transmitted from the head domain to the stalk domain of G.

4

R (24)

R0 (25)

R 6= R0 (26)

R \ R0 6= 0 (27)

The ensemble of 3-dimensional (3D) configurations, R, exhibited by a biomolecule is essential to its

function and is correlated tightly with the properties of its environment [1–14]. Changes in intensive

variables, such as temperature and ionic strength, modify the configurational space (R ! R0) sampled

by the molecule. Additionally, a molecule’s configurational space can be altered by the binding of other

molecules, such as in protein-protein or DNA-protein complexes. Moreover, the extent of the change

in configurational density or population shift, �R, depends on multiple factors, including properties of

the molecule and the nature of the perturbation or external potential. Such induced changes are critical

to regulating the functions of biomolecules, and play viral roles in biological signal transduction. A

quantitative characterization of �R is, therefore, important for understanding the molecular basis of

functional regulation.

Here we analyze the receptor-induced �R in the attachment protein of Nipah virus to understand

how Nipah fusion is regulated. Nipah (family Paramyxoviridae, genus Henipavirus) are emerging zoonotic

pathogens that cause illness and fatality in livestock and humans [15–20]. Their fusion with host cells is

initiated by the binding of their attachment glycoproteins (G) to specific ephrin receptors on host cells,

B2 and B3 [21–23]. This binding triggers changes in G that signals the activation of another viral protein,

F, which, in turn, mediates viral fusion. The G protein consists of an N-terminus cytoplasmic tail, a

transmembrane domain, a stalk domain and a globular head domain. While the G head domain binds to

ephrins [24, 25], the G stalk domain is responsible for F specificity and activation [26–37]. However, the

precise location of where F binds on the G stalk domain is unknown, and also remains unknown is how

the ephrin binding signal is transmitted from the head domain to the stalk domain of G.

4

R (24)

R0 (25)

R 6= R0 (26)

R \ R0 6= 0 (27)

The ensemble of 3-dimensional (3D) configurations, R, exhibited by a biomolecule is essential to its

function and is correlated tightly with the properties of its environment [1–14]. Changes in intensive

variables, such as temperature and ionic strength, modify the configurational space (R ! R0) sampled

by the molecule. Additionally, a molecule’s configurational space can be altered by the binding of other

molecules, such as in protein-protein or DNA-protein complexes. Moreover, the extent of the change

in configurational density or population shift, �R, depends on multiple factors, including properties of

the molecule and the nature of the perturbation or external potential. Such induced changes are critical

to regulating the functions of biomolecules, and play viral roles in biological signal transduction. A

quantitative characterization of �R is, therefore, important for understanding the molecular basis of

functional regulation.

Here we analyze the receptor-induced �R in the attachment protein of Nipah virus to understand

how Nipah fusion is regulated. Nipah (family Paramyxoviridae, genus Henipavirus) are emerging zoonotic

pathogens that cause illness and fatality in livestock and humans [15–20]. Their fusion with host cells is

initiated by the binding of their attachment glycoproteins (G) to specific ephrin receptors on host cells,

B2 and B3 [21–23]. This binding triggers changes in G that signals the activation of another viral protein,

F, which, in turn, mediates viral fusion. The G protein consists of an N-terminus cytoplasmic tail, a

transmembrane domain, a stalk domain and a globular head domain. While the G head domain binds to

ephrins [24, 25], the G stalk domain is responsible for F specificity and activation [26–37]. However, the

precise location of where F binds on the G stalk domain is unknown, and also remains unknown is how

the ephrin binding signal is transmitted from the head domain to the stalk domain of G.

4

R (24)

R0 (25)

R 6= R0 (26)

R \ R0 6= 0 (27)

The ensemble of 3-dimensional (3D) configurations, R, exhibited by a biomolecule is essential to its

function and is correlated tightly with the properties of its environment [1–14]. Changes in intensive

variables, such as temperature and ionic strength, modify the configurational space (R ! R0) sampled

by the molecule. Additionally, a molecule’s configurational space can be altered by the binding of other

molecules, such as in protein-protein or DNA-protein complexes. Moreover, the extent of the change

in configurational density or population shift, �R, depends on multiple factors, including properties of

the molecule and the nature of the perturbation or external potential. Such induced changes are critical

to regulating the functions of biomolecules, and play viral roles in biological signal transduction. A

quantitative characterization of �R is, therefore, important for understanding the molecular basis of

functional regulation.

Here we analyze the receptor-induced �R in the attachment protein of Nipah virus to understand

how Nipah fusion is regulated. Nipah (family Paramyxoviridae, genus Henipavirus) are emerging zoonotic

pathogens that cause illness and fatality in livestock and humans [15–20]. Their fusion with host cells is

initiated by the binding of their attachment glycoproteins (G) to specific ephrin receptors on host cells,

B2 and B3 [21–23]. This binding triggers changes in G that signals the activation of another viral protein,

F, which, in turn, mediates viral fusion. The G protein consists of an N-terminus cytoplasmic tail, a

transmembrane domain, a stalk domain and a globular head domain. While the G head domain binds to

ephrins [24, 25], the G stalk domain is responsible for F specificity and activation [26–37]. However, the

precise location of where F binds on the G stalk domain is unknown, and also remains unknown is how

the ephrin binding signal is transmitted from the head domain to the stalk domain of G.

Catalytic
site

Inactive Active

Allosteric regulation involving large structural changes

For many proteins, their regulatory models can be understood in terms of 
how their 3D structures, or conformations, change during transition

Many methods are available to study allosteric signaling in such proteins



State2

En
er
gy

En
er
gy

Conformation

Conformation

(a) Negligible overlap between conformational ensembles of 2 states

(b) Discernible overlap between conformational ensembles of 2 states

large 
barriers

State1

small 
barriers

State2
State1

Inactive state
Active state
Activating peptide

Difference between states discernible 
by x-ray crystallography

Difference between states (0.4 Å) is beyond 
the resolution of x-ray crystallography

Example: Phosphodiesterase

Example: PDZ domain

4

R (24)

R0 (25)

R 6= R0 (26)

R \ R0 6= 0 (27)

The ensemble of 3-dimensional (3D) configurations, R, exhibited by a biomolecule is essential to its

function and is correlated tightly with the properties of its environment [1–14]. Changes in intensive

variables, such as temperature and ionic strength, modify the configurational space (R ! R0) sampled

by the molecule. Additionally, a molecule’s configurational space can be altered by the binding of other

molecules, such as in protein-protein or DNA-protein complexes. Moreover, the extent of the change

in configurational density or population shift, �R, depends on multiple factors, including properties of

the molecule and the nature of the perturbation or external potential. Such induced changes are critical

to regulating the functions of biomolecules, and play viral roles in biological signal transduction. A

quantitative characterization of �R is, therefore, important for understanding the molecular basis of

functional regulation.

Here we analyze the receptor-induced �R in the attachment protein of Nipah virus to understand

how Nipah fusion is regulated. Nipah (family Paramyxoviridae, genus Henipavirus) are emerging zoonotic

pathogens that cause illness and fatality in livestock and humans [15–20]. Their fusion with host cells is

initiated by the binding of their attachment glycoproteins (G) to specific ephrin receptors on host cells,

B2 and B3 [21–23]. This binding triggers changes in G that signals the activation of another viral protein,

F, which, in turn, mediates viral fusion. The G protein consists of an N-terminus cytoplasmic tail, a

transmembrane domain, a stalk domain and a globular head domain. While the G head domain binds to

ephrins [24, 25], the G stalk domain is responsible for F specificity and activation [26–37]. However, the

precise location of where F binds on the G stalk domain is unknown, and also remains unknown is how

the ephrin binding signal is transmitted from the head domain to the stalk domain of G.

4

R (24)

R0 (25)

R 6= R0 (26)

R \ R0 6= 0 (27)

The ensemble of 3-dimensional (3D) configurations, R, exhibited by a biomolecule is essential to its

function and is correlated tightly with the properties of its environment [1–14]. Changes in intensive

variables, such as temperature and ionic strength, modify the configurational space (R ! R0) sampled

by the molecule. Additionally, a molecule’s configurational space can be altered by the binding of other

molecules, such as in protein-protein or DNA-protein complexes. Moreover, the extent of the change

in configurational density or population shift, �R, depends on multiple factors, including properties of

the molecule and the nature of the perturbation or external potential. Such induced changes are critical

to regulating the functions of biomolecules, and play viral roles in biological signal transduction. A

quantitative characterization of �R is, therefore, important for understanding the molecular basis of

functional regulation.

Here we analyze the receptor-induced �R in the attachment protein of Nipah virus to understand

how Nipah fusion is regulated. Nipah (family Paramyxoviridae, genus Henipavirus) are emerging zoonotic

pathogens that cause illness and fatality in livestock and humans [15–20]. Their fusion with host cells is

initiated by the binding of their attachment glycoproteins (G) to specific ephrin receptors on host cells,

B2 and B3 [21–23]. This binding triggers changes in G that signals the activation of another viral protein,

F, which, in turn, mediates viral fusion. The G protein consists of an N-terminus cytoplasmic tail, a

transmembrane domain, a stalk domain and a globular head domain. While the G head domain binds to

ephrins [24, 25], the G stalk domain is responsible for F specificity and activation [26–37]. However, the

precise location of where F binds on the G stalk domain is unknown, and also remains unknown is how

the ephrin binding signal is transmitted from the head domain to the stalk domain of G.

4

R (24)

R0 (25)

R 6= R0 (26)

R \ R0 6= 0 (27)

The ensemble of 3-dimensional (3D) configurations, R, exhibited by a biomolecule is essential to its

function and is correlated tightly with the properties of its environment [1–14]. Changes in intensive

variables, such as temperature and ionic strength, modify the configurational space (R ! R0) sampled

by the molecule. Additionally, a molecule’s configurational space can be altered by the binding of other

molecules, such as in protein-protein or DNA-protein complexes. Moreover, the extent of the change

in configurational density or population shift, �R, depends on multiple factors, including properties of

the molecule and the nature of the perturbation or external potential. Such induced changes are critical

to regulating the functions of biomolecules, and play viral roles in biological signal transduction. A

quantitative characterization of �R is, therefore, important for understanding the molecular basis of

functional regulation.

Here we analyze the receptor-induced �R in the attachment protein of Nipah virus to understand

how Nipah fusion is regulated. Nipah (family Paramyxoviridae, genus Henipavirus) are emerging zoonotic

pathogens that cause illness and fatality in livestock and humans [15–20]. Their fusion with host cells is

initiated by the binding of their attachment glycoproteins (G) to specific ephrin receptors on host cells,

B2 and B3 [21–23]. This binding triggers changes in G that signals the activation of another viral protein,

F, which, in turn, mediates viral fusion. The G protein consists of an N-terminus cytoplasmic tail, a

transmembrane domain, a stalk domain and a globular head domain. While the G head domain binds to

ephrins [24, 25], the G stalk domain is responsible for F specificity and activation [26–37]. However, the

precise location of where F binds on the G stalk domain is unknown, and also remains unknown is how

the ephrin binding signal is transmitted from the head domain to the stalk domain of G.

4

R (24)

R0 (25)

R 6= R0 (26)

R \ R0 6= 0 (27)

The ensemble of 3-dimensional (3D) configurations, R, exhibited by a biomolecule is essential to its

function and is correlated tightly with the properties of its environment [1–14]. Changes in intensive

variables, such as temperature and ionic strength, modify the configurational space (R ! R0) sampled

by the molecule. Additionally, a molecule’s configurational space can be altered by the binding of other

molecules, such as in protein-protein or DNA-protein complexes. Moreover, the extent of the change

in configurational density or population shift, �R, depends on multiple factors, including properties of

the molecule and the nature of the perturbation or external potential. Such induced changes are critical

to regulating the functions of biomolecules, and play viral roles in biological signal transduction. A

quantitative characterization of �R is, therefore, important for understanding the molecular basis of

functional regulation.

Here we analyze the receptor-induced �R in the attachment protein of Nipah virus to understand

how Nipah fusion is regulated. Nipah (family Paramyxoviridae, genus Henipavirus) are emerging zoonotic

pathogens that cause illness and fatality in livestock and humans [15–20]. Their fusion with host cells is

initiated by the binding of their attachment glycoproteins (G) to specific ephrin receptors on host cells,

B2 and B3 [21–23]. This binding triggers changes in G that signals the activation of another viral protein,

F, which, in turn, mediates viral fusion. The G protein consists of an N-terminus cytoplasmic tail, a

transmembrane domain, a stalk domain and a globular head domain. While the G head domain binds to

ephrins [24, 25], the G stalk domain is responsible for F specificity and activation [26–37]. However, the

precise location of where F binds on the G stalk domain is unknown, and also remains unknown is how

the ephrin binding signal is transmitted from the head domain to the stalk domain of G.

Catalytic
site

Inactive Active

Allosteric regulation involving small structural changes

For several major pharmaceutical proteins, distinguishing their states 
requires consideration of their finite temperature conformational ensembles

Understanding mechanisms requires accounting for information on 
both structure and dynamics from multiple states.



Role of dynamic allostery - examples

Fusion regulation in paramyxoviruses GPCR regulation by natural 
compounds and drug molecules

Regulation of Immune response
Heat shock response



awareness of computational biology as a career path and as a tool for scientific research to 
undergraduates, grade-level students and also to the broader community in the Tampa Bay area: 
(A)This project creates two opportunities for undergraduate research, where students will be provided 

with goal-oriented platforms to develop a better perspective of interdisciplinary research. 
(B) Outreach to grade-level students and the broader community will be accomplished in partnership with 

Tampa’s Museum of Science and Industry (http://www.mosi.org) (see support letter). Specifics — (i) 
Deploy an interactive, instructional GUI at the museum that demonstrates the general principles of 
protein functional regulation and signaling, and how high performance computing is contributing to 
this field. The GUI will be housed initially in the ‘Idea Zone!’145 for feedback and refinement, and 
subsequently hosted in the ‘Amazing You’146 segment of the museum, which is a state-of-the-art, 
informative, educational, and interactive exhibition that gives guests the opportunity to explore the 
intricate world of human physiology. (ii) Organize workshops on molecular modeling for middle/high 
school students as part of the museum’s regular STEAM (Science, Technology, Engineering, Art 
& Math) summer camp. 

Goal 1: Methods for quantitative characterization of shifts in conformational 
ensembles
 For an ensemble of a n-particle molecule represented by m conformations,  ! ≡ r1, r2,…, rm{ } , 
where r is a 3n-dimensional vector, the task of differentiating it from another state of the molecule, 

 ′! ≡ ′r1, ′r2,…, ′rm{ } , involves comparing two 3n-dimensional vector spaces. This problem has always 
been dealt with by first reducing the dimensions of the two ensembles separately and then comparing the 
resulting summary statistics from the two ensembles 
against each other (see, for example, 198-200) 
Dimensionality reduction is carried out by averaging over 
the n-space, or over the m-space, or over both n- and m-
spaces. Averaging over the m-space yields time-averaged 
properties such as mean positions and fluctuations for the 
individual ensembles, which are then compared to obtain 
quantitative estimates for differences in the two 
ensembles. Averaging over the n-space involves some 
variation of particle clustering, such as a representation 
of a molecule in terms of centers-of-masses of its 
constituent residues. 
 While such strategies for comparing ensembles 
are useful, they are prone to artifactual biases131-135 
(see example in Figure 3). Furthermore, the choice of 
an appropriate reduction scheme requires a prior 
knowledge of the defining features of changes in 
molecular ensembles, which makes it challenging to 
incorporate it into automated analytical processes. For 
example, in cases where an external potential induces 
large structural changes in molecules, such as the folding 
or unfolding of protein domains, it can be assumed that 
the thermodynamic contribution from changes in 
fluctuations are minor relative to contributions from 
molecular rearrangements and, in such cases, one may 
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ΔCoM = 0.001 Å
ΔRMSF = 0.03 Å� �′

Figure 3: A traditional comparison of 
ensembles, � and �′, involves comparison of 
two of their summary statistics: centers-of-
masses (CoM) and root mean square 
fluctuations (RMSF). For the system above, 
this would suggest that the two ensembles 
differ negligibly. However, a visual inspection 
indicates that while � contains one rotameric 
form of the side chain, �′ contains two 
rotameric forms. The problem with 
comparing summary statistics is that 
enumeration is done prior to identification of 
the key feature that distinguishes the 
ensembles. Certainly, this difference would 
have been evident if the “right set” of 
summary statistics were compared. But how 
does one identify such appropriate feature 
sets beforehand? These and several other 
hurdles can be overcome by comparing 
ensembles directly against each other, and 
prior to any dimensionality reduction.131-135

Compare summary statistics of two ensembles 

Problem with comparing summary statistics: Need to know the “right 
set” of summary statistics that differentiate ensembles. But how does 
one identify such summary statistics beforehand? 

Traditional approach

Methods required?

1) A method to quantify differences between conformational ensembles
    of two states 
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by the molecule. Additionally, a molecule’s configurational space can be altered by the binding of other

molecules, such as in protein-protein or DNA-protein complexes. Moreover, the extent of the change

in configurational density or population shift, ∆R, depends on multiple factors, including properties of

the molecule and the nature of the perturbation or external potential. Such induced changes are critical

to regulating the functions of biomolecules, and play viral roles in biological signal transduction. A

quantitative characterization of ∆R is, therefore, important for understanding the molecular basis of

functional regulation.

Here we analyze the receptor-induced ∆R in the attachment protein of Nipah virus to understand

how Nipah fusion is regulated. Nipah (family Paramyxoviridae, genus Henipavirus) are emerging zoonotic

pathogens that cause illness and fatality in livestock and humans [15–20]. Their fusion with host cells is

initiated by the binding of their attachment glycoproteins (G) to specific ephrin receptors on host cells,

B2 and B3 [21–23]. This binding triggers changes in G that signals the activation of another viral protein,

F, which, in turn, mediates viral fusion. The G protein consists of an N-terminus cytoplasmic tail, a

transmembrane domain, a stalk domain and a globular head domain. While the G head domain binds to

ephrins [24, 25], the G stalk domain is responsible for F specificity and activation [26–37]. However, the

precise location of where F binds on the G stalk domain is unknown, and also remains unknown is how

the ephrin binding signal is transmitted from the head domain to the stalk domain of G.

X-ray crystallography suggests that the head domain of G folds as a propeller with a central cavity

surrounded by six blades β1–6 (Figure 1) [25]. When expressed on the virion or the surface of an infected

cell, G exists as a tetramer, rather than a monomer [38, 39]. The tetramer is organized as a dimer-of-

dimers. The x-ray structure of the G protein of the Hendra virus, which is closely related to Nipah,

indicates that the G head domains dimerize using residues in blades β1 and β6 [39]. This dimerization

results in only minor changes in the monomer structure, and the changes are limited to residues forming

the interface. The crystallographic structure of the Newcastle disease (NDV) paramyxovirus attachment

protein in its tetrameric state suggests that the head domains of the two dimers do not form contact

interfaces [37]. In addition, homology modeling, using this tetrameric structure as a template, indicates

that the four G stalk domains in the tetramer wrap around each other to form a helical bundle [19]. This

helical bundle also interacts with the head domains, but on the side that is opposite to the side where

ephrins bind.

These findings suggest that the ephrin-binding signal can transduce to the G stalk domain through
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pathogens that cause illness and fatality in livestock and humans [15–20]. Their fusion with host cells is

initiated by the binding of their attachment glycoproteins (G) to specific ephrin receptors on host cells,

B2 and B3 [21–23]. This binding triggers changes in G that signals the activation of another viral protein,

F, which, in turn, mediates viral fusion. The G protein consists of an N-terminus cytoplasmic tail, a

transmembrane domain, a stalk domain and a globular head domain. While the G head domain binds to

ephrins [24, 25], the G stalk domain is responsible for F specificity and activation [26–37]. However, the

precise location of where F binds on the G stalk domain is unknown, and also remains unknown is how

the ephrin binding signal is transmitted from the head domain to the stalk domain of G.

X-ray crystallography suggests that the head domain of G folds as a propeller with a central cavity

surrounded by six blades β1–6 (Figure 1) [25]. When expressed on the virion or the surface of an infected

cell, G exists as a tetramer, rather than a monomer [38, 39]. The tetramer is organized as a dimer-of-

dimers. The x-ray structure of the G protein of the Hendra virus, which is closely related to Nipah,

indicates that the G head domains dimerize using residues in blades β1 and β6 [39]. This dimerization

results in only minor changes in the monomer structure, and the changes are limited to residues forming

the interface. The crystallographic structure of the Newcastle disease (NDV) paramyxovirus attachment

protein in its tetrameric state suggests that the head domains of the two dimers do not form contact

interfaces [37]. In addition, homology modeling, using this tetrameric structure as a template, indicates

that the four G stalk domains in the tetramer wrap around each other to form a helical bundle [19]. This

helical bundle also interacts with the head domains, but on the side that is opposite to the side where

ephrins bind.

These findings suggest that the ephrin-binding signal can transduce to the G stalk domain through
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Abstract

The fusion of Nipah viruses with host cells is facilitated by two of their membrane proteins, the attachment
protein (G) and the fusion protein (F). G binds to specific ephrin receptors on the host membrane. Ephrin
binding changes the configurational density of G that activates F, which, in turn, mediates fusion. To
understand how ephrin binding causes G to activate F, we use molecular dynamics in conjunction with
machine learning and filter out the set of amino acids in the G head domain whose configurational
densities are shifted equivalently by di↵erent ephrins. In particular, we consider the natural human
ephrins B2 and B3, both of which trigger viral fusion despite sharing only a modest sequence identity
of ⇠50%. We consider also a biochemically well-characterized double mutant of B2 (L281W282 !YM)
that triggers viral fusion, but binds weakly to G in comparison to B2. We find that the three ephrins
induce statistically equivalent shifts in the configurational densities of about one-quarter of the residues
in the G head domain. This surprisingly expansive communal change in G includes most of the residues
that have been shown experimentally to be important to F activation. This suggests that this set of
residues contain the signaling pathways that connect the G-ephrin interface to the G stalk domain that
activates F. The distribution of these residues in the G head domain is consistent with two models of
signal transduction, one in which the F-activating signal transduces from the head to the stalk domain
via changes in specific interactions between the head and the stalk domain, and the other in which the
signal transduces from the head to the stalk domain via changes in the G head domain dimer interface.
In general, this study also shows how machine learning can be utilized along with molecular simulations
to filter out quantitatively conserved patterns in changes in protein structure and dynamics.

Author Summary

Introduction

The ensemble of 3-dimensional (3D) configurations, R, exhibited by a biomolecule is essential to its
function and is correlated tightly with the properties of its environment [1–12]. Changes in intensive
variables, such as temperature and ionic strength, modify the configurational space (R ! R0) sampled
by the molecule. Additionally, a molecule’s configurational space can be altered by the binding of other
molecules, such as in protein-protein or DNA-protein complexes. Moreover, the extent of the change or
population shift, �R, depends on multiple factors, including properties of the molecule and the nature
of the perturbation or external potential. Such induced changes are critical to regulating the functions
of biomolecules, and play viral roles in biological signal transduction. A quantitative characterization of
�R is, therefore, important for understanding the molecular basis of functional regulation.

Here we analyze the changes �R in the Nipah virus G glycoprotein that are induced by the binding
of its host receptors, ephrins. Nipah (family Paramyxoviridae, genus Henipavirus) are emerging zoonotic
pathogens that cause illness and fatality in livestock and humans [13–18]. Their fusion with host cells is
initiated by the binding of their G proteins to specific ephrin receptors on host cells, B2 and B3 [19–21].
This binding triggers changes in G that signals the activation of another viral protein, F, which, in
turn, mediates viral fusion. The G protein consists of an N-terminus cytoplasmic tail, a transmembrane
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safely disregard changes in fluctuations. However, when no prior knowledge is available and if changes in 
no particular single mode, such as rotation, translation or fluctuation, are expected to dominate, a proper 
quantitative assessment of changes requires simultaneous consideration of all modes of motions. We run 
into this issue in proteins whose states require ensemble definitions for discrimination, and, in 
general, in all cases where induced structural changes are small.
 Two solutions have been proposed in recent years to compare ensembles directly against one 
another — one that has its roots in information theory and quantifies differences in terms of divergence 
in information,131-133 and the other, which we proposed,135,136 quantifies differences in terms of the 
physical overlap between multidimensional distributions. Both methods deal with geometrical 
information, and so they must be related to each other and to differences in Shannon entropy. 

Quantifying differences between conformational ensembles by solving the inverse machine 
learning problem: We define135,136 the difference between conformational ensembles � and �′ as 

              η = 1− Overlap = 1− !∩ ′! .    [1]

The quantity, η , which we refer to as discriminability, is normalized, that is, η ∈[0,1) , and it takes up a 
value closer to unity as the difference between the ensembles increases. Most importantly, η  satisfies, 
by definition, both conditions set forth by the zeroth law of thermodynamics (page 2), and, 
therefore, serves a true metric of the difference between ensembles. 
 We have demonstrated that η  can be estimated by solving an inverse machine learning problem, 
and with no need for any data fitting. Machine learning, in the traditional sense, is used for data 
classification147-151 — the classification function (or machine) is first trained on a set of instances with 
known group identities, and then used for predicting the group identity of an unclassified instance. In 
principle, the conformational ensembles of a n-particle molecule, � and �′, can also serve as training data,
160 which can produce a classification function, 
F(r), for the prediction of the group identity of an 
unclassified conformation. What we showed 
theoretically135 is that if F(r) were constructed 
and trained appropriately, then the overlap 
between � and �′ can be extracted from F(r), 
which, as such, contains all the information 
concerning the difference between � and �′. We 
have demonstrated this for discrete Gaussian 
distributions, and using two different SVM 
optimization algorithms (Figure 4).
 We have also illustrated the 
usefulness of η  in 3 different applications,
135-137 including comparison of perturbations 
induced in proteins by different ligands (Figure 
5), and the effect of force fields on induced 
shifts. For these applications, we operated under 
the assumption that since our method performs 
excellently for Gaussian distributions, then it 
should also perform well for a sum of Gaussian 
distributions (multi-gaussian distributions). 
However, this remains to be verified, which is 
the first sub-aim.  

                                                                                     5

Figure 4: We showed135,136 that the overlap between two 
discrete Gaussian distributions, f (µ0,σ0) ∩ f (µ,σ), can 
be extracted from a trained classification function, F(r), 
of Support Vector Machines (SVM). A SVM algorithm 
based on sequential optimization152 (blue) produces a 
small MAE of 3.2% with respect to analytical values 
(black). We have now utilized a different implementation 
of SVM153 (red) that yields a similar MAE of 3.26% 
(unpublished). Note that the sets of Gaussian 
distribution used for training F(r) comprise of only 
those for which only either µ or σ differ between each 
other (denoted by circles). The remaining sets where 
both µ and σ differ simultaneously are predictions of 
F(r), and MAEs are estimated only for predictions.

MAE = 3.2%

New method to quantify differences in ensembles 

Leighty and Varma, JCTC 2013
Varma, Botlani, Leighty, Proteins 2014

safely disregard changes in fluctuations. However, when no prior knowledge is available and if changes in 
no particular single mode, such as rotation, translation or fluctuation, are expected to dominate, a proper 
quantitative assessment of changes requires simultaneous consideration of all modes of motions. We run 
into this issue in proteins whose states require ensemble definitions for discrimination, and, in 
general, in all cases where induced structural changes are small.
 Two solutions have been proposed in recent years to compare ensembles directly against one 
another — one that has its roots in information theory and quantifies differences in terms of divergence 
in information,131-133 and the other, which we proposed,135,136 quantifies differences in terms of the 
physical overlap between multidimensional distributions. Both methods deal with geometrical 
information, and so they must be related to each other and to differences in Shannon entropy. 

Quantifying differences between conformational ensembles by solving the inverse machine 
learning problem: We define135,136 the difference between conformational ensembles � and �′ as 

              η = 1− Overlap = 1− !∩ ′! .    [1]

The quantity, η , which we refer to as discriminability, is normalized, that is, η ∈[0,1) , and it takes up a 
value closer to unity as the difference between the ensembles increases. Most importantly, η  satisfies, 
by definition, both conditions set forth by the zeroth law of thermodynamics (page 2), and, 
therefore, serves a true metric of the difference between ensembles. 
 We have demonstrated that η  can be estimated by solving an inverse machine learning problem, 
and with no need for any data fitting. Machine learning, in the traditional sense, is used for data 
classification147-151 — the classification function (or machine) is first trained on a set of instances with 
known group identities, and then used for predicting the group identity of an unclassified instance. In 
principle, the conformational ensembles of a n-particle molecule, � and �′, can also serve as training data,
160 which can produce a classification function, 
F(r), for the prediction of the group identity of an 
unclassified conformation. What we showed 
theoretically135 is that if F(r) were constructed 
and trained appropriately, then the overlap 
between � and �′ can be extracted from F(r), 
which, as such, contains all the information 
concerning the difference between � and �′. We 
have demonstrated this for discrete Gaussian 
distributions, and using two different SVM 
optimization algorithms (Figure 4).
 We have also illustrated the 
usefulness of η  in 3 different applications,
135-137 including comparison of perturbations 
induced in proteins by different ligands (Figure 
5), and the effect of force fields on induced 
shifts. For these applications, we operated under 
the assumption that since our method performs 
excellently for Gaussian distributions, then it 
should also perform well for a sum of Gaussian 
distributions (multi-gaussian distributions). 
However, this remains to be verified, which is 
the first sub-aim.  

                                                                                     5

Figure 4: We showed135,136 that the overlap between two 
discrete Gaussian distributions, f (µ0,σ0) ∩ f (µ,σ), can 
be extracted from a trained classification function, F(r), 
of Support Vector Machines (SVM). A SVM algorithm 
based on sequential optimization152 (blue) produces a 
small MAE of 3.2% with respect to analytical values 
(black). We have now utilized a different implementation 
of SVM153 (red) that yields a similar MAE of 3.26% 
(unpublished). Note that the sets of Gaussian 
distribution used for training F(r) comprise of only 
those for which only either µ or σ differ between each 
other (denoted by circles). The remaining sets where 
both µ and σ differ simultaneously are predictions of 
F(r), and MAEs are estimated only for predictions.

Instead of comparing summary statistics, 
compare ensembles directly against each 
other



Works even for multi-modal distributions
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Figure 3: Performance of ⌘ estimated from F (r) against its exact value (1� ||R\R0||). For each of the three types of multimodal
distributions, (a) bimodal distributions (R =

P2
i=1 ci

f
i

), (b) trimodal distributions (R =
P3

i=1 ci

f
i

), and (c) quadrimodal
distributions (R =

P4
i=1 ci

f
i

), we generate 400 random pairs (R, R0) by modulating the weighting coefficients c as well as
the attributes of Gaussian functions f . Representative distribution pairs are shown as insets, where the shaded portions indicate
the overlap (||R \ R0||) between the distributions. Performance is quantified using mean absolute errors (MAE) and Pearson
correlation coefficients (⇢).

in Fig. 4b the RBD-RBD interfaces obtained from these simulations in the context of the position of the FAD. We note that the
FAD will interact more extensively with the RBDs in the ephrin free state, as compared to the ephrin bound state. Therefore, the
reason the two simulations of the ephrin free state produce slightly different RBD-RBD interfaces could be due to the absence of
the RBD-FAD interface in our simulations. Nevertheless, the primary outcome of these simulation is that ephrin binding induces
a significant change in the RBD-RBD orientation.
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Figure 4: (a) Time evolutions of collective variables that describe the interface between the two RBDs of a dimer. The two lines
for each of the ephrin free and ephrin bound states indicate two separate MD simulations. d

CoM

is the distance between the
centers of masses (CoM) of the backbone atoms of the two RBDs. ✓

tilt

is the angle between the central axes, â and â0, of the
two RBDs. ✓

roll

is the angle of rotation of the RBD about its central axis. The geometrical definitions of ✓
tilt

and ✓
roll

are
provided in Fig. S5 in the Supporting Material. (b) Final snapshots of the RBD-RBD interface in MD simulations. Note that
two superimposed structures are shown for the ephrin free state, as the two simulations in the ephrin free state produced slightly
different RBD-RBD geometries. The location of the FAD relative to the RBD-RBD dimer is depicted according to structure of
the full length ectodomain proposed by Broder and coworkers (5), which was homology modeled on the X-ray structures of the
G analogs in the Newcastle Disease Virus and the parainfluenza virus (4, 11, 12).
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Comparison of conformational ensembles

The traditional approach to compare two conformational ensembles of proteins, R = {r1, r2, ..., rm

} and R0 = {r01, r02, ..., r0m},
where r denotes a 3n-dimensional coordinate and m denotes the number of conformations in the ensemble, is to compare their
respective summary statistics, like centers-of-masses (CoMs) and root mean square fluctuations (RMSFs). However, if a subset
of the summary statistics of the two ensembles are found to be identical, it does not imply that all of the 3n�6 summary statistics
of two ensembles will also be identical. The general problem of finding and choosing a feature that appropriately distinguishes
two ensembles can be overcome by comparing ensembles directly against each other, and prior to any dimensionality reduction
(30, 31, 49). A further advantage of comparing ensembles directly against each other is that the resulting quantification naturally
embodies differences in conformational fluctuations.

We compare ensembles directly against each other using a method we developed recently (31). It quantifies the difference
between two ensembles in terms of a metric, ⌘, that satisfies two conditions: (i) ⌘(R ! R0) = ⌘(R0 ! R) , and (ii) if
⌘(R ! R0) = ⌘(R0 ! R00), then ⌘(R ! R0) = ⌘(R ! R00). This metric is also universal in that it not bounded by system
type/size, and can be used to examine differences in ensembles at any structural hierarchy (functional groups, amino acids, or
secondary structures).

Mathematically, ⌘ is a function of the geometrical overlap between conformational ensembles, R and R0,

⌘ = 1� ||R \ R0||. (1)

It is normalized, that is, ⌘ 2 [0, 1), and it takes up a value closer to unity as the difference between the ensembles increases.
||R \ R0|| is estimated by solving an inverse machine learning problem. In the traditional sense, machine learning is used for
data classification (50–52) – the classification function, or machine (F (r)), is first trained on a set of instances with known group
identities, and then used for predicting the group identity of an unclassified instance. In principle, the conformational ensembles
R and R0 can also serve as training data to train a classification function, F (r), which can, in turn, be used to predict whether an
unseen conformation belongs to R or R0. We have shown that if F (r) is constructed and trained appropriately, then the overlap
between R and R0 can be extracted from F (r) (30).

We have also demonstrated that this method works excellently and without need for any prior data fitting, provided we assume
that the underlying distributions are Gaussian – the mean absolute error (MAE) between computed and analytical overlaps is 3.2%
(31). The Gaussianity in a distribution, which is a corollary to the central limit theorem, is however, a valid assumption only in
systems where particles do not interact with each other. Therefore, deviations can be expected for protein systems that evolve
under the influence of many-body interactions. Nevertheless, the overlap between two multi-Gaussian distributions, R =

P
c
i

f
i

and R0 =
P

c0
i

f 0
i

, where f
i

are Gaussians and c
i

are weighting coefficients, is essentially a sum of overlaps between Gaussian
distributions, that is,

⌘ = 1� ||
nX

i=1

c
i

f
i

\
nX

j=1

c0
j

f 0
j

|| = 1� ||(
nX

i,j=1

c
i

f
i

\ c0
j

f 0
j

||. (2)

Therefore, from a theoretical standpoint, our method should also work for multi-Gaussian distributions, and by extension, for
any distribution. Fig. 3 shows the performance of the method for computing the overlap between arbitrary bimodal, trimodal
and quadrimodal distributions. In each case, the MAE is < 6% and the Pearson correlation coefficient is > 0.97. We have
now implemented this method using Gromacs APIs (39), and the source code is available at https://simtk.org/home/
conf_ensembles. Note that in this implementation, we employ the Support Vector Machine (SVM) optimization algorithm
distributed as part of the LIBSVM package (53), instead of SVMlight (54) that we employed in our original implementation (31).
Consequently, we re-optimized the upper limit of the Lagrange multiplier (C) and the width of the transformation Kernel (�)
in F (r). The optimized values of C and � are, respectively, 100 and 0.4 Å�2 (Fig. S4 in the Supporting Material), which are
obtained in exactly the same way as described in our original implementation (31). The re-optimized C and � still yield a MAE
of 3.2% for estimating the overlap between two Gaussian distributions.

Results and Discussion

Wild type RBD dimer

We examine first using MD how the small changes induced by ephrin in individual RBDs affect the interface between two RBDs.
Note that since a single RBD-RBD template is used for constructing the initial models of both the ephrin free and ephrin bound
dimers, the orientations between the two RBDs in these initial models are identical (see Methods for details).

We subject these two templated dimer models to separate MD simulations. Fig. 4a tracks the time evolution of three collec-
tive variables that describe the interface between the two RBDs in a dimer: d

CoM

, ✓
tilt

, and ✓
roll

. We find that the RBD-RBD
interface of the ephrin bound state is strikingly different from that of the ephrin free state. Repeating these MD simulations by
assigning different initial velocity distributions in MD yields exactly the same result in that the RBD-RBD interface of the ephrin
bound state is strikingly different from that of the ephrin-free state (Fig. 4a).

We also note from Fig. 4a that while the two simulations of the ephrin bound state yield identical RBD-RBD orientations,
the two simulations of the ephrin free state yield slightly different RBD-RBD orientations. To understand the latter, we visualize
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“Inverse” machine learning
Machine Learning in a nutshell 

Typical scenario: learning from data 
 
• given data set X and labels Y (generated by some joint probabilty distribution p(x,y))  
 
• LEARN/INFER underlying unknown mapping  
 

     Y = f(X) 
 
Example: understand chemical compound space, distinguish brain states … 
 
BUT: how to do this optimally with good performance on unseen data?  
 
 

? f 

Typical scenario: learning from data
 
 - Given data set  x  and labels  y 
   (generated by some joint probability distribution p(x,y))

 - LEARN/INFER underlying unknown mapping 
                            y = f(x)

Learn  f  from examples such that Risk of prediction, is minimized

R[ f ]= f (x)− y∫
2
dP(x, y)

Basic ideas in learning theory  
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Instead of training  f  for prediction 

    Construct and train  f   in an appropriate Hilbert space such that 

    it can be used to derive causalities in physical space



A support vector machine is a binary classifier that is trained on a set of instances {xi} for 
which their corresponding group identities                    are known.

 

Support vector machine 3

use the classification scheme to quantify the di↵erence
between the two ensembles.

The classification of instances by a SVM involves de-
termining a set of two hyperplanes,

y

i

(w · x� b) = 1, (1)

where w is a vector normal to the hyperplane and b/kwk
is the o↵set of the hyperplane from the origin along the
normal vector w. These hyperplanes separate the 2m
instances into two groups

y

i

(w · x� b) � 1. (2)

Therefore, for each particle, the optimization task com-
prises of maximizing the distance between its correspond-
ing hyperplanes, that is, 2/kwk, or minimizing kwk sub-
ject to the condition given by Equ. 2. This constrained
optimization problem can be cast in terms of Lagrange
multipliers, ↵

i

� 0, as

L =
1

2
kwk2 �

2mX

i=1

↵

i

[y
i

(w · xi � b)� 1], (3)

where the square on kwk permits quadratic program-
ming optimization and the 1/2 coe�cient is introduced
for mathematical convenience. The auxiliary function L

is minimized with respect to kwk and b, and is maximized
with respect to ↵

i

. This implies
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While the condition given by Equ. 4 shows how the in-
verse of the distance between hyperplanes is expressed as
a linear combination of Lagrange multipliers and particle
coordinates, the condition given by Equ. 5 indicates the
relationship between the two hyperplanes. Substituting
the results from equations 4 and 5 into Equ. 3 yields
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) = x

i

· x
j

(7)

is referred to as a kernel function. The kernel function
in Equ. 7 is essentially the projection of one vector on
another. The overall optimization problem, therefore,
reduces to maximizing the auxiliary function L given by
Equ. 6 with respect to ↵

i

, such that ↵
i

� 0 and
P

↵

i

y

i

=

0 8 i. This method forms the basis of sequential minimal
optimization (SMO) that we use for our study [25, 26].

Note, however, that the SMO assumes that the 2m in-
stances of each particle are linearly separable, that is,
separability can be achieved via the vectorial projection
in the Euclidean space, as given by the kernel function
in Equ. 7. The problem of classifying configurations is,
however, expected to be nonlinear in Euclidean space.
Based on the central limit theorem and several studies
(see, for example, references [12, 28]), we expect that,
under equilibrium, the instances will be distributed nor-
mally in Euclidean space. Our ansatz, therefore, involves
replacing the inner product or kernel in Equ. 6 with

k(xi,xj) = exp(��kxi � xjk2), (8)

which should render the classification task linear. Such
a replacement of the dot product in an optimization
problem is also commonly referred to as a “kernel-trick”
[23, 24, 29]. The specific choice of the new kernel essen-
tially transforms the attribute space into a Hilbert space
of infinite dimensions, where the classification is sought.
Note that the transformation here results in information
loss with respect to the orientation of fluctuations in the
Euclidean space. Nevertheless, the information regard-
ing the orientation of the overall molecule remains un-
a↵ected, as the comparison for each atom is carried out
separately. For the results presented in this work, we se-

lected � = 1.0 Å
�2

. We will see in the Results section
that it produces results consistent with analytical solu-
tions. In addition, we increased and decreased the value
of � by a factor of two for a subset of test cases, and
found no significant e↵ect on results.
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The ensemble of 3-d configurations exhibited by a molecule, that is, its intrinsic motion, can be
altered by numerous environmental factors, such as temperature, and also by the binding of other
molecules. An understanding of ensemble-level di↵erences from a geometric perspective is important
because it provides a basis for relating thermodynamic changes to changes in molecular motion.
The task of di↵erentiating two configurational ensembles is, however, challenging because it requires
comparing two high-dimensional datasets. Traditionally, when analyzing molecular simulations,
this problem is circumvented by first reducing the dimensions of the two ensembles separately,
and then comparing summary statistics from the two ensembles against each other. However,
since dimensionality reduction is carried out prior to comparison of ensembles, such strategies are
susceptible to artifactual biases from information loss. Here we introduce a method based on support
vector machines (SVM) that compares 3-d ensembles directly against one another in the Hilbert
space without a prerequisite reduction in phase space. While this method can be applied to any
molecular system, here we explore its sensitivity toward model systems comprised of amino acids.
We also apply the technique to identify the specific regions of a paramyxovirus G protein that are
a↵ected by the binding of its preferred human receptor, Ephrin B2. We find that the specific regions
identified by this method include the set of amino acids that are known from experimental studies
to play a vital role in viral fusion. The configurational ensembles of the viral protein in both its
bound and unbound states were generated using all-atom molecular dynamics simulations.

INTRODUCTION

The ensemble of 3-d configurations exhibited by a
molecule, that is, its intrinsic motion, is correlated with
the properties of its environment [1–12]. Changes in
intensive variables, such as temperature and pressure,
modify the intrinsic motion of a molecule. Additionally,
molecular motion also changes as a result of binding with
other molecules, such as in ligand-substrate complexes or
molecular assemblies. Moreover, the extent of the change
in molecular motion is dependent upon multiple factors,
including properties of the molecule and the nature of
the perturbation or external potential. A quantitative
characterization of such changes in molecular motion is
important from both scientific as well as engineering per-
spectives because it provides a basis to associate changes
in thermodynamic properties directly with corresponding
changes in molecular motion.

Di↵erentiating between two ensembles of molecular
configurations is, however, challenging. The challenge
lies in comparing two sets of high-dimension data. For

the motion of a n-particle molecule represented by m-
configurations, {a

n

(x)}m
1

, the task of di↵erentiating it
from the molecule’s reference state, {a

n

(x
0

)}m
1

, involves
comparing two 3n-dimensional vector spaces. Tradition-
ally, when analyzing molecular simulations, this prob-
lem is dealt with by first reducing the dimensions of the
two ensembles separately, and then comparing the result-
ing summary statistics from the two ensembles against
each other [13]. Dimensionality reduction is carried out,
for example, by averaging over n-space that involves
particle-clustering or averaging over m-space that yields
properties like mean positions and fluctuations, or by
averaging over both n- and m-spaces [14]. While such
strategies have undoubtedly proven useful, they are prone
to artifactual biases. This is because dimensionality re-
duction is carried out prior to comparison of ensembles,
implying that information is lost before ensembles are
compared against each other. In addition, such strate-
gies are ad hoc, which renders the analysis of their results
context-dependent. Furthermore, the choice of an ap-
propriate reduction scheme requires a priori knowledge
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FIG. 1. Time evolution of the RMSD of the backbone atoms
of NiV-G calculated with respect to the X-ray structure of
NiV-G co-crystallized with Ephrin-B2 [21]. The two insets
on the right show the backbone X-ray structures of NiV-G
(drawn in yellow), and superimposed on them are twenty rep-
resentative structures of NiV-G taken at regular intervals from
the final 150 ns of the MD simulations.

pable of causing illness and fatality in domestic animals
and humans [15–20]. Fusion with host cells is initiated
by the binding of viral G proteins to Ephrin receptor
proteins of the host cell. X-ray crystallography suggests
that the ectodomain of Nipah G protein (NiV-G) under-
goes only minor backbone rearrangements when it binds
to its preferred Ephrin B2 receptor on the host cell [21].
The root mean square deviation (RMSD) between the X-
ray coordinates of NiV-G backbone atoms of the bound
and unbound states is 1.9 Å, and the backbone rear-
rangements occur primarily within certain loops near the
Ephrin-B2 binding site [21]. Microsecond-timescale all-
atom molecular dynamics simulations carried out under
physiological conditions (see Methods) also suggest sim-
ilar minor backbone rearrangements in the ectodomain
of NiV-G due to Ephrin B2 (Fig. 1). Despite only minor
backbone rearrangements induced in NiV-G, its binding
to Ephrin B2 triggers the viral fusion machinery. This
mechanism suggests that to understand how the binding
of Ephrin receptors modify the molecular motion of NiV-
G, it is important to consider simultaneously changes to
all modes of motions in NiV-G, including backbone dis-
placements, backbone rotations, side-chain rotations and
amino acid fluctuations. Consequently, this can be ac-
complished only if ensembles representing the motion of
NiV-G in both its bound and unbound states are com-
pared against each other directly without dimensional
reduction of the phase space.

Here we introduce a method based on support vector
machines [22–24] that compares directly two di↵erent en-
sembles of 3-d configurations. We test the sensitivity of
this method using model datasets consisting of individual
amino acids, and then apply the technique to discrimi-
nate between the motions of NiV-G in its bound and

unbound states. The ensemble of configurations sam-
pled by each amino acid in the unbound state of NiV-G
is compared against its corresponding motion in NiV-G
bound to Ephrin. This comparison yields a normalized
index of discriminability for each amino acid of NiV-G,
which allows all the amino acids in NiV-G to be ranked
according to their respective changes in intrinsic motion.
The ensemble of configurations representing the motion
of NiV-G were generated using molecular dynamics sim-
ulations. Mapping the set of amino acids that undergo
the highest change in motion on to the 3-d structure of
NiV-G reveals that the residues are clustered primarily
on a single facet of NiV-G, which is presumably the re-
gion involved in triggering viral fusion. This facet also
includes the set of amino acids that were identified using
wet-lab experiments to be important to viral fusion.

We now describe the SVM-based method. In the suc-
ceeding sections we discuss its sensitivity toward discrim-
inating model test systems, and then apply it to examine
the e↵ect of Ephrin binding on the intrinsic motion of
the aforementioned NiV-G protein.

METHODS

Support Vector Machines

We present a SVM-based method to compare two con-
figurational ensembles of a molecule consisting of n-
particles, {a

n

(x�)}m
1

and {a
n

(x
+

)}m
1

. In these nota-
tions, a denotes the particle identity, x± the particle’s
coordinates in the Euclidean space and m the number of
configurations in the ensemble. The comparison returns
a normalized quantitative measure, which we refer to as
the discriminability index. It reflects the di↵erence be-
tween the two ensembles. Details regarding the SVM the-
ory [23–25] and its implementation [25, 26] are published
elsewhere, and here we focus primarily on discussing how
it is adopted to di↵erentiate between molecular ensem-
bles.

A SVM classifies a set of instances into two groups,
y

i

= ±1. In our case, there are n particles, and for each
particle there are i

max

= 2m instances, half of which be-
long to the group y

i

= �1 and the other half to y

i

= +1.
Since the classification is known, our goal is to use the
classification scheme to quantify the di↵erence between
the two ensembles.

The classification of instances by a SVM involves de-
termining a set of two hyperplanes,

y

i

(w · x� b) = 1, (1)

where w is a vector normal to the hyperplane and b/kwk
is the o↵set of the hyperplane from the origin along the



The optimization task: maximize the distance (             ) between the two hyperplanes.
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normal vector w. These hyperplanes separate the 2m
instances into two groups

y

i

(w · x� b) � 1. (2)

Therefore, for each particle, the optimization task com-
prises of maximizing the distance between its correspond-
ing hyperplanes, that is, 2/kwk, or minimizing kwk sub-
ject to the condition given by Equ. 2. This constrained
optimization problem can be cast in terms of Lagrange
multipliers, ↵

i

� 0, as

L =
1

2
kwk2 �

2mX

i=1

↵

i

[y
i

(w · x
i

� b)� 1], (3)

where the square on kwk permits quadratic program-
ming optimization and the 1/2 coe�cient is introduced
for mathematical convenience. The auxiliary function L

is minimized with respect to kwk and b, and is maximized
with respect to ↵

i

. This implies
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While the condition given by Equ. 4 shows how the in-
verse of the distance between hyperplanes is expressed as
a linear combination of Lagrange multipliers and particle
coordinates, the condition given by Equ. 5 indicates the
relationship between the two hyperplanes. Substituting
the results from equations 4 and 5 into Equ. 3 yields
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2mX
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where,

k(x
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j

) = x

i

· x
j

(7)

is referred to as a kernel function. The kernel function
in Equ. 7 is essentially the projection of one vector on
another. The overall optimization problem, therefore,
consists to maximizing the auxiliary function L given by
Equ. 6 with respect to ↵

i

, such that ↵
i

� 0 and
P

↵

i

y

i

=
0 8 i. This method forms the basis of sequential minimal
optimization (SMO) that we use for our study [25, 26].

Note, however, that the SMO assumes that the 2m in-
stances of each particle are linearly separable, that is,
separability can be achieved via the vectorial projection
in the Euclidean space, as given by the kernel function
in Equ. 7. The problem of classifying configurations is,
however, expected to be nonlinear in Euclidean space.
Based on the central limit theorem and several studies

(see, for example, references [12, 28]), we expect that,
under equilibrium, the instances will be distributed nor-
mally in Euclidean space. Our ansatz, therefore, involves
replacing the inner product or kernel in Equ. 6 with

k(xi,xj) = exp(��kxi � xjk2), (8)

which should render the classification task linear. Such
a replacement of the dot product in an optimization
problem is also commonly referred to as a “kernel-trick”
[23, 24, 29]. The specific choice of the new kernel essen-
tially transforms the attribute space into a Hilbert space
of infinite dimensions, where the classification is sought.
Note that the transformation here results in information
loss with respect to the orientation of fluctuations in the
Euclidean space. Nevertheless, the information regard-
ing the orientation of the overall molecule remains unaf-
fected, as the comparison for each particle is carried out
separately. For the results presented in this work, we se-

lected � = 1.0 Å
�2

. We will see in the Results section
that it produces results consistent with analytical solu-
tions. In addition, we increased and decreased the value
of � by a factor of two for a subset of test cases, and
found no significant e↵ect on results.

The optimization of Equ. 6 ultimately yields two dis-
tinct sets of Lagrange multipliers, {↵

i

} = 0 and {↵
i

} > 0.
The hyperplanes that we intended to seek (Equ. 1) are
defined by the set of x

i

whose corresponding ↵

i

> 0.
These vectors are referred to as support vectors. The
vectors x

i

whose corresponding ↵

i

= 0, satisfy the condi-
tion y

i

(w ·x�b) > 1, and are not part of the hyperplanes
or margins that separate them.

Note that the number of support vectors, s
a

, required
to partition the set of instances for a given particle into
two groups is related to the complexity of the classifica-
tion. Thus, the number of support vectors returned by
the classifier provides a measure of similarity between
two groups; groups that are more similar will require
more support vectors. In other words, if the classification
was known a priori, such as in our case where the exact
correspondence between configurations and ensemble is
known, then the value of s

a

serves as a quantitative mea-
sure of similarity between the two ensembles. In addition,
the number of support vectors is bounded, that is, in our
case, s

a

 2m, and s =
P

n

1

s

a

 2m⇥n. This provides a
scheme to normalize the result of the classification with
respect to the sizes of the configurational space and the
molecule. Consequently, we define a normalized quantity
called the discriminability index,

⌘ = 1� s

2mn

, (9)

which is bounded between 0 and 1 and takes up a value
closer to 1 as the similarity between ensembles decreases.
As we shall see in the Results section, this quantity serves
as a means to rank the amino acids of our candidate
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which should render the classification task linear. Such
a replacement of the dot product in an optimization
problem is also commonly referred to as a “kernel-trick”
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tially transforms the attribute space into a Hilbert space
of infinite dimensions, where the classification is sought.
Note that the transformation here results in information
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fected, as the comparison for each particle is carried out
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. We will see in the Results section
that it produces results consistent with analytical solu-
tions. In addition, we increased and decreased the value
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found no significant e↵ect on results.
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two groups is related to the complexity of the classifica-
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two groups; groups that are more similar will require
more support vectors. In other words, if the classification
was known a priori, such as in our case where the exact
correspondence between configurations and ensemble is
known, then the value of s
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serves as a quantitative mea-
sure of similarity between the two ensembles. In addition,
the number of support vectors is bounded, that is, in our
case, s
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scheme to normalize the result of the classification with
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which is bounded between 0 and 1 and takes up a value
closer to 1 as the similarity between ensembles decreases.
As we shall see in the Results section, this quantity serves
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where                     are the Lagrange multipliers, and the limit C is a regularization 
parameter

the classification function generated during training of the SVM to obtain a physically meaningful

quantitative estimate for the difference between the molecular ensembles.

The training of a SVM involves determining a set of two hyperplanes,

yi(w ·x�b) = 1, (1)

where w is a vector normal to the hyperplane and b/kwk is the offset of the hyperplane from the

origin along the normal vector w. In our case, these hyperplanes separate the 2m instances (x±) of

a given atom a into two groups

yi(w ·x�b) � 1. (2)

Therefore, for each particle in the ensemble, the optimization task comprises of maximizing the

distance between its corresponding hyperplanes, that is, 2/kwk, or minimizing kwk subject to the

condition given by Eq. (2). This constrained optimization problem can be cast in terms of Lagrange

multipliers, 0  ai  C, as

L =
1
2
kwk2 �

2m

Â
i=1

ai[yi(w ·xi �b)�1]. (3)

The square on kwk permits quadratic programming optimization and the 1/2 coefficient is intro-

duced for mathematical convenience. The regularization parameter C, influences the complexities

of the hyperplanes, and will, therefore, affect the quantitative estimate of the difference between

the ensembles. Irregardless, the auxiliary function L in equation Eq. (3) is minimized with respect

to kwk and b, and maximized with respect to ai. This implies

∂L
∂w

= 0 ) w =
2m

Â
i=1

aiyixi (4)

and

∂L
∂b

= 0 )
2m

Â
i=1

aiyi = 0. (5)
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176 fs. The motion of the center of mass is reset every 0.2 ps. The
177 protein and ions are described using OPLS-AA parameters,39

178 and the water molecules are described using TIP4P
179 parameters.40

180 We generate a 460 ns long trajectory of NiV-G in its bound
181 state and a 640 ns long trajectory of NiV-G in its unbound state
182 (Figure 1). The representative ensembles of configurations for
183 the bound and unbound states of NiV-G are extracted from the
184 final 150 ns of their respective trajectories.
185 Support Vector Machines. A support vector machine
186 (SVM) is used for binary classification.26−28 It is trained on a
187 set of instances for which their corresponding group identities,
188 yi = ±1, are known. In principle, the configurational ensembles
189 of a n-particle molecule, {an(x−)}1

m and {an(x+)}1
m, can serve as

190 training data, which can produce a classification function for the
191 prediction of the group identity of an unclassified config-
192 uration.41 This, however, is not our goal. Here, we utilize the
193 properties of the classification function generated during
194 training of the SVM to obtain a physically meaningful
195 quantitative estimate for the difference between the molecular
196 ensembles.
197 The training of a SVM involves determining a set of two
198 hyperplanes,

− =y bwx( ) 1i199 (1)

200 where w is a vector normal to the hyperplane and b/∥w∥ is the
201 offset of the hyperplane from the origin along the normal
202 vector w. In our case, these hyperplanes separate the 2m
203 instances (x±) of a given atom a into two groups

− ≥y bwx( ) 1i204 (2)

205 Therefore, for each particle in the ensemble, the optimization
206 task comprises of maximizing the distance between its
207 corresponding hyperplanes, that is, 2/∥w∥, or minimizing
208 ∥w∥ subject to the condition given by eq 2. This constrained
209 optimization problem can be cast in terms of Lagrange
210 multipliers, 0 ≤ αi ≤ C, as
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212 The square on ∥w∥ permits quadratic programming
213 optimization and the 1/2 coefficient is introduced for
214 mathematical convenience. The regularization parameter C,
215 influences the complexities of the hyperplanes, and will,
216 therefore, affect the quantitative estimate of the difference
217 between the ensembles. Regardless, the auxiliary function L in
218 equation eq 3 is minimized with respect to ∥w∥ and b and
219 maximized with respect to αi. This implies

∑ α∂
∂ = ⇒ =

=

L y
w

w x0
i

m

i i i
1

2

220 (4)

221 and

∑ α∂
∂ = ⇒ =

=

L
b

y0 0
i

m

i i
1

2

222 (5)

223 Substituting these results into eq 3 yields
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225where

=k x x x x( , )i j i j 226(7)

227is referred to as a kernel function. The overall optimization
228problem, therefore, consists of maximizing the auxiliary
229function L given by eq 6 with respect to αi, such that 0 ≤ αi
230≤ C and ∑ αiyi = 0 ∀ i. We utilize the sequential minimal
231optimization (SMO) algorithm for this purpose.42,43

232The optimization of eq 6 produces two distinct sets of
233Lagrange multipliers, {αi} = 0 and {αi}>0, that define the binary
234classification function. The hyperplanes that we intend to seek
235are defined by the subset of xi, whose corresponding αi > 0.
236These xi are referred to as support vectors. The number of
237support vectors, s, required to partition the set of 2m instances
238of a particle is, therefore, bounded; that is, 2 ≤ s ≤ 2m. In
239addition, it has been shown that the fraction s/2m serves as an
240upper bound to the classification bootstrap-error.44 In general,
241it can be expected that the higher the similarity between the
242ensembles of a particle, the larger the classification error. This
243suggests that the number of support vectors generated during
244construction of the classifier can be used as a measure of
245similarity between the particle ensembles. Consequently, we
246define a normalized quantity called the particle discriminability
247index,

η = − s
m

1
2 248(8)

249which is bounded, that is, 0 ≤ η < 1, and takes up a value closer
250to 1 as the similarity between particle ensembles decreases. To
251quantify the difference between molecular ensembles, η can be
252averaged over the particles in the molecule.
253Note that, in the optimization of eq 6, the feature used for
254classifying xi is its linear projection on other xi. The vectors xi
255may not, however, be linearly separable in the Euclidean space.
256To circumvent this issue, we replace the dot product in eq 7
257with an alternative kernel that permits classification in a
258transformed feature space. The primary advantage of such a
259“kernel-trick” is that it bypasses the determination of the
260explicit form of the function that transforms the data from the
261Euclidean to the desired feature space.27,28,45 Such a kernel-
262trick, however, requires that the substituting kernel is an inner
263product in the transformed feature space. We chose a Gaussian
264radial distribution function as the substituting kernel, that is,

γ= − −k x x x x( , ) exp( )i j i j
2

265(9)

266which satisfies the aforementioned condition.46 This kernel is
267chosen due to its stationarity and its performance in
268classification as compared to linear, polynomial, or sigmoidal
269kernels.46 This kernel has also been used for constructing
270classifiers for compound libraries47 as well as for classifying
271molecular configurations in chemical reactions.41 The param-
272eter γ in the kernel, which has units of 1/Å2, controls the width
273of the kernel and thereby the smoothness of the underlying
274nonlinear classifier. It represents essentially the influence of a
275given instance on its local environment. Smaller γ correspond
276to larger Gaussian widths, which imply a larger contribution of
277a given instance to the classification. The specific choice of γ,
278therefore, influences the classification and the resulting
279discriminability.
280To choose appropriate values of γ as well as the
281regularization parameter C, we first construct model ensembles
282that represent the motions of the NiV-G atoms. We then
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Therefore, for each particle, the optimization task com-
prises of maximizing the distance between its correspond-
ing hyperplanes, that is, 2/kwk, or minimizing kwk sub-
ject to the condition given by Equ. 2. This constrained
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where the square on kwk permits quadratic program-
ming optimization and the 1/2 coe�cient is introduced
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While the condition given by Equ. 4 shows how the in-
verse of the distance between hyperplanes is expressed as
a linear combination of Lagrange multipliers and particle
coordinates, the condition given by Equ. 5 indicates the
relationship between the two hyperplanes. Substituting
the results from equations 4 and 5 into Equ. 3 yields
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is referred to as a kernel function. The kernel function
in Equ. 7 is essentially the projection of one vector on
another. The overall optimization problem, therefore,
consists to maximizing the auxiliary function L given by
Equ. 6 with respect to ↵
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0 8 i. This method forms the basis of sequential minimal
optimization (SMO) that we use for our study [25, 26].

Note, however, that the SMO assumes that the 2m in-
stances of each particle are linearly separable, that is,
separability can be achieved via the vectorial projection
in the Euclidean space, as given by the kernel function
in Equ. 7. The problem of classifying configurations is,
however, expected to be nonlinear in Euclidean space.
Based on the central limit theorem and several studies

(see, for example, references [12, 28]), we expect that,
under equilibrium, the instances will be distributed nor-
mally in Euclidean space. Our ansatz, therefore, involves
replacing the inner product or kernel in Equ. 6 with

k(xi,xj) = exp(��kxi � xjk2), (8)

which should render the classification task linear. Such
a replacement of the dot product in an optimization
problem is also commonly referred to as a “kernel-trick”
[23, 24, 29]. The specific choice of the new kernel essen-
tially transforms the attribute space into a Hilbert space
of infinite dimensions, where the classification is sought.
Note that the transformation here results in information
loss with respect to the orientation of fluctuations in the
Euclidean space. Nevertheless, the information regard-
ing the orientation of the overall molecule remains unaf-
fected, as the comparison for each particle is carried out
separately. For the results presented in this work, we se-

lected � = 1.0 Å
�2

. We will see in the Results section
that it produces results consistent with analytical solu-
tions. In addition, we increased and decreased the value
of � by a factor of two for a subset of test cases, and
found no significant e↵ect on results.

The optimization of Equ. 6 ultimately yields two dis-
tinct sets of Lagrange multipliers, {↵
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Note that the number of support vectors, s
a

, required
to partition the set of instances for a given particle into
two groups is related to the complexity of the classifica-
tion. Thus, the number of support vectors returned by
the classifier provides a measure of similarity between
two groups; groups that are more similar will require
more support vectors. In other words, if the classification
was known a priori, such as in our case where the exact
correspondence between configurations and ensemble is
known, then the value of s

a

serves as a quantitative mea-
sure of similarity between the two ensembles. In addition,
the number of support vectors is bounded, that is, in our
case, s

a

 2m, and s =
P

n

1
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 2m⇥n. This provides a
scheme to normalize the result of the classification with
respect to the sizes of the configurational space and the
molecule. Consequently, we define a normalized quantity
called the discriminability index,
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which is bounded between 0 and 1 and takes up a value
closer to 1 as the similarity between ensembles decreases.
As we shall see in the Results section, this quantity serves
as a means to rank the amino acids of our candidate
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The ensemble of 3-d configurations exhibited by a molecule, that is, its intrinsic motion, can be
altered by numerous environmental factors, such as temperature, and also by the binding of other
molecules. An understanding of ensemble-level di↵erences from a geometric perspective is important
because it provides a basis for relating thermodynamic changes to changes in molecular motion.
The task of di↵erentiating two configurational ensembles is, however, challenging because it requires
comparing two high-dimensional datasets. Traditionally, when analyzing molecular simulations,
this problem is circumvented by first reducing the dimensions of the two ensembles separately,
and then comparing summary statistics from the two ensembles against each other. However,
since dimensionality reduction is carried out prior to comparison of ensembles, such strategies are
susceptible to artifactual biases from information loss. Here we introduce a method based on support
vector machines (SVM) that compares 3-d ensembles directly against one another in the Hilbert
space without a prerequisite reduction in phase space. While this method can be applied to any
molecular system, here we explore its sensitivity toward model systems comprised of amino acids.
We also apply the technique to identify the specific regions of a paramyxovirus G protein that are
a↵ected by the binding of its preferred human receptor, Ephrin B2. We find that the specific regions
identified by this method include the set of amino acids that are known from experimental studies
to play a vital role in viral fusion. The configurational ensembles of the viral protein in both its
bound and unbound states were generated using all-atom molecular dynamics simulations.

INTRODUCTION

The ensemble of 3-d configurations exhibited by a
molecule, that is, its intrinsic motion, is correlated with
the properties of its environment [1–12]. Changes in
intensive variables, such as temperature and pressure,
modify the intrinsic motion of a molecule. Additionally,
molecular motion also changes as a result of binding with
other molecules, such as in ligand-substrate complexes or
molecular assemblies. Moreover, the extent of the change
in molecular motion is dependent upon multiple factors,
including properties of the molecule and the nature of
the perturbation or external potential. A quantitative
characterization of such changes in molecular motion is
important from both scientific as well as engineering per-
spectives because it provides a basis to associate changes
in thermodynamic properties directly with corresponding
changes in molecular motion.

Di↵erentiating between two ensembles of molecular
configurations is, however, challenging. The challenge
lies in comparing two sets of high-dimension data. For
the motion of a n-particle molecule represented by m-
configurations, {a

n

(x)}m
1

, the task of di↵erentiating it
from the molecule’s reference state, {a

n

(x
0

)}m
1

, involves
comparing two 3n-dimensional vector spaces. Tradition-
ally, when analyzing molecular simulations, this prob-
lem is dealt with by first reducing the dimensions of the
two ensembles separately, and then comparing the result-
ing summary statistics from the two ensembles against

each other [13]. Dimensionality reduction is carried out,
for example, by averaging over n-space that involves
particle-clustering or averaging over m-space that yields
properties like mean positions and fluctuations, or by
averaging over both n- and m-spaces [14]. While such
strategies have undoubtedly proven useful, they are prone
to artifactual biases. This is because dimensionality re-
duction is carried out prior to comparison of ensembles,
implying that information is lost before ensembles are
compared against each other. In addition, such strate-
gies are ad hoc, which renders the analysis of their results
context-dependent. Furthermore, the choice of an ap-
propriate reduction scheme requires a priori knowledge
of the defining features of changes in molecular motion.
For example, in cases where an external potential induces
large structural changes in molecules, such as the folding
or unfolding of protein domains, it can be assumed that
the thermodynamic contribution from changes in back-
bone vibrations are minor relative to contributions from
backbone rearrangements and, in such cases, one may
safely disregard changes in backbone vibrations. How-
ever, when no a priori knowledge is available and if
changes in no particular single mode of molecular mo-
tion – such as rotation, displacement or vibration – are
expected to dominate, a proper quantitative character-
ization of molecular motion requires simultaneous con-
sideration of all modes of motions. We encounter this
scenario when protein-protein interactions occur during
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Since the classification is known, our goal is to use the
classification scheme to quantify the di↵erence between
the two ensembles.
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however, expected to be nonlinear in Euclidean space.
Based on the central limit theorem and several studies

(see, for example, references [12, 28]), we expect that,
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closer to 1 as the similarity between ensembles decreases.
As we shall see in the Results section, this quantity serves
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relationship between the two hyperplanes. Substituting
the results from equations 4 and 5 into Equ. 3 yields
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is referred to as a kernel function. The kernel function
in Equ. 7 is essentially the projection of one vector on
another. The overall optimization problem, therefore,
consists to maximizing the auxiliary function L given by
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0 8 i. This method forms the basis of sequential minimal
optimization (SMO) that we use for our study [25, 26].

Note, however, that the SMO assumes that the 2m in-
stances of each particle are linearly separable, that is,
separability can be achieved via the vectorial projection
in the Euclidean space, as given by the kernel function
in Equ. 7. The problem of classifying configurations is,
however, expected to be nonlinear in Euclidean space.
Based on the central limit theorem and several studies
(see, for example, references [12, 28]), we expect that,
under equilibrium, the instances will be distributed nor-
mally in Euclidean space. Our ansatz, therefore, involves
replacing the inner product or kernel in Equ. 6 with
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which should render the classification task linear. Such
a replacement of the dot product in an optimization
problem is also commonly referred to as a “kernel-trick”
[23, 24, 29]. The specific choice of the new kernel essen-
tially transforms the attribute space into a Hilbert space
of infinite dimensions, where the classification is sought.
Note that the transformation here results in information
loss with respect to the orientation of fluctuations in the
Euclidean space. Nevertheless, the information regard-
ing the orientation of the overall molecule remains unaf-
fected, as the comparison for each particle is carried out
separately. For the results presented in this work, we se-

lected � = 1.0 Å
�2

. We will see in the Results section
that it produces results consistent with analytical solu-
tions. In addition, we increased and decreased the value
of � by a factor of two for a subset of test cases, and
found no significant e↵ect on results.

The optimization of Equ. 6 ultimately yields two dis-
tinct sets of Lagrange multipliers, {↵

i

} = 0 and {↵
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} > 0.
The hyperplanes that we intended to seek (Equ. 1) are
defined by the set of x
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whose corresponding ↵

i

> 0.
These vectors are referred to as support vectors. The
vectors x

i

whose corresponding ↵

i

= 0, satisfy the condi-
tion y

i

(w ·x�b) > 1, and are not part of the hyperplanes
or margins that separate them.

Note that the number of support vectors, s
a

, required
to partition the set of instances for a given particle into
two groups is related to the complexity of the classifica-
tion. Thus, the number of support vectors returned by
the classifier provides a measure of similarity between
two groups; groups that are more similar will require
more support vectors. In other words, if the classification
was known a priori, such as in our case where the exact
correspondence between configurations and ensemble is
known, then the value of s

a

serves as a quantitative mea-
sure of similarity between the two ensembles. In addition,
the number of support vectors is bounded, that is, in our
case, s

a

 2m, and s =
P

n

1

s

a

 2m⇥n. This provides a
scheme to normalize the result of the classification with

and
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Since the classification is known, our goal is to use the
classification scheme to quantify the di↵erence between
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[23, 24, 29]. The specific choice of the new kernel essen-
tially transforms the attribute space into a Hilbert space
of infinite dimensions, where the classification is sought.
Note that the transformation here results in information
loss with respect to the orientation of fluctuations in the
Euclidean space. Nevertheless, the information regard-
ing the orientation of the overall molecule remains unaf-
fected, as the comparison for each particle is carried out
separately. For the results presented in this work, we se-
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. We will see in the Results section
that it produces results consistent with analytical solu-
tions. In addition, we increased and decreased the value
of � by a factor of two for a subset of test cases, and
found no significant e↵ect on results.
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whose corresponding ↵
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= 0, satisfy the condi-
tion y
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or margins that separate them.
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to partition the set of instances for a given particle into
two groups is related to the complexity of the classifica-
tion. Thus, the number of support vectors returned by
the classifier provides a measure of similarity between
two groups; groups that are more similar will require
more support vectors. In other words, if the classification
was known a priori, such as in our case where the exact
correspondence between configurations and ensemble is
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serves as a quantitative mea-
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is the o↵set of the hyperplane from the origin along the
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Therefore, for each particle, the optimization task com-
prises of maximizing the distance between its correspond-
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a linear combination of Lagrange multipliers and particle
coordinates, the condition given by Equ. 5 indicates the
relationship between the two hyperplanes. Substituting
the results from equations 4 and 5 into Equ. 3 yields

L =
2mX

i=1

↵

i

� 1

2

X

i,j

↵

i

↵

j

y

i

y

j

k(x
i

,x

j

), (6)

where,

k(x
i

,x

j

) = x

i

· x
j

(7)
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separability can be achieved via the vectorial projection
in the Euclidean space, as given by the kernel function
in Equ. 7. The problem of classifying configurations is,
however, expected to be nonlinear in Euclidean space.
Based on the central limit theorem and several studies
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under equilibrium, the instances will be distributed nor-
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which should render the classification task linear. Such
a replacement of the dot product in an optimization
problem is also commonly referred to as a “kernel-trick”
[23, 24, 29]. The specific choice of the new kernel essen-
tially transforms the attribute space into a Hilbert space
of infinite dimensions, where the classification is sought.
Note that the transformation here results in information
loss with respect to the orientation of fluctuations in the
Euclidean space. Nevertheless, the information regard-
ing the orientation of the overall molecule remains unaf-
fected, as the comparison for each particle is carried out
separately. For the results presented in this work, we se-
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. We will see in the Results section
that it produces results consistent with analytical solu-
tions. In addition, we increased and decreased the value
of � by a factor of two for a subset of test cases, and
found no significant e↵ect on results.
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or margins that separate them.
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, required
to partition the set of instances for a given particle into
two groups is related to the complexity of the classifica-
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The ensemble of 3-d configurations exhibited by a molecule, that is, its intrinsic motion, can be
altered by numerous environmental factors, such as temperature, and also by the binding of other
molecules. An understanding of ensemble-level di↵erences from a geometric perspective is important
because it provides a basis for relating thermodynamic changes to changes in molecular motion.
The task of di↵erentiating two configurational ensembles is, however, challenging because it requires
comparing two high-dimensional datasets. Traditionally, when analyzing molecular simulations,
this problem is circumvented by first reducing the dimensions of the two ensembles separately,
and then comparing summary statistics from the two ensembles against each other. However,
since dimensionality reduction is carried out prior to comparison of ensembles, such strategies are
susceptible to artifactual biases from information loss. Here we introduce a method based on support
vector machines (SVM) that compares 3-d ensembles directly against one another in the Hilbert
space without a prerequisite reduction in phase space. While this method can be applied to any
molecular system, here we explore its sensitivity toward model systems comprised of amino acids.
We also apply the technique to identify the specific regions of a paramyxovirus G protein that are
a↵ected by the binding of its preferred human receptor, Ephrin B2. We find that the specific regions
identified by this method include the set of amino acids that are known from experimental studies
to play a vital role in viral fusion. The configurational ensembles of the viral protein in both its
bound and unbound states were generated using all-atom molecular dynamics simulations.

INTRODUCTION

The ensemble of 3-d configurations exhibited by a
molecule, that is, its intrinsic motion, is correlated with
the properties of its environment [1–12]. Changes in
intensive variables, such as temperature and pressure,
modify the intrinsic motion of a molecule. Additionally,
molecular motion also changes as a result of binding with
other molecules, such as in ligand-substrate complexes or
molecular assemblies. Moreover, the extent of the change
in molecular motion is dependent upon multiple factors,
including properties of the molecule and the nature of
the perturbation or external potential. A quantitative
characterization of such changes in molecular motion is
important from both scientific as well as engineering per-
spectives because it provides a basis to associate changes
in thermodynamic properties directly with corresponding
changes in molecular motion.

Di↵erentiating between two ensembles of molecular
configurations is, however, challenging. The challenge
lies in comparing two sets of high-dimension data. For

the motion of a n-particle molecule represented by m-
configurations, {a

n

(x)}m
1

, the task of di↵erentiating it
from the molecule’s reference state, {a

n

(x
0

)}m
1

, involves
comparing two 3n-dimensional vector spaces. Tradition-
ally, when analyzing molecular simulations, this prob-
lem is dealt with by first reducing the dimensions of the
two ensembles separately, and then comparing the result-
ing summary statistics from the two ensembles against
each other [13]. Dimensionality reduction is carried out,
for example, by averaging over n-space that involves
particle-clustering or averaging over m-space that yields
properties like mean positions and fluctuations, or by
averaging over both n- and m-spaces [14]. While such
strategies have undoubtedly proven useful, they are prone
to artifactual biases. This is because dimensionality re-
duction is carried out prior to comparison of ensembles,
implying that information is lost before ensembles are
compared against each other. In addition, such strate-
gies are ad hoc, which renders the analysis of their results
context-dependent. Furthermore, the choice of an ap-
propriate reduction scheme requires a priori knowledge

3

Since the classification is known, our goal is to use the
classification scheme to quantify the di↵erence between
the two ensembles.

The classification of instances by a SVM involves de-
termining a set of two hyperplanes,
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(w · x� b) = 1, (1)

where w is a vector normal to the hyperplane and b/kwk
is the o↵set of the hyperplane from the origin along the
normal vector w. These hyperplanes separate the 2m
instances into two groups
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(w · x� b) � 1. (2)

Therefore, for each particle, the optimization task com-
prises of maximizing the distance between its correspond-
ing hyperplanes, that is, 2/kwk, or minimizing kwk sub-
ject to the condition given by Equ. 2. This constrained
optimization problem can be cast in terms of Lagrange
multipliers, ↵
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� 0, as
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where the square on kwk permits quadratic program-
ming optimization and the 1/2 coe�cient is introduced
for mathematical convenience. The auxiliary function L

is minimized with respect to kwk and b, and is maximized
with respect to ↵
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While the condition given by Equ. 4 shows how the in-
verse of the distance between hyperplanes is expressed as
a linear combination of Lagrange multipliers and particle
coordinates, the condition given by Equ. 5 indicates the
relationship between the two hyperplanes. Substituting
the results from equations 4 and 5 into Equ. 3 yields
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is referred to as a kernel function. The kernel function
in Equ. 7 is essentially the projection of one vector on
another. The overall optimization problem, therefore,
consists to maximizing the auxiliary function L given by

Equ. 6 with respect to ↵
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, such that ↵
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� 0 and
P
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=
0 8 i. This method forms the basis of sequential minimal
optimization (SMO) that we use for our study [25, 26].

Note, however, that the SMO assumes that the 2m in-
stances of each particle are linearly separable, that is,
separability can be achieved via the vectorial projection
in the Euclidean space, as given by the kernel function
in Equ. 7. The problem of classifying configurations is,
however, expected to be nonlinear in Euclidean space.
Based on the central limit theorem and several studies
(see, for example, references [12, 28]), we expect that,
under equilibrium, the instances will be distributed nor-
mally in Euclidean space. Our ansatz, therefore, involves
replacing the inner product or kernel in Equ. 6 with
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which should render the classification task linear. Such
a replacement of the dot product in an optimization
problem is also commonly referred to as a “kernel-trick”
[23, 24, 29]. The specific choice of the new kernel essen-
tially transforms the attribute space into a Hilbert space
of infinite dimensions, where the classification is sought.
Note that the transformation here results in information
loss with respect to the orientation of fluctuations in the
Euclidean space. Nevertheless, the information regard-
ing the orientation of the overall molecule remains unaf-
fected, as the comparison for each particle is carried out
separately. For the results presented in this work, we se-

lected � = 1.0 Å
�2

. We will see in the Results section
that it produces results consistent with analytical solu-
tions. In addition, we increased and decreased the value
of � by a factor of two for a subset of test cases, and
found no significant e↵ect on results.

The optimization of Equ. 6 ultimately yields two dis-
tinct sets of Lagrange multipliers, {↵

i

} = 0 and {↵
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} > 0.
The hyperplanes that we intended to seek (Equ. 1) are
defined by the set of x
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whose corresponding ↵
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> 0.
These vectors are referred to as support vectors. The
vectors x

i

whose corresponding ↵

i

= 0, satisfy the condi-
tion y
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(w ·x�b) > 1, and are not part of the hyperplanes
or margins that separate them.

Note that the number of support vectors, s
a

, required
to partition the set of instances for a given particle into
two groups is related to the complexity of the classifica-
tion. Thus, the number of support vectors returned by
the classifier provides a measure of similarity between
two groups; groups that are more similar will require
more support vectors. In other words, if the classification
was known a priori, such as in our case where the exact
correspondence between configurations and ensemble is
known, then the value of s

a

serves as a quantitative mea-
sure of similarity between the two ensembles. In addition,
the number of support vectors is bounded, that is, in our
case, s
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 2m, and s =
P
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 2m⇥n. This provides a
scheme to normalize the result of the classification with
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normal vector w. These hyperplanes separate the 2m
instances into two groups
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Therefore, for each particle, the optimization task com-
prises of maximizing the distance between its correspond-
ing hyperplanes, that is, 2/kwk, or minimizing kwk sub-
ject to the condition given by Equ. 2. This constrained
optimization problem can be cast in terms of Lagrange
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ming optimization and the 1/2 coe�cient is introduced
for mathematical convenience. The auxiliary function L
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While the condition given by Equ. 4 shows how the in-
verse of the distance between hyperplanes is expressed as
a linear combination of Lagrange multipliers and particle
coordinates, the condition given by Equ. 5 indicates the
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is referred to as a kernel function. The kernel function
in Equ. 7 is essentially the projection of one vector on
another. The overall optimization problem, therefore,
consists to maximizing the auxiliary function L given by
Equ. 6 with respect to ↵
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0 8 i. This method forms the basis of sequential minimal
optimization (SMO) that we use for our study [25, 26].

Note, however, that the SMO assumes that the 2m in-
stances of each particle are linearly separable, that is,
separability can be achieved via the vectorial projection
in the Euclidean space, as given by the kernel function
in Equ. 7. The problem of classifying configurations is,
however, expected to be nonlinear in Euclidean space.
Based on the central limit theorem and several studies

(see, for example, references [12, 28]), we expect that,
under equilibrium, the instances will be distributed nor-
mally in Euclidean space. Our ansatz, therefore, involves
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[23, 24, 29]. The specific choice of the new kernel essen-
tially transforms the attribute space into a Hilbert space
of infinite dimensions, where the classification is sought.
Note that the transformation here results in information
loss with respect to the orientation of fluctuations in the
Euclidean space. Nevertheless, the information regard-
ing the orientation of the overall molecule remains unaf-
fected, as the comparison for each particle is carried out
separately. For the results presented in this work, we se-
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. We will see in the Results section
that it produces results consistent with analytical solu-
tions. In addition, we increased and decreased the value
of � by a factor of two for a subset of test cases, and
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tion. Thus, the number of support vectors returned by
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While the condition given by Equ. 4 shows how the in-
verse of the distance between hyperplanes is expressed as
a linear combination of Lagrange multipliers and particle
coordinates, the condition given by Equ. 5 indicates the
relationship between the two hyperplanes. Substituting
the results from equations 4 and 5 into Equ. 3 yields

L =
2mX

i=1

↵

i

� 1

2

X

i,j

↵

i

↵

j

y

i

y

j

k(x
i

,x

j

), (6)

where,

k(x
i

,x

j

) = x

i

· x
j

(7)

is referred to as a kernel function. The kernel function
in Equ. 7 is essentially the projection of one vector on
another. The overall optimization problem, therefore,
consists to maximizing the auxiliary function L given by

Equ. 6 with respect to ↵

i

, such that ↵
i

� 0 and
P

↵

i

y

i

=
0 8 i. This method forms the basis of sequential minimal
optimization (SMO) that we use for our study [25, 26].

Note, however, that the SMO assumes that the 2m in-
stances of each particle are linearly separable, that is,
separability can be achieved via the vectorial projection
in the Euclidean space, as given by the kernel function
in Equ. 7. The problem of classifying configurations is,
however, expected to be nonlinear in Euclidean space.
Based on the central limit theorem and several studies
(see, for example, references [12, 28]), we expect that,
under equilibrium, the instances will be distributed nor-
mally in Euclidean space. Our ansatz, therefore, involves
replacing the inner product or kernel in Equ. 6 with

k(x
i

,x

j

) = h�(x
i

).�(x
j

)i
s

= exp(��kx
i

� x

j

k2), (8)

which should render the classification task linear. Such
a replacement of the dot product in an optimization
problem is also commonly referred to as a “kernel-trick”
[23, 24, 29]. The specific choice of the new kernel essen-
tially transforms the attribute space into a Hilbert space
of infinite dimensions, where the classification is sought.
Note that the transformation here results in information
loss with respect to the orientation of fluctuations in the
Euclidean space. Nevertheless, the information regard-
ing the orientation of the overall molecule remains unaf-
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�2

. We will see in the Results section
that it produces results consistent with analytical solu-
tions. In addition, we increased and decreased the value
of � by a factor of two for a subset of test cases, and
found no significant e↵ect on results.

The optimization of Equ. 6 ultimately yields two dis-
tinct sets of Lagrange multipliers, {↵

i

} = 0 and {↵
i

} > 0.
The hyperplanes that we intended to seek (Equ. 1) are
defined by the set of x

i

whose corresponding ↵

i

> 0.
These vectors are referred to as support vectors. The
vectors x

i

whose corresponding ↵

i

= 0, satisfy the condi-
tion y

i

(w ·x�b) > 1, and are not part of the hyperplanes
or margins that separate them.
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two groups; groups that are more similar will require
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was known a priori, such as in our case where the exact
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Since the classification is known, our goal is to use the
classification scheme to quantify the di↵erence between
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The classification of instances by a SVM involves de-
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is the o↵set of the hyperplane from the origin along the
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Therefore, for each particle, the optimization task com-
prises of maximizing the distance between its correspond-
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While the condition given by Equ. 4 shows how the in-
verse of the distance between hyperplanes is expressed as
a linear combination of Lagrange multipliers and particle
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the results from equations 4 and 5 into Equ. 3 yields

L =
2mX

i=1

↵

i

� 1

2

X

i,j

↵

i

↵

j

y

i

y

j

k(x
i

,x

j

), (6)

where,

k(x
i

,x

j

) = x

i

· x
j

(7)
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separability can be achieved via the vectorial projection
in the Euclidean space, as given by the kernel function
in Equ. 7. The problem of classifying configurations is,
however, expected to be nonlinear in Euclidean space.
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which should render the classification task linear. Such
a replacement of the dot product in an optimization
problem is also commonly referred to as a “kernel-trick”
[23, 24, 29]. The specific choice of the new kernel essen-
tially transforms the attribute space into a Hilbert space
of infinite dimensions, where the classification is sought.
Note that the transformation here results in information
loss with respect to the orientation of fluctuations in the
Euclidean space. Nevertheless, the information regard-
ing the orientation of the overall molecule remains unaf-
fected, as the comparison for each particle is carried out
separately. For the results presented in this work, we se-
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. We will see in the Results section
that it produces results consistent with analytical solu-
tions. In addition, we increased and decreased the value
of � by a factor of two for a subset of test cases, and
found no significant e↵ect on results.
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to partition the set of instances for a given particle into
two groups is related to the complexity of the classifica-
tion. Thus, the number of support vectors returned by
the classifier provides a measure of similarity between
two groups; groups that are more similar will require
more support vectors. In other words, if the classification
was known a priori, such as in our case where the exact
correspondence between configurations and ensemble is
known, then the value of s
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serves as a quantitative mea-
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Since the classification is known, our goal is to use the
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The classification of instances by a SVM involves de-
termining a set of two hyperplanes,
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where w is a vector normal to the hyperplane and b/kwk
is the o↵set of the hyperplane from the origin along the
normal vector w. These hyperplanes separate the 2m
instances into two groups
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(w · x� b) � 1. (2)

Therefore, for each particle, the optimization task com-
prises of maximizing the distance between its correspond-
ing hyperplanes, that is, 2/kwk, or minimizing kwk sub-
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problem is also commonly referred to as a “kernel-trick”
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tially transforms the attribute space into a Hilbert space
of infinite dimensions, where the classification is sought.
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ing the orientation of the overall molecule remains unaf-
fected, as the comparison for each particle is carried out
separately. For the results presented in this work, we se-
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that it produces results consistent with analytical solu-
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was known a priori, such as in our case where the exact
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Since the classification is known, our goal is to use the
classification scheme to quantify the di↵erence between
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The classification of instances by a SVM involves de-
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The hyperplanes that we intended to seek (Equ. 1) are
defined by the set of x

i

whose corresponding ↵

i

> 0.
These vectors are referred to as support vectors. The
vectors x

i

whose corresponding ↵

i

= 0, satisfy the condi-
tion y

i

(w ·x�b) > 1, and are not part of the hyperplanes
or margins that separate them.

Note that the number of support vectors, s
a

, required
to partition the set of instances for a given particle into
two groups is related to the complexity of the classifica-
tion. Thus, the number of support vectors returned by
the classifier provides a measure of similarity between
two groups; groups that are more similar will require
more support vectors. In other words, if the classifica-
tion was known a priori, such as in our case where the
exact correspondence between configurations and ensem-
ble is known, then the value of s

a

serves as a quantitative
measure of similarity between the two ensembles. In ad-
dition, the number of support vectors is bounded, that
is, in our case, 2  s  2m, and s =

P
n

1

s

a

 2m ⇥ n.
This provides a scheme to normalize the result of the

Substituting these results into Eq. (3) yields

L =
2m

Â
i=1

ai �
1
2 Â

i, j
aia jyiy jk(xi,x j), (6)

where,

k(xi,x j) = xi ·x j (7)

is referred to as a kernel function. The overall optimization problem, therefore, consists to max-

imizing the auxiliary function L given by Eq. (6) with respect to ai, such that 0  ai  C and

Âaiyi = 0 8 i. We utilize the sequential minimal optimization (SMO) algorithm for this pur-

pose.42,43

The optimization of Eq. (6) produces two distinct sets of Lagrange multipliers, {ai} = 0 and

{ai} > 0, that define the binary classification function. The hyperplanes that we intend to seek

are defined by the subset of xi whose corresponding ai > 0. These xi are referred to as support

vectors. The number of support vectors, s, required to partition the set of 2m instances of a particle

is, therefore, bounded, that is, 2  s  2m. In addition, it has been shown that the fraction s/2m

serves as an upper bound to the classification bootstrap-error.44 In general, it can be expected that

the higher the similarity between the ensembles of a particle, the larger the classification error.

This suggests that the number of support vectors generated during construction of the classifier

can be used as a measure of similarity between the particle ensembles. Consequently, we define a

normalized quantity called the particle discriminability index,

h = 1� s
2m

, (8)

which is bounded, that is, 0  h < 1, and takes up a value closer to 1 as the similarity between

particle ensembles decreases. To quantify the difference between molecular ensembles, h can be

averaged over the particles in the molecule.

Note that in the optimization of Eq. (6), the feature used for classifying xi is its linear projection
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Selection of  C  and  γ 
Possibility? 
Can we select  C  and  γ  such that

Such a definition of discriminability satisfies two 
conditions
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(ii) If                                              , then it does not 

      necessarily imply that 
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The ensemble of 3-dimensional (3D) configurations, R, exhibited by a biomolecule is essential to its

function and is correlated tightly with the properties of its environment [1–14]. Changes in intensive

variables, such as temperature and ionic strength, modify the configurational space (R ! R0) sampled

by the molecule. Additionally, a molecule’s configurational space can be altered by the binding of other

molecules, such as in protein-protein or DNA-protein complexes. Moreover, the extent of the change

in configurational density or population shift, �R, depends on multiple factors, including properties of

the molecule and the nature of the perturbation or external potential. Such induced changes are critical
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with respect to analytical solutions. The analytical expressions for
⌘ between the reference and modified

ensembles are obtained by estimating the overlap integral between their Gaussian distributions. For

example,
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The SVM classification function is given by

F (r) =
2mX

i=1

↵iyiK(ri, r). (5)

Here K is a nonlinear kernel function that satisfies the inner product K(ri, rj) = h�(ri),�(rj)iR in a
transformed feature space R. The function � is a transformation from the 3D cartesian coordinate space
R to a high-dimensional kernel Hilbert space R in which the data are separated. Note that a knowledge
of the specific form of the function � is not required so long as the kernel is an inner product in the
transformed feature space [111,112,115]. We chose a Gaussian radial distribution function as the kernel,
that is,

K(ri, rj) = exp(��kri � rjk2), (6)

which satisfies the aforementioned condition [116]. This kernel is also chosen due to its stationarity
and its performance in classification as compared to linear, polynomial, or sigmoidal kernels [116]. This
kernel has also been used for constructing classifiers for compound libraries [113] as well as for classifying
molecular configurations in chemical reactions [114]. The parameter � in the kernel, which has units of
1/Å2, controls the width of the kernel, and thereby the smoothness of the underlying nonlinear classifier.
It represents essentially the influence a given instance has on its local environment. Smaller � correspond
to larger Gaussian widths, which imply a larger contribution of a instance to the classification.

The ↵i in equation 5 are Lagrange multipliers that are obtained by maximizing the auxiliary function

2mX

i=1

↵i �
1

2

X

i,j

↵i↵jyiyjK(ri, rj), (7)

under the constraints 0  ↵i  C and
P

↵iyi = 0 8 i, where C is a predefined upper limit on the
magnitude of the Lagrange multipliers. We utilize a sequential minimal optimization algorithm for
optimizing this equation [117,118].

The optimization of Equation 7 produces two distinct sets of Lagrange multipliers, {↵i} = 0 and
{↵i} > 0. The maximum margin hyperplanes are defined by the subset of ri whose corresponding ↵i > 0.
These ri are referred to as support vectors. The number of support vectors, s, required to partition the
set of 2m instances is, therefore, bounded, that is, 2  s  2m. In addition, it has been shown that
the fraction s/2m serves as an upper bound to the classification bootstrap-error [119]. In this work, we
utilize

⌘ = 1� s

2m
(8)

as a quantitate estimate for the di↵erence between two ensembles. The discriminability ⌘ is bounded,
that is, 0  ⌘ < 1, and takes up a value closer to 1 as the similarity between ensembles decreases. To
determine the ⌘ between two ensembles of a residue, we determine the ⌘ separately for its n constituent
atoms and then average over them using ⌘ = 1�

Pn
1

s/2mn.
As before [64], we assign C and � that minimize the error between the computed and analytical values

of ⌘ for discrete Gaussian distributions. We construct first a single particle ensemble {r} containing
m = 2501 normally distributed 3D coordinates, that is, r 2 f(µ

0

, �

0

). We modify two properties
of this Gaussian ensemble individually and construct two separate sets of ensembles. In one set of
modified ensembles, f(µ

0

+�µ, �

0

), the mean of the Gaussian distribution is varied in unit increments
of �µ/�

0

= {1, 2, ..., 20}. In the second set of modified ensembles, f(µ
0

, �), the standard deviation
is varied in unit increments of the ratio �/�

0

= {2, 3, ..., 15}. In the context of protein motion, these
two modifications correspond, respectively, to changes in atomic mean positions and fluctuations. We
then estimate ⌘ between each pair of reference and modified ensembles as functions of � 2 [10�3

, 10]
and C 2 [1, 108], and select the combination that minimizes the mean absolute percent error (MAE)

estimate η (using eq 8) between these ensembles for a range of
γ and C values and select the set that minimizes the error with
respect to analytical solutions. To construct model ensembles,
we consider the probability distribution of distances ∥xia − xj

a∥,
where xi

a and xj
a are two position vectors that an atom a of NiV-

G explores when NiV-G is simulated in the unbound state. We
determine these probability distance distributions separately for
all heavy atoms in NiV-G and then average them to obtain the
probability distribution pub. We then determine separately
another probability distribution pb for the heavy atoms in NiV-
G simulated in the bound state. We also determine a cross
probability distribution pub−b of distances (∥xi − xj∥) in which
vectors xi belong to the NiV-G atoms in the unbound state and
vectors xj belong to corresponding atoms of NiV-G simulated
in the bound state. These three probability distributions are
plotted in Figure 2. We find that, in the absence of the B2

receptor, this distribution can be represented by a Gaussian
radial distribution function with a standard deviation σ0 ∼ 0.5
Å. The nature of this distribution is perhaps a natural
consequence of the central limit theorem. This distribution
changes little when NiV-G binds B2. The cross probability
distributions indicate that while the majority of the position
displacements due to receptor binding are small, there exist a
fraction of position displacements that are as large as 10 Å. The
choice of γ and C parameters should, therefore, yield accurate η
estimates for position displacements in the range 0−10 Å.
In light of the results above, we construct a single-particle

ensemble {x}1
m in which the m = 2000 coordinates are

distributed normally, that is, x ∈ f(μ0, σ0 = 0.5). We modify two
properties of this Gaussian ensemble individually and construct
two separate sets of ensembles. In one set of modified
ensembles, f(μ0 + Δμ, σ0), the mean of the Gaussian
distribution is varied in unit increments of Δμ/σ0 =
{1,2,...,20}. In the second set of modified ensembles, f(μ0, σ),
the standard deviation is varied in unit increments of the ratio
σ/σ0 = {2,3,...,15}. In the context of protein motion, these two
modifications correspond, respectively, to changes in atomic
mean-positions and fluctuations. We then estimate η between
each pair of reference and modified ensembles as functions of γ
∈ [10−3,10] and C ∈ [1,108]. We select the combination of γ
and C that minimizes the mean absolute percent error (MAPE)
with respect to analytical solutions. The analytical expressions

for η between the reference and the modified ensemble are
obtained by estimating the overlap between their Gaussian
distributions. We find two combinations of γ and C that result
in a MAPE ≤ 2.5. The combination γ = 10−1 and C = 102

produces a MAPE of 2.50, and the combination γ = 10−2 and C
= 104 produces a slightly lower MAPE of 2.47. We choose the
former combination over the latter due to its favorable run-time
(smaller C). The computed η for this combination are
compared against the analytical results in Figure 3.

■ RESULTS AND DISCUSSION
While the method described in the previous section can be
applied to any molecular system, here, we explore its sensitivity
toward discriminating between configurational ensembles of
amino acids. We then apply it to identify the specific regions of
the NiV-G protein that are affected by the binding of its
preferred human receptor, Ephrin B2.

Sensitivity Analysis. We explore how discriminability
relates to modifications in three specific properties of
configurational ensembles of amino acids: (a) the location of
their geometric center, (b) their fluctuations, and (c) the
orientation of their side-chains. We estimate the discriminability

Figure 2. Probability distribution of distances p(∥xi − xj∥) between
the positions explored by the heavy atoms in NiV-G during MD
simulations (see text). Molecular configurations from the final 150 ns
of the MD trajectories were used for this analysis.

Figure 3. Comparison between computed and analytical estimates of
discriminability. The computed estimates are depicted using circles
connected by dashed lines, and the analytical estimates are drawn as
solid lines (a) η is determined between two Gaussian ensembles that
differ from each other only in their mean positions. The inset
illustrates two such ensembles separated by Δμ/σ0 = 4.0. (b) η is
determined between two Gaussian ensembles that differ from each
other only in their fluctuation widths. The inset illustrates two such
ensembles that have a fluctuation-width ratio σ/σ0 = 3. The computed
estimates in both cases are obtained using γ = 0.1 Å−2 and C = 100.
The MAPE of the computed estimates with respect to analytical
solutions is 2.50.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct300694e | J. Chem. Theory Comput. 2013, 9, 868−875871

estimate η (using eq 8) between these ensembles for a range of
γ and C values and select the set that minimizes the error with
respect to analytical solutions. To construct model ensembles,
we consider the probability distribution of distances ∥xia − xj

a∥,
where xi

a and xj
a are two position vectors that an atom a of NiV-

G explores when NiV-G is simulated in the unbound state. We
determine these probability distance distributions separately for
all heavy atoms in NiV-G and then average them to obtain the
probability distribution pub. We then determine separately
another probability distribution pb for the heavy atoms in NiV-
G simulated in the bound state. We also determine a cross
probability distribution pub−b of distances (∥xi − xj∥) in which
vectors xi belong to the NiV-G atoms in the unbound state and
vectors xj belong to corresponding atoms of NiV-G simulated
in the bound state. These three probability distributions are
plotted in Figure 2. We find that, in the absence of the B2

receptor, this distribution can be represented by a Gaussian
radial distribution function with a standard deviation σ0 ∼ 0.5
Å. The nature of this distribution is perhaps a natural
consequence of the central limit theorem. This distribution
changes little when NiV-G binds B2. The cross probability
distributions indicate that while the majority of the position
displacements due to receptor binding are small, there exist a
fraction of position displacements that are as large as 10 Å. The
choice of γ and C parameters should, therefore, yield accurate η
estimates for position displacements in the range 0−10 Å.
In light of the results above, we construct a single-particle

ensemble {x}1
m in which the m = 2000 coordinates are

distributed normally, that is, x ∈ f(μ0, σ0 = 0.5). We modify two
properties of this Gaussian ensemble individually and construct
two separate sets of ensembles. In one set of modified
ensembles, f(μ0 + Δμ, σ0), the mean of the Gaussian
distribution is varied in unit increments of Δμ/σ0 =
{1,2,...,20}. In the second set of modified ensembles, f(μ0, σ),
the standard deviation is varied in unit increments of the ratio
σ/σ0 = {2,3,...,15}. In the context of protein motion, these two
modifications correspond, respectively, to changes in atomic
mean-positions and fluctuations. We then estimate η between
each pair of reference and modified ensembles as functions of γ
∈ [10−3,10] and C ∈ [1,108]. We select the combination of γ
and C that minimizes the mean absolute percent error (MAPE)
with respect to analytical solutions. The analytical expressions

for η between the reference and the modified ensemble are
obtained by estimating the overlap between their Gaussian
distributions. We find two combinations of γ and C that result
in a MAPE ≤ 2.5. The combination γ = 10−1 and C = 102

produces a MAPE of 2.50, and the combination γ = 10−2 and C
= 104 produces a slightly lower MAPE of 2.47. We choose the
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compared against the analytical results in Figure 3.
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the NiV-G protein that are affected by the binding of its
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function and is correlated tightly with the properties of its environment [1–14]. Changes in intensive
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by the molecule. Additionally, a molecule’s configurational space can be altered by the binding of other

molecules, such as in protein-protein or DNA-protein complexes. Moreover, the extent of the change

in configurational density or population shift, �R, depends on multiple factors, including properties of

the molecule and the nature of the perturbation or external potential. Such induced changes are critical

 ′!

Selection of  C  and  γ 
Possibility? 
Can we select  C  and  γ  such that

 

η = 1− s 2m

= 1− Overlap

= 1− !∩ ′!



Dutta, Siddiqui, Botlani, Varma. BJ 2016

5

0

(a) (b)

Tr
ai

ni
ng

 M
AE

C
γ

Tr
ai

ni
ng

 M
AE

C

R
untim

e

Figure S4. (a) Mean absolute error (MAE) in ⌘ estimated for the training data and as functions of the
upper limit of the Lagrange multiplier (C) and the width of the transformation Kernel (�). MAE is
computed with respect to exact analytical values. The training set constitutes 30 pairs of Gaussian
ensembles, and it is the same set that we used previously [5]. We note that for any given C  100, when
we set � = [0.1, 1], the training MAE is < 5%. Also, the training MAE decreases with increase in C,
which is expected since a larger C allows Lagrange multipliers greater numerical flexibility. However, a
higher C also implies that a higher phase space will be explored, leading to increased runtime. (b)
E↵ect of C on runtime and MAE, with � fixed at a value of 0.4. As expected, increasing C decreases
MAE, but it also increases runtime. However, for C > 100, the gain in accuracy is marginal compared
to the loss in code e�ciency. We, therefore, select C = 100, which yields a minimum training MAE of
3.2% when � = 0.4. This combination also yields a MAE = 3.2% for 300 unseen pairs of Gaussian
ensembles, the same set we used in reference [6].
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Performanceestimate η (using eq 8) between these ensembles for a range of
γ and C values and select the set that minimizes the error with
respect to analytical solutions. To construct model ensembles,
we consider the probability distribution of distances ∥xia − xj

a∥,
where xi

a and xj
a are two position vectors that an atom a of NiV-

G explores when NiV-G is simulated in the unbound state. We
determine these probability distance distributions separately for
all heavy atoms in NiV-G and then average them to obtain the
probability distribution pub. We then determine separately
another probability distribution pb for the heavy atoms in NiV-
G simulated in the bound state. We also determine a cross
probability distribution pub−b of distances (∥xi − xj∥) in which
vectors xi belong to the NiV-G atoms in the unbound state and
vectors xj belong to corresponding atoms of NiV-G simulated
in the bound state. These three probability distributions are
plotted in Figure 2. We find that, in the absence of the B2

receptor, this distribution can be represented by a Gaussian
radial distribution function with a standard deviation σ0 ∼ 0.5
Å. The nature of this distribution is perhaps a natural
consequence of the central limit theorem. This distribution
changes little when NiV-G binds B2. The cross probability
distributions indicate that while the majority of the position
displacements due to receptor binding are small, there exist a
fraction of position displacements that are as large as 10 Å. The
choice of γ and C parameters should, therefore, yield accurate η
estimates for position displacements in the range 0−10 Å.
In light of the results above, we construct a single-particle

ensemble {x}1
m in which the m = 2000 coordinates are

distributed normally, that is, x ∈ f(μ0, σ0 = 0.5). We modify two
properties of this Gaussian ensemble individually and construct
two separate sets of ensembles. In one set of modified
ensembles, f(μ0 + Δμ, σ0), the mean of the Gaussian
distribution is varied in unit increments of Δμ/σ0 =
{1,2,...,20}. In the second set of modified ensembles, f(μ0, σ),
the standard deviation is varied in unit increments of the ratio
σ/σ0 = {2,3,...,15}. In the context of protein motion, these two
modifications correspond, respectively, to changes in atomic
mean-positions and fluctuations. We then estimate η between
each pair of reference and modified ensembles as functions of γ
∈ [10−3,10] and C ∈ [1,108]. We select the combination of γ
and C that minimizes the mean absolute percent error (MAPE)
with respect to analytical solutions. The analytical expressions

for η between the reference and the modified ensemble are
obtained by estimating the overlap between their Gaussian
distributions. We find two combinations of γ and C that result
in a MAPE ≤ 2.5. The combination γ = 10−1 and C = 102

produces a MAPE of 2.50, and the combination γ = 10−2 and C
= 104 produces a slightly lower MAPE of 2.47. We choose the
former combination over the latter due to its favorable run-time
(smaller C). The computed η for this combination are
compared against the analytical results in Figure 3.

■ RESULTS AND DISCUSSION
While the method described in the previous section can be
applied to any molecular system, here, we explore its sensitivity
toward discriminating between configurational ensembles of
amino acids. We then apply it to identify the specific regions of
the NiV-G protein that are affected by the binding of its
preferred human receptor, Ephrin B2.

Sensitivity Analysis. We explore how discriminability
relates to modifications in three specific properties of
configurational ensembles of amino acids: (a) the location of
their geometric center, (b) their fluctuations, and (c) the
orientation of their side-chains. We estimate the discriminability

Figure 2. Probability distribution of distances p(∥xi − xj∥) between
the positions explored by the heavy atoms in NiV-G during MD
simulations (see text). Molecular configurations from the final 150 ns
of the MD trajectories were used for this analysis.

Figure 3. Comparison between computed and analytical estimates of
discriminability. The computed estimates are depicted using circles
connected by dashed lines, and the analytical estimates are drawn as
solid lines (a) η is determined between two Gaussian ensembles that
differ from each other only in their mean positions. The inset
illustrates two such ensembles separated by Δμ/σ0 = 4.0. (b) η is
determined between two Gaussian ensembles that differ from each
other only in their fluctuation widths. The inset illustrates two such
ensembles that have a fluctuation-width ratio σ/σ0 = 3. The computed
estimates in both cases are obtained using γ = 0.1 Å−2 and C = 100.
The MAPE of the computed estimates with respect to analytical
solutions is 2.50.
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with respect to analytical solutions. The analytical expressions for
⌘ between the reference and modified

ensembles are obtained by estimating the overlap integral between their Gaussian distributions. For

example,
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with a MAE of 2.5%. Figure 9 shows that this set of
C and
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/
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The SVM classification function is given by

F (r) =
2mX

i=1

↵iyiK(ri, r). (5)

Here K is a nonlinear kernel function that satisfies the inner product K(ri, rj) = h�(ri),�(rj)iR in a
transformed feature space R. The function � is a transformation from the 3D cartesian coordinate space
R to a high-dimensional kernel Hilbert space R in which the data are separated. Note that a knowledge
of the specific form of the function � is not required so long as the kernel is an inner product in the
transformed feature space [111,112,115]. We chose a Gaussian radial distribution function as the kernel,
that is,

K(ri, rj) = exp(��kri � rjk2), (6)

which satisfies the aforementioned condition [116]. This kernel is also chosen due to its stationarity
and its performance in classification as compared to linear, polynomial, or sigmoidal kernels [116]. This
kernel has also been used for constructing classifiers for compound libraries [113] as well as for classifying
molecular configurations in chemical reactions [114]. The parameter � in the kernel, which has units of
1/Å2, controls the width of the kernel, and thereby the smoothness of the underlying nonlinear classifier.
It represents essentially the influence a given instance has on its local environment. Smaller � correspond
to larger Gaussian widths, which imply a larger contribution of a instance to the classification.

The ↵i in equation 5 are Lagrange multipliers that are obtained by maximizing the auxiliary function

2mX

i=1

↵i �
1

2

X

i,j

↵i↵jyiyjK(ri, rj), (7)

under the constraints 0  ↵i  C and
P

↵iyi = 0 8 i, where C is a predefined upper limit on the
magnitude of the Lagrange multipliers. We utilize a sequential minimal optimization algorithm for
optimizing this equation [117,118].

The optimization of Equation 7 produces two distinct sets of Lagrange multipliers, {↵i} = 0 and
{↵i} > 0. The maximum margin hyperplanes are defined by the subset of ri whose corresponding ↵i > 0.
These ri are referred to as support vectors. The number of support vectors, s, required to partition the
set of 2m instances is, therefore, bounded, that is, 2  s  2m. In addition, it has been shown that
the fraction s/2m serves as an upper bound to the classification bootstrap-error [119]. In this work, we
utilize

⌘ = 1� s

2m
(8)

as a quantitate estimate for the di↵erence between two ensembles. The discriminability ⌘ is bounded,
that is, 0  ⌘ < 1, and takes up a value closer to 1 as the similarity between ensembles decreases. To
determine the ⌘ between two ensembles of a residue, we determine the ⌘ separately for its n constituent
atoms and then average over them using ⌘ = 1�

Pn
1

s/2mn.
As before [64], we assign C and � that minimize the error between the computed and analytical values

of ⌘ for discrete Gaussian distributions. We construct first a single particle ensemble {r} containing
m = 2501 normally distributed 3D coordinates, that is, r 2 f(µ

0

, �

0

). We modify two properties
of this Gaussian ensemble individually and construct two separate sets of ensembles. In one set of
modified ensembles, f(µ

0

+�µ, �

0

), the mean of the Gaussian distribution is varied in unit increments
of �µ/�

0

= {1, 2, ..., 20}. In the second set of modified ensembles, f(µ
0

, �), the standard deviation
is varied in unit increments of the ratio �/�

0

= {2, 3, ..., 15}. In the context of protein motion, these
two modifications correspond, respectively, to changes in atomic mean positions and fluctuations. We
then estimate ⌘ between each pair of reference and modified ensembles as functions of � 2 [10�3

, 10]
and C 2 [1, 108], and select the combination that minimizes the mean absolute percent error (MAE)

estimate η (using eq 8) between these ensembles for a range of
γ and C values and select the set that minimizes the error with
respect to analytical solutions. To construct model ensembles,
we consider the probability distribution of distances ∥xia − xj

a∥,
where xi

a and xj
a are two position vectors that an atom a of NiV-

G explores when NiV-G is simulated in the unbound state. We
determine these probability distance distributions separately for
all heavy atoms in NiV-G and then average them to obtain the
probability distribution pub. We then determine separately
another probability distribution pb for the heavy atoms in NiV-
G simulated in the bound state. We also determine a cross
probability distribution pub−b of distances (∥xi − xj∥) in which
vectors xi belong to the NiV-G atoms in the unbound state and
vectors xj belong to corresponding atoms of NiV-G simulated
in the bound state. These three probability distributions are
plotted in Figure 2. We find that, in the absence of the B2

receptor, this distribution can be represented by a Gaussian
radial distribution function with a standard deviation σ0 ∼ 0.5
Å. The nature of this distribution is perhaps a natural
consequence of the central limit theorem. This distribution
changes little when NiV-G binds B2. The cross probability
distributions indicate that while the majority of the position
displacements due to receptor binding are small, there exist a
fraction of position displacements that are as large as 10 Å. The
choice of γ and C parameters should, therefore, yield accurate η
estimates for position displacements in the range 0−10 Å.
In light of the results above, we construct a single-particle

ensemble {x}1
m in which the m = 2000 coordinates are

distributed normally, that is, x ∈ f(μ0, σ0 = 0.5). We modify two
properties of this Gaussian ensemble individually and construct
two separate sets of ensembles. In one set of modified
ensembles, f(μ0 + Δμ, σ0), the mean of the Gaussian
distribution is varied in unit increments of Δμ/σ0 =
{1,2,...,20}. In the second set of modified ensembles, f(μ0, σ),
the standard deviation is varied in unit increments of the ratio
σ/σ0 = {2,3,...,15}. In the context of protein motion, these two
modifications correspond, respectively, to changes in atomic
mean-positions and fluctuations. We then estimate η between
each pair of reference and modified ensembles as functions of γ
∈ [10−3,10] and C ∈ [1,108]. We select the combination of γ
and C that minimizes the mean absolute percent error (MAPE)
with respect to analytical solutions. The analytical expressions

for η between the reference and the modified ensemble are
obtained by estimating the overlap between their Gaussian
distributions. We find two combinations of γ and C that result
in a MAPE ≤ 2.5. The combination γ = 10−1 and C = 102

produces a MAPE of 2.50, and the combination γ = 10−2 and C
= 104 produces a slightly lower MAPE of 2.47. We choose the
former combination over the latter due to its favorable run-time
(smaller C). The computed η for this combination are
compared against the analytical results in Figure 3.

■ RESULTS AND DISCUSSION
While the method described in the previous section can be
applied to any molecular system, here, we explore its sensitivity
toward discriminating between configurational ensembles of
amino acids. We then apply it to identify the specific regions of
the NiV-G protein that are affected by the binding of its
preferred human receptor, Ephrin B2.

Sensitivity Analysis. We explore how discriminability
relates to modifications in three specific properties of
configurational ensembles of amino acids: (a) the location of
their geometric center, (b) their fluctuations, and (c) the
orientation of their side-chains. We estimate the discriminability

Figure 2. Probability distribution of distances p(∥xi − xj∥) between
the positions explored by the heavy atoms in NiV-G during MD
simulations (see text). Molecular configurations from the final 150 ns
of the MD trajectories were used for this analysis.

Figure 3. Comparison between computed and analytical estimates of
discriminability. The computed estimates are depicted using circles
connected by dashed lines, and the analytical estimates are drawn as
solid lines (a) η is determined between two Gaussian ensembles that
differ from each other only in their mean positions. The inset
illustrates two such ensembles separated by Δμ/σ0 = 4.0. (b) η is
determined between two Gaussian ensembles that differ from each
other only in their fluctuation widths. The inset illustrates two such
ensembles that have a fluctuation-width ratio σ/σ0 = 3. The computed
estimates in both cases are obtained using γ = 0.1 Å−2 and C = 100.
The MAPE of the computed estimates with respect to analytical
solutions is 2.50.
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Figure 3: Performance of ⌘ estimated from F (r) against its exact value (1� ||R\R0||). For each of the three types of multimodal
distributions, (a) bimodal distributions (R =

P2
i=1 ci

f
i

), (b) trimodal distributions (R =
P3

i=1 ci

f
i

), and (c) quadrimodal
distributions (R =

P4
i=1 ci

f
i

), we generate 400 random pairs (R, R0) by modulating the weighting coefficients c as well as
the attributes of Gaussian functions f . Representative distribution pairs are shown as insets, where the shaded portions indicate
the overlap (||R \ R0||) between the distributions. Performance is quantified using mean absolute errors (MAE) and Pearson
correlation coefficients (⇢).

in Fig. 4b the RBD-RBD interfaces obtained from these simulations in the context of the position of the FAD. We note that the
FAD will interact more extensively with the RBDs in the ephrin free state, as compared to the ephrin bound state. Therefore, the
reason the two simulations of the ephrin free state produce slightly different RBD-RBD interfaces could be due to the absence of
the RBD-FAD interface in our simulations. Nevertheless, the primary outcome of these simulation is that ephrin binding induces
a significant change in the RBD-RBD orientation.
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Figure 4: (a) Time evolutions of collective variables that describe the interface between the two RBDs of a dimer. The two lines
for each of the ephrin free and ephrin bound states indicate two separate MD simulations. d

CoM

is the distance between the
centers of masses (CoM) of the backbone atoms of the two RBDs. ✓

tilt

is the angle between the central axes, â and â0, of the
two RBDs. ✓

roll

is the angle of rotation of the RBD about its central axis. The geometrical definitions of ✓
tilt

and ✓
roll

are
provided in Fig. S5 in the Supporting Material. (b) Final snapshots of the RBD-RBD interface in MD simulations. Note that
two superimposed structures are shown for the ephrin free state, as the two simulations in the ephrin free state produced slightly
different RBD-RBD geometries. The location of the FAD relative to the RBD-RBD dimer is depicted according to structure of
the full length ectodomain proposed by Broder and coworkers (5), which was homology modeled on the X-ray structures of the
G analogs in the Newcastle Disease Virus and the parainfluenza virus (4, 11, 12).
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Comparison of conformational ensembles

The traditional approach to compare two conformational ensembles of proteins, R = {r1, r2, ..., rm

} and R0 = {r01, r02, ..., r0m},
where r denotes a 3n-dimensional coordinate and m denotes the number of conformations in the ensemble, is to compare their
respective summary statistics, like centers-of-masses (CoMs) and root mean square fluctuations (RMSFs). However, if a subset
of the summary statistics of the two ensembles are found to be identical, it does not imply that all of the 3n�6 summary statistics
of two ensembles will also be identical. The general problem of finding and choosing a feature that appropriately distinguishes
two ensembles can be overcome by comparing ensembles directly against each other, and prior to any dimensionality reduction
(30, 31, 49). A further advantage of comparing ensembles directly against each other is that the resulting quantification naturally
embodies differences in conformational fluctuations.

We compare ensembles directly against each other using a method we developed recently (31). It quantifies the difference
between two ensembles in terms of a metric, ⌘, that satisfies two conditions: (i) ⌘(R ! R0) = ⌘(R0 ! R) , and (ii) if
⌘(R ! R0) = ⌘(R0 ! R00), then ⌘(R ! R0) = ⌘(R ! R00). This metric is also universal in that it not bounded by system
type/size, and can be used to examine differences in ensembles at any structural hierarchy (functional groups, amino acids, or
secondary structures).

Mathematically, ⌘ is a function of the geometrical overlap between conformational ensembles, R and R0,

⌘ = 1� ||R \ R0||. (1)

It is normalized, that is, ⌘ 2 [0, 1), and it takes up a value closer to unity as the difference between the ensembles increases.
||R \ R0|| is estimated by solving an inverse machine learning problem. In the traditional sense, machine learning is used for
data classification (50–52) – the classification function, or machine (F (r)), is first trained on a set of instances with known group
identities, and then used for predicting the group identity of an unclassified instance. In principle, the conformational ensembles
R and R0 can also serve as training data to train a classification function, F (r), which can, in turn, be used to predict whether an
unseen conformation belongs to R or R0. We have shown that if F (r) is constructed and trained appropriately, then the overlap
between R and R0 can be extracted from F (r) (30).

We have also demonstrated that this method works excellently and without need for any prior data fitting, provided we assume
that the underlying distributions are Gaussian – the mean absolute error (MAE) between computed and analytical overlaps is 3.2%
(31). The Gaussianity in a distribution, which is a corollary to the central limit theorem, is however, a valid assumption only in
systems where particles do not interact with each other. Therefore, deviations can be expected for protein systems that evolve
under the influence of many-body interactions. Nevertheless, the overlap between two multi-Gaussian distributions, R =

P
c
i

f
i

and R0 =
P

c0
i

f 0
i

, where f
i

are Gaussians and c
i

are weighting coefficients, is essentially a sum of overlaps between Gaussian
distributions, that is,
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Therefore, from a theoretical standpoint, our method should also work for multi-Gaussian distributions, and by extension, for
any distribution. Fig. 3 shows the performance of the method for computing the overlap between arbitrary bimodal, trimodal
and quadrimodal distributions. In each case, the MAE is < 6% and the Pearson correlation coefficient is > 0.97. We have
now implemented this method using Gromacs APIs (39), and the source code is available at https://simtk.org/home/
conf_ensembles. Note that in this implementation, we employ the Support Vector Machine (SVM) optimization algorithm
distributed as part of the LIBSVM package (53), instead of SVMlight (54) that we employed in our original implementation (31).
Consequently, we re-optimized the upper limit of the Lagrange multiplier (C) and the width of the transformation Kernel (�)
in F (r). The optimized values of C and � are, respectively, 100 and 0.4 Å�2 (Fig. S4 in the Supporting Material), which are
obtained in exactly the same way as described in our original implementation (31). The re-optimized C and � still yield a MAE
of 3.2% for estimating the overlap between two Gaussian distributions.

Results and Discussion

Wild type RBD dimer

We examine first using MD how the small changes induced by ephrin in individual RBDs affect the interface between two RBDs.
Note that since a single RBD-RBD template is used for constructing the initial models of both the ephrin free and ephrin bound
dimers, the orientations between the two RBDs in these initial models are identical (see Methods for details).

We subject these two templated dimer models to separate MD simulations. Fig. 4a tracks the time evolution of three collec-
tive variables that describe the interface between the two RBDs in a dimer: d

CoM

, ✓
tilt

, and ✓
roll

. We find that the RBD-RBD
interface of the ephrin bound state is strikingly different from that of the ephrin free state. Repeating these MD simulations by
assigning different initial velocity distributions in MD yields exactly the same result in that the RBD-RBD interface of the ephrin
bound state is strikingly different from that of the ephrin-free state (Fig. 4a).

We also note from Fig. 4a that while the two simulations of the ephrin bound state yield identical RBD-RBD orientations,
the two simulations of the ephrin free state yield slightly different RBD-RBD orientations. To understand the latter, we visualize
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The ensemble of 3-dimensional (3D) configurations, R, exhibited by a biomolecule is essential to its

function and is correlated tightly with the properties of its environment [1–14]. Changes in intensive

variables, such as temperature and ionic strength, modify the configurational space (R ! R0) sampled

by the molecule. Additionally, a molecule’s configurational space can be altered by the binding of other

molecules, such as in protein-protein or DNA-protein complexes. Moreover, the extent of the change

in configurational density or population shift, �R, depends on multiple factors, including properties of

the molecule and the nature of the perturbation or external potential. Such induced changes are critical
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combined the final 50 ns of the three trajectories of each form to obtain representative conformational ensembles 
for the two forms, � and �o.

These ensembles were then compared against each other to obtain the response of Met95 oxidation on the 
structure/dynamics of hPHPT1’s apo state. Instead of comparing summary statistics of these ensembles against 
each other29,30, we compared them directly against each other and obtained a quantitative estimate for the shift in 
conformational density, �∆ . A direct comparison is preferred over a comparison of summary statistics as it cir-
cumvents the issue concerning the selection of representative conformations from rugged potential energy sur-
faces. A further advantage of comparing ensembles directly is that the resulting quantification naturally embodies 
differences in conformational fluctuations.

Quantitative estimates were obtained for the oxidation-induced shifts in conformational density, �∆ , using 
a method we developed recently31–33. For a given pair of ensembles, this method returns a quantitative estimate of 
�∆  that we refer to as discriminability, η. This quantity is normalized and bounded, that is, η ∈ [0, 1), and it 

takes up a value closer to unity as the difference between the ensembles increases. We determined η separately for 
each of the 125 residues in the hPHPT1 between their representative ensembles in the oxidized and non-oxidized 
forms. Each ensemble was represented by 3001 conformations. These conformations were extracted at regular 
intervals of 50 ps from the combined 150 ns trajectory of each form. Note that all of the selected conformations 
are least square fitted on to the NMR structure. Structure fitting was necessary to remove the bias of η against 
whole molecule rotation and translation, as that was not the goal of this comparison.

Figure 4 shows the oxidation-induced shifts in the conformational density of hPHPT1. It was found that 
for most residues η <  0.69, which, in Euclidian space is equivalent to a center of mass (CoM) deviation smaller 
than 1 Å. The only contiguous sequence of residues whose η >  0.69 was that of loop L2 (residues 29–39), which 
is distant from the catalytic site. The relatively larger η values for the residues in this loop is still equivalent to 
centers of mass deviations < 2 Å. The set of residues in the catalytic site, Lys21, His53, Ala54, Arg78, Ser94, 
Ala96, that are known experimentally to contribute to hPHPT1’s activity15,16, underwent only negligible (< 0.8 Å) 
oxidation-induced changes in conformational density. The backbone amino groups of His53, Ala54, and Ala96 as 
well as the side chains of both His53 and Ser94 remain oriented toward the catalytic site and explored conforma-
tional spaces similar to those in the non-oxidized form. Residues Lys21 and Arg78 that have been implicated in 
substrate anchoring15, and/or in stabilizing transition states16, retain the conformational space they explore in the 
non-oxidized form. The structure/dynamics of Met95 also remains unaffected by its oxidation.

In all, these MD simulations predicted that Met95 oxidation induces only a minor change in the structure/
dynamics of the apo-state of hPHPT1. Therefore, if Met95 oxidation affects hPHPT1 activity, then it would do so 
by altering the stability of the ligand-bound transition state.

Effect of H2O2 induced oxidation on hPHPT1 activity. To determine the effect of H2O2-induced 
oxidation on hPHPT1 activity, we utilized a novel mass spectrometry-based assay. In this assay, we measured 
the amount of a phosphohistidine-containing peptide substrate that remained after a specified time period of 
hPHPT1 treatment for both the non-oxidized and oxidized forms of the enzyme. Non-oxidized hPHPT1 should 
remove the phosphoryl group from phosphohistidine whereas oxidation, presumably through selective oxida-
tion of Met95 that is within the substrate binding region, could induce changes in hPHPT1 phosphatase activ-
ity. The mass spectrometry assay allowed for detection and relative quantitation of both phosphorylated and 

Figure 4. Effect of Met95 oxidation on the conformational density of hPHPT1. (a) The oxidation-induced 
conformational density shifts, �∆ , are shown individually for each of the 125 amino acids of hPHPT1, and 
indicated by a normalized quantity η (discriminability) that takes up values closer to unity for progressively 
larger shifts. The residues that have been implicated to contribute to the catalytic activity of hPHPT1 are 
highlighted in red. The dashed horizontal line denotes the η value beyond which the �∆  is equivalent to a 
center-of-mass (CoM) deviation of 1 Å. (b) NMR structure of hPHPT1 depicting �∆  in terms of the thickness 
of the backbone trace. The residues highlighted in red are the same residues highlighted in red in (a). The inset 
provides a perspective of the conformational densities of these selected residues through the use of twelve 
conformations selected randomly from the oxidized and non-oxidized forms.
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Figure 3. Quantitation of methionine oxidation in H2O2-treated hPHPT1. Representative accurate mass-
based (< 5 ppm) extracted ion chromatograms (XIC) corresponding to 1 mM H2O2-treated samples were 
generated for the Met95- (a)(i) and Met64-containing (b)(i) tryptic peptides. Superimposed full scan mass 
spectrum reflecting the relative abundance of the non-oxidized peptide compared to the oxidized cognate 
peptide in control hPHPT1 (untreated) for the Met95- (a)(ii) and Met64-containing (b)(ii) peptides. Overlay 
(3D) was performed in the Qual Browser (Thermo) data viewer followed by spectrum normalization to the 
largest peak in the scan with multiple scans normalized all the same. Spectrum reflecting the same peptides 
following 1 mM H2O2 treatment for the Met95- (a)(iii) and Met64-containing (b)(iii) peptides. (c) Fold change 
increase in Met95 and Met64 oxidation following treatment with H2O2 at various concentrations. The average 
AUC across replicates was used to determine fold change of oxidation for that treatment. Error bars represent 
standard deviation. *Indicates p <  0.05; **Indicates p <  0.01 using the Student’s t-test (d) NMR structure of 
hPHPT1 depicting the Met95 and Met64 residue location. Met64 is buried in a cavity that is partly hydrophobic 
(red indicates hydrophobic residues) while Met95 is surface-exposed.
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Figure 5. Effect of oxidation on hPHPT1 activity. (a) Full scan high-resolution mass spectrum (centroid 
mode) of the non-phosphorylated peptide (top spectrum), Suc-AHPF-pNA, at m/z 691. Signal corresponding 
to the phosphorylated peptide ion (m/z 771) was not detected. Full scan mass spectrum (centroid mode) of the 
histidine phosphorylated peptide is shown in the bottom spectrum, Suc-A(p)HPF-pNA, at m/z 771. Sodium 
and potassium adducts for both the non-phosphorylated (m/z 713 and 729, respectively) and phosphorylated 
peptide (m/z 793 and 809, respectively) are present as well. (b) Annotated high-resolution MS/MS spectrum 
(centroid) of the non-phosphorylated peptide (top spectrum) and phosphorylated peptide (bottom spectrum) 
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of an amino acid by averaging over the discriminabilities of its n
constituent atoms, that is, η = 1 − ∑1

n s/2mn.
Figure 3 indicates that the method is sensitive to angstrom-

level changes in particle mean positions and fluctuations. Since
amino acid discriminability is estimated as an arithmetic average
of particle discriminabilities, the method will also be sensitive to
small changes in amino acid mean positions and fluctuations.
However, η saturates over large changes, implying that its
sensitivity toward detecting the difference between two separate
large modifications will be small. Nevertheless, this, interferes
little with our objective to filter out the amino acids undergoing
large changes in motion.
To evaluate the sensitivity of the method toward changes in

the side-chain orientation, we first construct model configura-
tional ensembles of the amino acid side chains. For each amino
acid, we replicate a representative configuration of its side chain
over a 2-D Gaussian lattice. To modify the orientation, we
rotate all the atoms about an axis perpendicular to the Gaussian
lattice. The results of these calculations are plotted in Figure 4.

We find that, as expected, the computed discriminability
depends on the size and the topology of the amino acid. We
also find that the discriminability saturates for large rotations,
suggesting that while the method is appropriate for detecting

side chain rotations, it is less sensitive toward distinguishing
between two different large side chain rotations.
Together, we find that the method is suitable to rank-order

the amino acids of a given protein on the basis of their change
in intrinsic motion, and determine subsequently the portions of
a protein that undergo the highest change in motion in
response to an external potential. In the next section, we apply
this method to determine the specific portions of the NiV-G
protein that are affected the highest by the binding of the
Ephrin B2 receptor.

Application: G-Ephrin Interaction. To determine the
effect of Ephrin-B2 on the intrinsic motion of NiV-G, we carry
out two separate MD simulations of the NiV-G ectodomain in
150 mM NaCl solution: one in which it is complexed with
Ephrin-B2 (bound state) and the other in which Ephrin-B2 is
absent (unbound state). The representative ensembles of
configurations for the bound and unbound states of NiV-G are
extracted from the final 150 ns of their respective trajectories.
For each residue in NiV-G, we calculate the discriminability

between its representative ensembles in the bound and
unbound states, that is, between {an(xb)}1

m and {an(xub)}1
m,

where n denotes its non-hydrogen heavy atoms and m the
number of its representative configurations. Prior to the
calculation of the discriminability, the representative config-
urations of NiV-G are least-squares fitted on to the X-ray
coordinates of NiV-G in the bound state. This is necessary to
prevent the biasing of η against whole molecule rotation and
center-of-mass motion. The results of these calculations are
shown in Figure 5a. We find that residue discriminability ranges
from 0.2574 to 0.9992 and appears to be distributed randomly
over the primary sequence. Nevertheless, rank-ordering the
residues on the basis of their discriminability and mapping
those that fall within the top and bottom 25% categories on the
X-ray structure brings out a discernible pattern in their
distribution (Figure 5b). The residues that fall within the top
and bottom 25% categories are clustered into distinct 3-D
regions of the protein.
Note that, in these analyses, each of the two ensembles are

represented by m = 2500 configurations. These configurations
are extracted at regular intervals (60 ps) from the final 150 ns
trajectory of each simulation. Increasing the number of
representative configurations by a factor of 2 affects the
discriminability rank-order minimally. We deduce this from the

Figure 4. Relationship between amino acid discriminability and
modifications in the relative orientation of side-chains. While tests on
all natural amino acids were conducted, data belonging to only four
representative amino acids are shown.

Figure 5. Effect of Ephrin-B2 binding on the intrinsic motion of NiV-G. (a) Residue-wise discriminability between the bound and unbound states of
NiV-G. (b) The amino acids of NiV-G are rank-ordered on the basis of their discriminability shown in part a, and classified into three separate
categories that are color-coded on the X-ray structure25 of NiV-G. We find that the amino acids of NiV-G that undergo the highest change in
intrinsic motion upon Ephrin binding are generally clustered on one facet.
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large positive value of the Spearman correlation coefficient
computed between the rank-orders of the two analyses, that is,
ρ(m,2m) = 0.9996. The result stays the same when the number
of representative configurations in each of the two ensembles is
decreased by a factor of 2 (ρ(m,m/2) = 0.9993).
It is also interesting to note that the clustering pattern

produced by the SVM-based method is different from that
produced by traditional analyses schemes. While the SVM-
based method compares high-dimensional data from the two
simulations directly, the traditional analyses schemes compare
summary statistics from the two simulations. One of the
traditional ways to rank-order residues that are affected by
Ephrin-binding is on the basis of backbone center-of-mass
displacements. We compute for each residue its backbone
center-of-mass displacement by calculating the distance
between its corresponding mean positions in the two
simulations, that is, d = ∥⟨xub⟩ − ⟨xb⟩∥. We find a moderate
correlation of r(η,d)=0.7837 between the rank-orders asso-
ciated with discriminability and center-of-mass displacements.
This implies that while the core of the rank-ordering is due to
backbone structural change, the two modes of motion excluded
in the center-of-mass displacement analysis, that is, amino acid
fluctuations and their orientations in Euclidian space, also
contribute to rank-ordering.
Another scheme to rank-order residues is on the basis of

differences in root-mean-square fluctuations, ΔRMSF. We
compute ΔRMSF for each residue by first estimating its
RMSF in the bound state and then subtracting it from its
corresponding value in the unbound state, that is, ΔRMSF = |
RMSFub − RMSFb|. The correlation between the rank-orders
associated with residue-wise discriminability and ΔRMSF is
r(η,ΔRMSF) = 0.2445. We find that these rank-orders are
positively correlated, which suggests that while ΔRMSF
certainly contributes to rank-ordering residues, rank-ordering
changes in intrinsic motion based simply on ΔRMSF can be
misleading.
In the SVM-based analysis, we find that the residues that fall

within the top 25% category are not just restricted to the
portion of NiV-G that interfaces with Ephrin directly (Figure
5b). They span the protein surface contiguously from the
Ephrin-interface to regions over 2 nm away from the interface.
These residues could, therefore, participate directly in signal
transduction and, in fact, could belong to the allosteric pathway
that NiV-G utilizes to transmit the Ephrin-binding signal to the
viral fusion protein, NiV−F.19,22,23,48,49 Recent alanine-scanning

mutagenesis experiments29 identify a stretch of amino acids
I203−G211 that is crucial to viral fusion (Figure 6). These
experiments also identify an adjacent stretch of amino acids
N195−L202 that belongs to the same solvent-exposed loop
but, which, curiously, plays a minor role in fusion. We find from
our analysis that while the former stretch of amino acids
undergoes a large change in intrinsic motion due to Ephrin
binding, the intrinsic motions of the latter stretch are affected
minimally. Notice from the superimposed snapshots in Figure 6
that the changes in intrinsic motion do not just comprise of
backbone displacements but also include changes in fluctua-
tions and side-chain orientations. This strong correspondence
between our analysis and experiments is promising and
provides direct biophysical insight underlying experimental
findings.

■ CONCLUSIONS
Here, we present a SVM-based method to estimate
quantitatively the differences between two ensembles of
molecular configurations. Its primary advantage over traditional
approaches is that it does not require a priori reduction in
phase space but rather compares high-dimensional data directly.
While this method can be applied to any molecular system, we
test sensitivity against model configurational ensembles of
amino acids, where we find that it is sensitive to angstrom-level
differences in the relative positions, fluctuations, and
orientations of amino acids. In addition, the method does not
bias discriminability with respect to displacements or
fluctuation-changes toward any particular amino acid. However,
we find that its discriminability saturates over large
perturbations in ensemble properties, which implies that the
method is less sensitive toward discriminating between two
separate large perturbations. Nevertheless, it is suitable to rank-
order the amino acids of a given protein on the basis of their
relative change in intrinsic motion. We apply the method to
rank-order the amino acids of a viral protein NiV-G on the basis
of their change in intrinsic motion due to the binding of its
preferred receptor, Ephrin-B2. We identify distinct clusters in
NiV-G whose intrinsic motions respond strongly to Ephrin
binding, which also serve to explain the observations from
recent wet-lab experiments.

■ AUTHOR INFORMATION
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*E-mail: svarma@usf.edu.

Figure 6. Effect of Ephrin-B2 binding on the intrinsic motion of a specific loop of NiV-G, NQILKPKLISYTLPVVG, and its relationship with
alanine-scanning mutagenesis experiments.29 Twenty representative configurations of the segment, ten each from the MD simulation of NiV-G in its
Ephrin-bound and unbound states, are shown superimposed on each other. While the ten configurations from the simulation of NiV-G in its
unbound states are colored gray, the ten configurations of NiV-G in its Ephrin-bound state are color-coded according to their discriminability index.
We find an exact correspondence between the portions of the loop that have a high discriminability index, that is, those that undergo a high change
in intrinsic motion, and those that were shown from experiments to contribute significantly to viral fusion.
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by the molecule. Additionally, a molecule’s configurational space can be altered by the binding of other

molecules, such as in protein-protein or DNA-protein complexes. Moreover, the extent of the change

in configurational density or population shift, ∆R, depends on multiple factors, including properties of

the molecule and the nature of the perturbation or external potential. Such induced changes are critical

to regulating the functions of biomolecules, and play viral roles in biological signal transduction. A

quantitative characterization of ∆R is, therefore, important for understanding the molecular basis of

functional regulation.

Here we analyze the receptor-induced ∆R in the attachment protein of Nipah virus to understand

how Nipah fusion is regulated. Nipah (family Paramyxoviridae, genus Henipavirus) are emerging zoonotic

pathogens that cause illness and fatality in livestock and humans [15–20]. Their fusion with host cells is

initiated by the binding of their attachment glycoproteins (G) to specific ephrin receptors on host cells,

B2 and B3 [21–23]. This binding triggers changes in G that signals the activation of another viral protein,

F, which, in turn, mediates viral fusion. The G protein consists of an N-terminus cytoplasmic tail, a

transmembrane domain, a stalk domain and a globular head domain. While the G head domain binds to

ephrins [24, 25], the G stalk domain is responsible for F specificity and activation [26–37]. However, the

precise location of where F binds on the G stalk domain is unknown, and also remains unknown is how

the ephrin binding signal is transmitted from the head domain to the stalk domain of G.

X-ray crystallography suggests that the head domain of G folds as a propeller with a central cavity

surrounded by six blades β1–6 (Figure 1) [25]. When expressed on the virion or the surface of an infected

cell, G exists as a tetramer, rather than a monomer [38, 39]. The tetramer is organized as a dimer-of-

dimers. The x-ray structure of the G protein of the Hendra virus, which is closely related to Nipah,

indicates that the G head domains dimerize using residues in blades β1 and β6 [39]. This dimerization

results in only minor changes in the monomer structure, and the changes are limited to residues forming

the interface. The crystallographic structure of the Newcastle disease (NDV) paramyxovirus attachment

protein in its tetrameric state suggests that the head domains of the two dimers do not form contact

interfaces [37]. In addition, homology modeling, using this tetrameric structure as a template, indicates

that the four G stalk domains in the tetramer wrap around each other to form a helical bundle [19]. This

helical bundle also interacts with the head domains, but on the side that is opposite to the side where

ephrins bind.

These findings suggest that the ephrin-binding signal can transduce to the G stalk domain through
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FIG. 3. E↵ect of Ephrin-B2 binding on the intrinsic motion of NiV-G. (a) Residue-wise discriminability between the bound
and unbound states of NiV-G. (b) The amino acids of NiV-G are rank-ordered on the basis of their discriminability shown in
(a), and classified into three separate categories that are color-coded on the x-ray structure of NiV-G [21]. We find that most
of the amino acids of NiV-G that underwent the highest change in intrinsic motion upon Ephrin binding are clustered on one
facet of the protein.

changes in fluctuation, however, we do not expect such
large changes in fluctuation to be biologically relevant.

Next, we evaluate the sensitivity of the method toward
changes in the orientation of the ensemble in Euclidean
space. We focus only on changes in the orientations of
side-chain. To accomplish this, we remove all backbone
atoms from each of the twenty reference ensembles, and
then rotate the remaining atoms about an axis perpen-
dicular to the Gaussian lattice. The results of these cal-
culations are plotted in Fig. 2c. In contrast to the two
earlier cases, we find that the computed discriminabil-
ity depends on the size and the topology of the amino
acid. We also note that the discriminability saturates for
large rotations, suggesting that while the method is ap-
propriate for detecting side chain rotations, it is less sen-
sitive toward distinguishing between two di↵erent large
side chain rotations.

Together, we find that the SMV-based method is sen-
sitive to angstrom-level changes in the relative position,
fluctuations and orientations of amino acids. In addition,
the method does not bias discriminability with respect to
displacements or fluctuation-changes toward any partic-
ular amino acid. However, we do find that in all cases
the discriminability saturates over large perturbations in
ensemble properties, which implies that the method is
less sensitive toward discriminating between two sepa-
rate large perturbations. Nonetheless, it is suitable to
rank-order the amino acids of a given protein on the basis
of their change in intrinsic motion, and determine subse-
quently the portions of a protein that undergo the highest
change in motion in response to an external potential. In
the next section, we apply this method to determine the

specific portions of the NiV-G protein that are a↵ected
the highest by the binding of the Ephrin B2 receptor.

Application: G-Ephrin interaction

To determine the e↵ect of Ephrin-B2 on the intrinsic
motion of NiV-G, we carry out two separate MD simula-
tions of the NiV-G ectodomain in 150 mM NaCl solution;
one in which it was complexed with Ephrin-B2 (bound
state) and the other in which Ephrin-B2 was absent (un-
bound state). We generate a 460 ns long trajectory of
NiV-G in its bound state and a 640 ns long trajectory of
NiV-G in its unbound state (Fig. 1). The representative
ensembles of configurations for the bound and unbound
states of NiV-G are extracted from the final 150 ns of
their respective trajectories.
For each residue in NiV-G, we calculate the discrim-

inability between its representative ensembles in the
bound and unbound states, that is, between {a

n

(xb)}m
1

and {a
n

(xub)}m
1

, where n denotes its non-hydrogen
heavy atoms and m the number of its representative
configurations. Prior to the calculation of the discrim-
inability, the representative configurations of NiV-G are
least-square fitted on to the X-ray coordinates of NiV-G
in the bound state. This is necessary to prevent biasing
discriminability against molecular rotation and molecular
center-of-mass motion. The results of these calculations
are shown in Fig. 3a. We find that residue discriminabil-
ity ranges from 0.334 to 0.995 and appears to be dis-
tributed randomly over the primary sequence. Neverthe-
less, rank-ordering the residues on the basis of their dis-
criminability and mapping those that fall within the top



Dutta, Botlani, Varma. JPCB 2014

New applications enabled

Quantifying Conformational Ensemble Changes in Proteins Using Inverse Machine Learning
Mohsen Botlani, Ahnaf Siddiqui and Sameer Varma 

Department of Cell Biology, Microbiolgy and Molecular Biology
University of South Florida, FL-33620

Background: Protein activities are regulated tightly in biological environments. An 
understanding of their regulatory mechanisms entails assessment of their various states, 
including active and inactive states. For many proteins, their states can be distinguished 
based on their minimum-energy conformations since, the magnitudes of thermal 
fluctuations, or dynamics, are negligible compared to the differences in minimum-energy 
structures. This approximation, however, breaks down for several other proteins. The states 
of these proteins can only be distinguished categorically from each other when their finite-
temperature conformational ensembles are considered alongside their minimum-energy 
structures. The list of such proteins has grown rapidly in the last decade, which now 
includes GPCRs, PDZ domains, nuclear transcription factors, heat shock proteins, T-cell 
receptors and viral attachment proteins. Applicability of molecular simulations toward 
understanding mechanisms in this latter category of proteins requires development of new 
methods that can deal with high-dimensional conformational ensemble data. 
Description: The traditional approach to compare protein conformational ensembles is to 
compare their respective summary statistics. However, if a subset of the summary statistics 
from the two ensembles is found to be identical, it does not imply that the remaining 
summary statistics will also be identical. The general problem of finding and choosing a 
feature that appropriately distinguishes ensembles can be overcome by comparing 
ensembles directly against each other and prior to any dimensionality reduction. We have 
developed a method to accomplish just that – it performs excellently for both Gaussian and 
non-Gaussian distributions. The difference between ensembles is computed by solving the 
inverse machine learning problem and in terms of a metric that satisfies the conditions set 
forth by the zeroth law of thermodynamics. 
Conclusions: Such a quantification permits statistical analyses and quantitative data 
mining necessary for establishing causality in protein functional regulation. We have applied 
this method to (a) quantitatively understand the effect of ligand binding on the structure and 
dynamics of a viral protein whose function is controlled by dynamic allostery; (b) understand 
the role of water in the inception of allosteric signals; (c) determine intersecting signaling 
pathways. This method is available under standard GNU license on SimTk.(https://
simtk.org/projects/conf_ensembles).
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Intersecting signaling pathways:  

Conformational sampling over 3 collective variables  

Traditionally, a support vector machine (SVM) is used for binary classification. It is first 
trained on a set of instances for which their group identities are known, and then used for 
predicting the group identities of unclassified instances. In our approach, we train the SVM 
to recognize the difference of two n-particle conformational ensembles, but instead of 
using the trained SVM for predictive purposes, we utilize the mathematical properties of 
the underlying classification function to obtain a physically meaningful quantitative 
estimate for the difference between the ensembles. The method is trained on Gaussian 
distributions, and works excellently without need for any data fitting. From a theoretical 
standpoint, the method should also work for multi-Gaussian distributions, and by 
extension, for any distribution, because the overlap between two multi-Gaussian 
distributions is essentially a sum of overlaps between Gaussian distributions,

Residues that are close to the 
diagonal undergo shifts 
primarily in backbone 
positions. Residues that lie 
below the diagonal undergo 
changes in side chain 
orientations and/or 
conformational entropy. 
Residues that lie above the 
diagonal represent cases 
where backbone deviations 
are swamped by smaller 
changes in whole residue 
deviations.

Example: Effect of force field on ligand-induced conformational ensemble shifts.              
and              are computed, respectively, from stochastic dynamics simulations in explicit 
and implicit solvent. 
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Comparison of conformational ensembles

The traditional approach to compare two conformational ensembles of proteins, R = {r1, r2, ..., rm

} and R0 = {r01, r02, ..., r0m},
where r denotes a 3n-dimensional coordinate and m denote the number of conformations in the ensemble, is to compare their
respective summary statistics, like centers-of-masses (CoMs) and root mean square fluctuations (RMSFs). However, if a subset
of the summary statistics of the two ensembles are found to be identical, it does not imply that the remaining 3n � 6 summary
statistics of two ensembles will also be identical. The general problem of finding and choosing a feature that appropriately dis-
tinguishes two ensembles can be overcome by comparing ensembles directly against each other, and prior to any dimensionality
reduction (30, 31, 51). A further advantage of comparing ensembles directly against each other is that the resulting quantification
naturally embodies differences in conformational fluctuations.

We compare ensembles directly against each other using a method we developed recently (31). It quantifies the difference
between two ensembles in terms of a metric, ⌘, that satisfies two conditions: (i) ⌘(R ! R0) = ⌘(R0 ! R) , and (ii) if
⌘(R ! R0) = ⌘(R0 ! R00), then ⌘(R ! R0) = ⌘(R ! R00). This metric is also universal in that it not bounded by system
type/size, and can be used to examine differences in ensembles at any structural hierarchy (functional groups, amino acids, or
secondary structures).

Mathematically, ⌘ is a function of the geometrical overlap between conformational ensembles, R and R0,

⌘ = 1� ||R \ R0||. (1)

It is normalized, that is, ⌘ 2 [0, 1), and it takes up a value closer to unity as the difference between the ensembles increases.
||R \ R0|| is estimated by solving an inverse machine learning problem. In the traditional sense, machine learning is used for

data classification (52–54) – the classification function, or machine (F (r)), is first trained on a set of instances with known group
identities, and then used for predicting the group identity of an unclassified instance. In principle, the conformational ensembles
R and R0 can also serve as training data to train a classification function, F (r), which can, in turn, be used to predict whether an
unseen conformation belongs to R or R0. We have shown that if F (r) is constructed and trained appropriately, then the overlap
between R and R0 can be extracted from F (r) (30).

We have also demonstrated that this method works excellently and without need for any prior data fitting, provided we assume
that the underlying distributions are Gaussian – the mean absolute error (MAE) between computed and analytical overlaps is 3.2%
(31). The Gaussianity in a distribution, which is a corollary to the central limit theorem, is however, a valid assumption only in
systems where particles do not interact with each other. Therefore, deviations can be expected for protein systems that evolve
under the influence of many-body interactions. Nevertheless, the overlap between two multi-Gaussian distributions, R =

P
c
i

f
i

and R0 =
P

c0
i

f 0
i

, where f
i

are Gaussians and c
i

are weighting coefficients, is essentially a sum of overlaps between Gaussian
distributions, that is,

⌘ = 1� ||
X

c
i

f
i

\
X

c0
j

f 0
j

||

= 1� ||(
X

i,j

c
i

f
i

\ c0
j

f 0
j

�
X

i<j

c
i

f
i

\ c
j

f
j

�
X

i<j

c0
i

f 0
i

\ c0
j

f 0
j

)||. (2)

Therefore, from a theoretical standpoint, our method should also work for multi-Gaussian distributions, and by extension, for
any distribution. Fig. 3 shows the performance of the method for computing the overlap between arbitrary bimodal, trimodal
and quadrimodal distributions. In each case, the MAE is < 6% and the Pearson correlation coefficient is > 0.97. We have now
implemented this method using Gromacs APIs (39), and the source code is available at https://simtk.org/home/conf_
ensembles. Note that in this implementation, we employ the Support Vector Machine optimization algorithm distributed as
part of the LIBSVM package (55), instead of SVMlight (56) that we employed in our original implementation (31). Consequently,
we re-optimized the upper limit of the Lagrange multiplier (C) and the width of the transformation Kernel (�) in F (r). The opti-
mized values are C

opt

= 100 and �
opt

= 0.4 Å�2 (Fig. S4 in the Supporting Material), and are obtained in exactly the same way
as described in our original implementation (31). The re-optimized C and � still yield a MAE of 3.2% for estimating the overlap
between two Gaussian distributions.

Results and Discussion

Wild type RBD dimer

We examine first using MD how the small changes induced by ephrin in individual RBDs affect the interface between two RBDs.
Note that since a single RBD-RBD template is used for constructing the initial models of both the ephrin free and ephrin bound
dimers, the orientations between the two RBDs in these initial models are identical (see Methods for details).

We subject these two templated dimer models to separate MD simulations. Fig. 4a tracks the time evolution of three collec-
tive variables that describe the interface between the two RBDs in a dimer: d

CoM

, ✓
tilt

, and ✓
roll

. We find that the RBD-RBD
interface of the ephrin bound state is strikingly different from that of the ephrin free state. Repeating these MD simulations by
assigning different initial velocity distributions in MD yields exactly the same result in that the RBD-RBD interface of the ephrin
bound state is strikingly different from that of the ephrin-free state (Fig. 4a).
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where r denotes a 3n-dimensional coordinate and m denote the number of conformations in the ensemble, is to compare their
respective summary statistics, like centers-of-masses (CoMs) and root mean square fluctuations (RMSFs). However, if a subset
of the summary statistics of the two ensembles are found to be identical, it does not imply that the remaining 3n � 6 summary
statistics of two ensembles will also be identical. The general problem of finding and choosing a feature that appropriately dis-
tinguishes two ensembles can be overcome by comparing ensembles directly against each other, and prior to any dimensionality
reduction (30, 31, 51). A further advantage of comparing ensembles directly against each other is that the resulting quantification
naturally embodies differences in conformational fluctuations.

We compare ensembles directly against each other using a method we developed recently (31). It quantifies the difference
between two ensembles in terms of a metric, ⌘, that satisfies two conditions: (i) ⌘(R ! R0) = ⌘(R0 ! R) , and (ii) if
⌘(R ! R0) = ⌘(R0 ! R00), then ⌘(R ! R0) = ⌘(R ! R00). This metric is also universal in that it not bounded by system
type/size, and can be used to examine differences in ensembles at any structural hierarchy (functional groups, amino acids, or
secondary structures).

Mathematically, ⌘ is a function of the geometrical overlap between conformational ensembles, R and R0,

⌘ = 1� ||R \ R0||. (1)

It is normalized, that is, ⌘ 2 [0, 1), and it takes up a value closer to unity as the difference between the ensembles increases.
||R \ R0|| is estimated by solving an inverse machine learning problem. In the traditional sense, machine learning is used for

data classification (52–54) – the classification function, or machine (F (r)), is first trained on a set of instances with known group
identities, and then used for predicting the group identity of an unclassified instance. In principle, the conformational ensembles
R and R0 can also serve as training data to train a classification function, F (r), which can, in turn, be used to predict whether an
unseen conformation belongs to R or R0. We have shown that if F (r) is constructed and trained appropriately, then the overlap
between R and R0 can be extracted from F (r) (30).

We have also demonstrated that this method works excellently and without need for any prior data fitting, provided we assume
that the underlying distributions are Gaussian – the mean absolute error (MAE) between computed and analytical overlaps is 3.2%
(31). The Gaussianity in a distribution, which is a corollary to the central limit theorem, is however, a valid assumption only in
systems where particles do not interact with each other. Therefore, deviations can be expected for protein systems that evolve
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Therefore, from a theoretical standpoint, our method should also work for multi-Gaussian distributions, and by extension, for
any distribution. Fig. 3 shows the performance of the method for computing the overlap between arbitrary bimodal, trimodal
and quadrimodal distributions. In each case, the MAE is < 6% and the Pearson correlation coefficient is > 0.97. We have now
implemented this method using Gromacs APIs (39), and the source code is available at https://simtk.org/home/conf_
ensembles. Note that in this implementation, we employ the Support Vector Machine optimization algorithm distributed as
part of the LIBSVM package (55), instead of SVMlight (56) that we employed in our original implementation (31). Consequently,
we re-optimized the upper limit of the Lagrange multiplier (C) and the width of the transformation Kernel (�) in F (r). The opti-
mized values are C

opt

= 100 and �
opt

= 0.4 Å�2 (Fig. S4 in the Supporting Material), and are obtained in exactly the same way
as described in our original implementation (31). The re-optimized C and � still yield a MAE of 3.2% for estimating the overlap
between two Gaussian distributions.

Results and Discussion

Wild type RBD dimer

We examine first using MD how the small changes induced by ephrin in individual RBDs affect the interface between two RBDs.
Note that since a single RBD-RBD template is used for constructing the initial models of both the ephrin free and ephrin bound
dimers, the orientations between the two RBDs in these initial models are identical (see Methods for details).

We subject these two templated dimer models to separate MD simulations. Fig. 4a tracks the time evolution of three collec-
tive variables that describe the interface between the two RBDs in a dimer: d
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, ✓
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, and ✓
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. We find that the RBD-RBD
interface of the ephrin bound state is strikingly different from that of the ephrin free state. Repeating these MD simulations by
assigning different initial velocity distributions in MD yields exactly the same result in that the RBD-RBD interface of the ephrin
bound state is strikingly different from that of the ephrin-free state (Fig. 4a).
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Figure 3: Performance of ⌘ estimated from F (r) against its exact value (1� ||R\R0||). For each of the three types of multimodal
distributions, (a) bimodal distributions (R =
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f
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), (b) trimodal distributions (R =
P3

i=1 ci

f
i

), and (c) quadrimodal
distributions (R =
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f
i

), we generate 400 random pairs (R, R0) by modulating the weighting coefficients c as well as
the attributes of Gaussian functions f . Representative distribution pairs are shown as insets, where the shaded portions indicate
the overlap (||R \ R0||) between the distributions. Performance is quantified using mean absolute errors (MAE) and Pearson
correlation coefficients (⇢).

We also note from Fig. 4a that while the two simulations of the ephrin bound state yield identical RBD-RBD orientations,
the two simulations of the ephrin free state yield slightly different RBD-RBD orientations. To understand the latter, we visualize
in Fig. 4b the RBD-RBD interfaces obtained from these simulations in the context of the position of the FAD. We note that the
FAD will interact more extensively with the RBDs in the ephrin free state, as compared to the ephrin bound state. Therefore, the
reason the two simulations of the ephrin free state produce slightly different RBD-RBD interfaces could be due to the absence of
the RBD-FAD interface in our simulations. Nevertheless, the primary outcome of these simulation is that ephrin binding induces
a significant change in the RBD-RBD orientation.
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Figure 4: (a) Time evolutions of collective variables that describe the interface between the two RBDs of a dimer. The two lines
for each of the ephrin free and ephrin bound states indicate two separate MD simulations. d
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is the distance between the
centers of masses (CoM) of the backbone atoms of the two RBDs. ✓

tilt

is the angle between the central axes, â and â0, of the
two RBDs. ✓

roll

is the angle of rotation of the RBD about its central axis. The geometrical definitions of ✓
tilt

and ✓
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are
provided in Fig. S5 in the Supporting Material. (b) Final snapshots of the RBD-RBD interface in MD simulations. Note that
two superimposed structures are shown for the ephrin free state, as the two simulations in the ephrin free state produced slightly
different RBD-RBD geometries. The location of the FAD relative to the RBD-RBD dimer is depicted according to structure of
the full length ectodomain proposed by Broder and coworkers (5), which was homology modeled on the X-ray structures of the
G analogs in the Newcastle Disease Virus and the parainfluenza virus (4, 11, 12).
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Water dynamics at protein-protein interfaces: A molecular dynamics
study of virus-host receptor complexes
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Abstract

The dynamical properties of water at biological interfaces are different from those in bulk water. Experiments as well as
simulations indicate that water diffuses and orients at rates that depend on both the chemistry as well as the topology of the
interface. Here we utilize molecular dynamics simulations to determine the nature and extent to which the dynamical proper-
ties of water are shifted from their bulk values when they occupy interstitial regions between two proteins. We consider two
natural protein-protein complexes, one in which the Nipah virus G protein binds to cellular ephrin B2, and the other in which
the same G protein binds to ephrin B3. These protein-protein interactions constitute the first step in Nipah infection. We find
that despite the low sequence identity of 50% between ephrins B2 and B3, the dynamical properties of interstitial waters in the
two complexes are similar. In both cases, we find that the interstitial waters diffuse ten times slower compared to bulk water.
In addition, despite their resolution in crystal structures, more than 95% of the waters in the interstitial regions exchange
with the bulk within 150 ns. The interstitial waters also exhibit dipole relaxation times and hydrogen bond lifetimes an order
in magnitude longer than bulk water. These deviations from bulk values are generally much larger than those observed at
protein-water interfaces. To gauge the functional relevance of the interstitial water, we examine quantitatively how implicit
solvent models compare against explicit solvent models in producing ephrin-induced shifts in the G configurational density.
Ephrin-induced shifts in the G configurational density are critical to the allosteric regulation of viral fusion. We find that the
two methods yield strikingly different induced changes in the G configurational density, which suggests that the interstitial
waters may also contribute to the allosteric signaling, and therefore, are functionally important.

Insert Received for publication Date and in final form Date.
Correspondance: svarma@usf.edu

Introduction

The dynamical properties of water at biological interfaces are different from those in bulk water (? ? ? ? ? ? ? ? ? ? ? ). How
are they different?

In general, the fundamental trend observed from experiments and simulations is that water diffuses, relaxes and orients
slower at protein-water and lipid-water interfaces, as compared to in the bulk.

1. First hydration shell of proteins in denser
IMPORTANT FOR METHODS: crystal WATERs in B2 and not B3. So retaining the crystal waters has not effect on the

overall properties.
———— Equations:
⇢/⇢0
r (Å)
————
Probing the folding and unfolding processes of proteins as a function of temperature is a major challenge in biophysics.

Here we examine the effects of temperature spikes that heat and cool proteins within tens of nanoseconds. Our results show
these spikes are capable of causing irreversible changes sufficient to eliminate protein activity.

© 2013 The Authors
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The dynamical properties of water at biological interfaces are different from those in bulk water. Experiments as well as
simulations indicate that water diffuses and orients at rates that depend on both the chemistry as well as the topology of the
interface. Here we utilize molecular dynamics simulations to determine the nature and extent to which the dynamical proper-
ties of water are shifted from their bulk values when they occupy interstitial regions between two proteins. We consider two
natural protein-protein complexes, one in which the Nipah virus G protein binds to cellular ephrin B2, and the other in which
the same G protein binds to ephrin B3. These protein-protein interactions constitute the first step in Nipah infection. We find
that despite the low sequence identity of 50% between ephrins B2 and B3, the dynamical properties of interstitial waters in the
two complexes are similar. In both cases, we find that the interstitial waters diffuse ten times slower compared to bulk water.
In addition, despite their resolution in crystal structures, more than 95% of the waters in the interstitial regions exchange
with the bulk within 150 ns. The interstitial waters also exhibit dipole relaxation times and hydrogen bond lifetimes an order
in magnitude longer than bulk water. These deviations from bulk values are generally much larger than those observed at
protein-water interfaces. To gauge the functional relevance of the interstitial water, we examine quantitatively how implicit
solvent models compare against explicit solvent models in producing ephrin-induced shifts in the G configurational density.
Ephrin-induced shifts in the G configurational density are critical to the allosteric regulation of viral fusion. We find that the
two methods yield strikingly different induced changes in the G configurational density, which suggests that the interstitial
waters may also contribute to the allosteric signaling, and therefore, are functionally important.
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Introduction

The dynamical properties of water at biological interfaces are different from those in bulk water (1–3, 6–13). How are they
different?

In general, the fundamental trend observed from experiments and simulations is that water diffuses, relaxes and orients
slower at protein-water and lipid-water interfaces, as compared to in the bulk.

1. First hydration shell of proteins in denser
IMPORTANT FOR METHODS: crystal WATERs in B2 and not B3. So retaining the crystal waters has not effect on the

overall properties.
———— Equations:
⇢/⇢0
r (Å)
r = 10 Å
————
Probing the folding and unfolding processes of proteins as a function of temperature is a major challenge in biophysics.

Here we examine the effects of temperature spikes that heat and cool proteins within tens of nanoseconds. Our results show
these spikes are capable of causing irreversible changes sufficient to eliminate protein activity.
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Enables comparison of two population shifts

absolute error between computed and analytical values of η is
3.2%.66

■ RESULTS AND DISCUSSION
To characterize the properties of water molecules present in the
interfaces of the G−B2 and G−B3 protein complexes, we
generate separate ∼1/2 μs long MD trajectories of the G−B2
and G−B3 complexes, respectively, in explicit solvent. Our
analysis is based on the final 40 ns time frames of these
trajectories. The initial portions of these trajectories were set
aside to equilibrate water densities. This is particularly
necessary in the case of the G−B3 complex in which the
quality of the X-ray diffraction forbade resolution of water
molecules. The extent of equilibration appears sufficient as it is
more than three orders in magnitude longer than the computed
residence times of waters in the interstitial region. We begin the
analysis by defining a scheme to distinguish between interstitial
and bulk waters.
Interstitial Waters. The interfaces formed between G and

ephrins are uneven. Consequently, this rules out a definitive
scheme for discriminating between interstitial and bulk waters.
In this work, we utilize a scheme based on density distribution.
Figure 1a shows the water density variation as a function of the
perpendicular distance from the axes joining the geometric
centers of G and ephrins. Note that in this calculation we
consider only those waters that lie within the right circular
cylindrical regions bounded by disks containing the geometric
centers of G and ephrins. The heights of these cylinders are the
distances between the geometric centers of the G and ephrins.
The average distances between the geometric centers of G and
ephrins are 32.8 ± 0.2 and 34.7 ± 0.2 Å, respectively, for the
G−B2 and G−B3 complexes. We define the interstitial regions
as 20 Å wide cylinders, as radial distances of 10 Å correspond
roughly to the first inflection points in the density distribution
functions. We note that there are no Na+ or Cl− ions present in
these interstitial regions, as determined from their respective
radial distribution functions. The average numbers of waters in
the interstitial regions of the G−B2 and G−B3 complexes are
65.3 ± 4.0 and 67.6 ± 3.9, respectively. These averages are
comparable to the 69 waters resolved in this interstitial region
in the X-ray structure of the G−B2 complex. Furthermore, the
65 highest occupancy regions in the MD simulation of the G−
B2 complex coincide well with the positions of the water
molecules resolved in in the X-ray structure (Figure 1b).

Diffusion Coefficients. Figure 2 illustrates the integrated
form of the velocity autocorrelation of interstitial waters:

∫τ = ⟨⟨ · ⟩⟩
τ

D t tv v( ) 1/3 (0) ( ) d
0 (3)

The double angular brackets denote averages computed over
the ensemble as well as the number of waters in the interstitial
region. The diffusion coefficient of the interstitial waters is
obtained from the Green−Kubo relationship109 as a limiting
case D = D(τ → ∞). The diffusion coefficient obtained from
periodic systems, however, needs to be corrected for finite size
effects. According to the hydrodynamic theory of diffu-
sion,110,111 the leading order correction to the diffusion
coefficient obtained from a cubic periodic cell is inversely
proportional to the length of the cell,

ξ πη α= + = +D D k T L D L/6 /bself (4)

In the equation above, η is the viscosity, ξ = 2.837 is a
constant, and L is the length of the cubic cell. The higher order
corrections to eq 4 are relatively small. Instead of computing
the viscosity needed for estimating the correction, we estimate
the correction factor α empirically.111,112 To accomplish this,
we compute the diffusion coefficient of bulk water D from three
different cubic cells of lengths 24.83, 31.85, and 40.70 Å (Figure
3). In all of the three simulations, water densities are
maintained at 0.987 kg/dm3 and the temperature is maintained
at 310 K. In addition, D is estimated from velocity
autocorrelations. While the slope of the line fitted to these
data points yields α, the ordinate intercept yields the diffusion

Figure 1. Water distribution in the interstitial regions of the G−ephrin complexes. (a) Normalized density of water (ρ/ρ0) as a function of the
perpendicular distance from the axes joining the geometric centers of G and ephrins. Note that only those waters are considered that lie within the
right circular cylindrical region whose bounding disks contain the geometric centers of G and ephrins. (b) Partial view of the G−B2 complex
showing a superimposition of the 69 interstitial waters resolved in the X-ray structure (red spheres), and the 65 highest occupancy regions observed
in the MD simulation (yellow mesh). The axis of the right circular cylindrical region that connects the geometric centers of the G and B2 is drawn as
a dashed black line.

Figure 2. Integrated form of the velocity autocorrelation of waters,
D(τ), occupying the interstitial regions in the G−B2 and G−B3
protein complexes.
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Determine role of the discrete nature of water on ligand-induced ensemble shifts



New applications enabled

Enables comparison of multiple population shifts

Quantifying Conformational Ensemble Changes in Proteins Using Inverse Machine Learning
Mohsen Botlani, Ahnaf Siddiqui and Sameer Varma 
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Background: Protein activities are regulated tightly in biological environments. An 
understanding of their regulatory mechanisms entails assessment of their various states, 
including active and inactive states. For many proteins, their states can be distinguished 
based on their minimum-energy conformations since, the magnitudes of thermal 
fluctuations, or dynamics, are negligible compared to the differences in minimum-energy 
structures. This approximation, however, breaks down for several other proteins. The states 
of these proteins can only be distinguished categorically from each other when their finite-
temperature conformational ensembles are considered alongside their minimum-energy 
structures. The list of such proteins has grown rapidly in the last decade, which now 
includes GPCRs, PDZ domains, nuclear transcription factors, heat shock proteins, T-cell 
receptors and viral attachment proteins. Applicability of molecular simulations toward 
understanding mechanisms in this latter category of proteins requires development of new 
methods that can deal with high-dimensional conformational ensemble data. 
Description: The traditional approach to compare protein conformational ensembles is to 
compare their respective summary statistics. However, if a subset of the summary statistics 
from the two ensembles is found to be identical, it does not imply that the remaining 
summary statistics will also be identical. The general problem of finding and choosing a 
feature that appropriately distinguishes ensembles can be overcome by comparing 
ensembles directly against each other and prior to any dimensionality reduction. We have 
developed a method to accomplish just that – it performs excellently for both Gaussian and 
non-Gaussian distributions. The difference between ensembles is computed by solving the 
inverse machine learning problem and in terms of a metric that satisfies the conditions set 
forth by the zeroth law of thermodynamics. 
Conclusions: Such a quantification permits statistical analyses and quantitative data 
mining necessary for establishing causality in protein functional regulation. We have applied 
this method to (a) quantitatively understand the effect of ligand binding on the structure and 
dynamics of a viral protein whose function is controlled by dynamic allostery; (b) understand 
the role of water in the inception of allosteric signals; (c) determine intersecting signaling 
pathways. This method is available under standard GNU license on SimTk.(https://
simtk.org/projects/conf_ensembles).
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Intersecting signaling pathways:  

Conformational sampling over 3 collective variables  

Traditionally, a support vector machine (SVM) is used for binary classification. It is first 
trained on a set of instances for which their group identities are known, and then used for 
predicting the group identities of unclassified instances. In our approach, we train the SVM 
to recognize the difference of two n-particle conformational ensembles, but instead of 
using the trained SVM for predictive purposes, we utilize the mathematical properties of 
the underlying classification function to obtain a physically meaningful quantitative 
estimate for the difference between the ensembles. The method is trained on Gaussian 
distributions, and works excellently without need for any data fitting. From a theoretical 
standpoint, the method should also work for multi-Gaussian distributions, and by 
extension, for any distribution, because the overlap between two multi-Gaussian 
distributions is essentially a sum of overlaps between Gaussian distributions,

Residues that are close to the 
diagonal undergo shifts 
primarily in backbone 
positions. Residues that lie 
below the diagonal undergo 
changes in side chain 
orientations and/or 
conformational entropy. 
Residues that lie above the 
diagonal represent cases 
where backbone deviations 
are swamped by smaller 
changes in whole residue 
deviations.

Example: Effect of force field on ligand-induced conformational ensemble shifts.              
and              are computed, respectively, from stochastic dynamics simulations in explicit 
and implicit solvent. 
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Comparison of conformational ensembles

The traditional approach to compare two conformational ensembles of proteins, R = {r1, r2, ..., rm

} and R0 = {r01, r02, ..., r0m},
where r denotes a 3n-dimensional coordinate and m denote the number of conformations in the ensemble, is to compare their
respective summary statistics, like centers-of-masses (CoMs) and root mean square fluctuations (RMSFs). However, if a subset
of the summary statistics of the two ensembles are found to be identical, it does not imply that the remaining 3n � 6 summary
statistics of two ensembles will also be identical. The general problem of finding and choosing a feature that appropriately dis-
tinguishes two ensembles can be overcome by comparing ensembles directly against each other, and prior to any dimensionality
reduction (30, 31, 51). A further advantage of comparing ensembles directly against each other is that the resulting quantification
naturally embodies differences in conformational fluctuations.

We compare ensembles directly against each other using a method we developed recently (31). It quantifies the difference
between two ensembles in terms of a metric, ⌘, that satisfies two conditions: (i) ⌘(R ! R0) = ⌘(R0 ! R) , and (ii) if
⌘(R ! R0) = ⌘(R0 ! R00), then ⌘(R ! R0) = ⌘(R ! R00). This metric is also universal in that it not bounded by system
type/size, and can be used to examine differences in ensembles at any structural hierarchy (functional groups, amino acids, or
secondary structures).

Mathematically, ⌘ is a function of the geometrical overlap between conformational ensembles, R and R0,

⌘ = 1� ||R \ R0||. (1)

It is normalized, that is, ⌘ 2 [0, 1), and it takes up a value closer to unity as the difference between the ensembles increases.
||R \ R0|| is estimated by solving an inverse machine learning problem. In the traditional sense, machine learning is used for

data classification (52–54) – the classification function, or machine (F (r)), is first trained on a set of instances with known group
identities, and then used for predicting the group identity of an unclassified instance. In principle, the conformational ensembles
R and R0 can also serve as training data to train a classification function, F (r), which can, in turn, be used to predict whether an
unseen conformation belongs to R or R0. We have shown that if F (r) is constructed and trained appropriately, then the overlap
between R and R0 can be extracted from F (r) (30).

We have also demonstrated that this method works excellently and without need for any prior data fitting, provided we assume
that the underlying distributions are Gaussian – the mean absolute error (MAE) between computed and analytical overlaps is 3.2%
(31). The Gaussianity in a distribution, which is a corollary to the central limit theorem, is however, a valid assumption only in
systems where particles do not interact with each other. Therefore, deviations can be expected for protein systems that evolve
under the influence of many-body interactions. Nevertheless, the overlap between two multi-Gaussian distributions, R =

P
c
i

f
i

and R0 =
P

c0
i

f 0
i

, where f
i

are Gaussians and c
i

are weighting coefficients, is essentially a sum of overlaps between Gaussian
distributions, that is,
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Therefore, from a theoretical standpoint, our method should also work for multi-Gaussian distributions, and by extension, for
any distribution. Fig. 3 shows the performance of the method for computing the overlap between arbitrary bimodal, trimodal
and quadrimodal distributions. In each case, the MAE is < 6% and the Pearson correlation coefficient is > 0.97. We have now
implemented this method using Gromacs APIs (39), and the source code is available at https://simtk.org/home/conf_
ensembles. Note that in this implementation, we employ the Support Vector Machine optimization algorithm distributed as
part of the LIBSVM package (55), instead of SVMlight (56) that we employed in our original implementation (31). Consequently,
we re-optimized the upper limit of the Lagrange multiplier (C) and the width of the transformation Kernel (�) in F (r). The opti-
mized values are C

opt

= 100 and �
opt

= 0.4 Å�2 (Fig. S4 in the Supporting Material), and are obtained in exactly the same way
as described in our original implementation (31). The re-optimized C and � still yield a MAE of 3.2% for estimating the overlap
between two Gaussian distributions.

Results and Discussion

Wild type RBD dimer

We examine first using MD how the small changes induced by ephrin in individual RBDs affect the interface between two RBDs.
Note that since a single RBD-RBD template is used for constructing the initial models of both the ephrin free and ephrin bound
dimers, the orientations between the two RBDs in these initial models are identical (see Methods for details).

We subject these two templated dimer models to separate MD simulations. Fig. 4a tracks the time evolution of three collec-
tive variables that describe the interface between the two RBDs in a dimer: d

CoM

, ✓
tilt

, and ✓
roll

. We find that the RBD-RBD
interface of the ephrin bound state is strikingly different from that of the ephrin free state. Repeating these MD simulations by
assigning different initial velocity distributions in MD yields exactly the same result in that the RBD-RBD interface of the ephrin
bound state is strikingly different from that of the ephrin-free state (Fig. 4a).
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Comparison of conformational ensembles
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data classification (52–54) – the classification function, or machine (F (r)), is first trained on a set of instances with known group
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unseen conformation belongs to R or R0. We have shown that if F (r) is constructed and trained appropriately, then the overlap
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Therefore, from a theoretical standpoint, our method should also work for multi-Gaussian distributions, and by extension, for
any distribution. Fig. 3 shows the performance of the method for computing the overlap between arbitrary bimodal, trimodal
and quadrimodal distributions. In each case, the MAE is < 6% and the Pearson correlation coefficient is > 0.97. We have now
implemented this method using Gromacs APIs (39), and the source code is available at https://simtk.org/home/conf_
ensembles. Note that in this implementation, we employ the Support Vector Machine optimization algorithm distributed as
part of the LIBSVM package (55), instead of SVMlight (56) that we employed in our original implementation (31). Consequently,
we re-optimized the upper limit of the Lagrange multiplier (C) and the width of the transformation Kernel (�) in F (r). The opti-
mized values are C

opt

= 100 and �
opt

= 0.4 Å�2 (Fig. S4 in the Supporting Material), and are obtained in exactly the same way
as described in our original implementation (31). The re-optimized C and � still yield a MAE of 3.2% for estimating the overlap
between two Gaussian distributions.

Results and Discussion

Wild type RBD dimer

We examine first using MD how the small changes induced by ephrin in individual RBDs affect the interface between two RBDs.
Note that since a single RBD-RBD template is used for constructing the initial models of both the ephrin free and ephrin bound
dimers, the orientations between the two RBDs in these initial models are identical (see Methods for details).

We subject these two templated dimer models to separate MD simulations. Fig. 4a tracks the time evolution of three collec-
tive variables that describe the interface between the two RBDs in a dimer: d
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, ✓
tilt

, and ✓
roll

. We find that the RBD-RBD
interface of the ephrin bound state is strikingly different from that of the ephrin free state. Repeating these MD simulations by
assigning different initial velocity distributions in MD yields exactly the same result in that the RBD-RBD interface of the ephrin
bound state is strikingly different from that of the ephrin-free state (Fig. 4a).
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We also note from Fig. 4a that while the two simulations of the ephrin bound state yield identical RBD-RBD orientations,
the two simulations of the ephrin free state yield slightly different RBD-RBD orientations. To understand the latter, we visualize
in Fig. 4b the RBD-RBD interfaces obtained from these simulations in the context of the position of the FAD. We note that the
FAD will interact more extensively with the RBDs in the ephrin free state, as compared to the ephrin bound state. Therefore, the
reason the two simulations of the ephrin free state produce slightly different RBD-RBD interfaces could be due to the absence of
the RBD-FAD interface in our simulations. Nevertheless, the primary outcome of these simulation is that ephrin binding induces
a significant change in the RBD-RBD orientation.
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Water dynamics at protein-protein interfaces: A molecular dynamics
study of virus-host receptor complexes

Priyanka Dutta, Mohsen Botlani and Sameer Varma

Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E.
Fowler Ave., Tampa, FL-33620, United States of America

Abstract

The dynamical properties of water at biological interfaces are different from those in bulk water. Experiments as well as
simulations indicate that water diffuses and orients at rates that depend on both the chemistry as well as the topology of the
interface. Here we utilize molecular dynamics simulations to determine the nature and extent to which the dynamical proper-
ties of water are shifted from their bulk values when they occupy interstitial regions between two proteins. We consider two
natural protein-protein complexes, one in which the Nipah virus G protein binds to cellular ephrin B2, and the other in which
the same G protein binds to ephrin B3. These protein-protein interactions constitute the first step in Nipah infection. We find
that despite the low sequence identity of 50% between ephrins B2 and B3, the dynamical properties of interstitial waters in the
two complexes are similar. In both cases, we find that the interstitial waters diffuse ten times slower compared to bulk water.
In addition, despite their resolution in crystal structures, more than 95% of the waters in the interstitial regions exchange
with the bulk within 150 ns. The interstitial waters also exhibit dipole relaxation times and hydrogen bond lifetimes an order
in magnitude longer than bulk water. These deviations from bulk values are generally much larger than those observed at
protein-water interfaces. To gauge the functional relevance of the interstitial water, we examine quantitatively how implicit
solvent models compare against explicit solvent models in producing ephrin-induced shifts in the G configurational density.
Ephrin-induced shifts in the G configurational density are critical to the allosteric regulation of viral fusion. We find that the
two methods yield strikingly different induced changes in the G configurational density, which suggests that the interstitial
waters may also contribute to the allosteric signaling, and therefore, are functionally important.
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Introduction

The dynamical properties of water at biological interfaces are different from those in bulk water (? ? ? ? ? ? ? ? ? ? ? ). How
are they different?

In general, the fundamental trend observed from experiments and simulations is that water diffuses, relaxes and orients
slower at protein-water and lipid-water interfaces, as compared to in the bulk.

1. First hydration shell of proteins in denser
IMPORTANT FOR METHODS: crystal WATERs in B2 and not B3. So retaining the crystal waters has not effect on the

overall properties.
———— Equations:
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r (Å)
————
Probing the folding and unfolding processes of proteins as a function of temperature is a major challenge in biophysics.

Here we examine the effects of temperature spikes that heat and cool proteins within tens of nanoseconds. Our results show
these spikes are capable of causing irreversible changes sufficient to eliminate protein activity.
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Abstract

The dynamical properties of water at biological interfaces are different from those in bulk water. Experiments as well as
simulations indicate that water diffuses and orients at rates that depend on both the chemistry as well as the topology of the
interface. Here we utilize molecular dynamics simulations to determine the nature and extent to which the dynamical proper-
ties of water are shifted from their bulk values when they occupy interstitial regions between two proteins. We consider two
natural protein-protein complexes, one in which the Nipah virus G protein binds to cellular ephrin B2, and the other in which
the same G protein binds to ephrin B3. These protein-protein interactions constitute the first step in Nipah infection. We find
that despite the low sequence identity of 50% between ephrins B2 and B3, the dynamical properties of interstitial waters in the
two complexes are similar. In both cases, we find that the interstitial waters diffuse ten times slower compared to bulk water.
In addition, despite their resolution in crystal structures, more than 95% of the waters in the interstitial regions exchange
with the bulk within 150 ns. The interstitial waters also exhibit dipole relaxation times and hydrogen bond lifetimes an order
in magnitude longer than bulk water. These deviations from bulk values are generally much larger than those observed at
protein-water interfaces. To gauge the functional relevance of the interstitial water, we examine quantitatively how implicit
solvent models compare against explicit solvent models in producing ephrin-induced shifts in the G configurational density.
Ephrin-induced shifts in the G configurational density are critical to the allosteric regulation of viral fusion. We find that the
two methods yield strikingly different induced changes in the G configurational density, which suggests that the interstitial
waters may also contribute to the allosteric signaling, and therefore, are functionally important.
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Introduction

The dynamical properties of water at biological interfaces are different from those in bulk water (1–3, 6–13). How are they
different?

In general, the fundamental trend observed from experiments and simulations is that water diffuses, relaxes and orients
slower at protein-water and lipid-water interfaces, as compared to in the bulk.

1. First hydration shell of proteins in denser
IMPORTANT FOR METHODS: crystal WATERs in B2 and not B3. So retaining the crystal waters has not effect on the

overall properties.
———— Equations:
⇢/⇢0
r (Å)
r = 10 Å
————
Probing the folding and unfolding processes of proteins as a function of temperature is a major challenge in biophysics.

Here we examine the effects of temperature spikes that heat and cool proteins within tens of nanoseconds. Our results show
these spikes are capable of causing irreversible changes sufficient to eliminate protein activity.
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the head–stalk interaction. We, therefore, argue that
G449 does not participate intrinsically in signal transduc-
tion, and its primary role is to maintain the structural
integrity of the head–stalk interface. We also note that
I203 and S204 were not mutated individually in experi-
ments, but as part of a triplet sequence, I203A/S204A/
Y205A,41 that was found to contribute to F regulation.
As residue Y205 is part of Sint and is consequently
expected to contribute to signal transduction, it is likely
that the individual contributions of I203 and S204 to sig-
naling may indeed be small.

Figure 8 depicts the residues in the set Sint on the B2-
bound structure of the G head domain.26 We find that
these residues are localized primarily to four b-blades of
the G head domains b1, b4, b5, and b6. A large fraction
of the residues identified in b1 and b6 are, in fact,
involved in forming an interface with the head domain

of an adjacent G molecule in the G dimer. These include
the residues Y205, T206, L207, P208, V209, V210, and
G211 that have been identified in experiments to be
important to F activation.49 This suggests that the
F-activating signal could transduce to the G stalk domain
via changes in the interface between the G head domains.
A change in the dimerization interface, such as a rotation
between monomer axes, can alter the manner in which
the two stalks of the dimer align structurally, thereby
changing the F-binding site on the stalk. The exact
nature of the change in the dimerization interface of
Nipah G, however, remains to be investigated. In
addition, there is currently no information available
regarding the structure of the ephrin-bound state of the
G dimer. Nevertheless, when we compare the structures
of the apo and ligand-bound states of the NDV attach-
ment protein dimers,39,122 we do find a difference in
the orientation of its two monomers.

Another observation we make from Figure 8 is that
Sint also includes residues that are at distances >3 nm
from the ephrin-binding interface, and on the side of the
G head domain that is expected to interact with the G
stalk domain.21 This includes the residue D468 that has
been shown experimentally to affect F activation. This
suggests an alternative model in which the ephrin-
binding signal transduces to the G stalk domain via the
head–stalk interface. This model, however, does not
appear to be responsible exclusively for the allosteric reg-
ulation of F. This is because head–stalk chimeras that
disrupt the specific interactions between the G head and
stalk domains are capable of inducing fusion.33,34

Taken together, the distribution of the residues in Sint

in the G head domain is consistent with two models of
signal transduction, one in which the F-activating signal
transduces from the head to the stalk domain via
changes in specific interactions between the head and the
stalk domain, and the other in which the signal transdu-
ces via changes in the G head domain dimer interface.
Can the ephrin binding signal transduces to the G stalk
domain directly through individual G head domains?
Figure 9 shows the conformational densities of the resi-
dues in the N-terminal segment of G head domain. This
segment, which is part of the head–stalk linker, under-
goes only minor ephrin-induced changes in conforma-
tional density. In addition, the minor changes induced
by the three ephrins are also statistically inequivalent,
that is, none of the residues in this segment are part of
the Sint set. This suggests that the possibility that the
ephrin-binding signal transduces to the G stalk domain
directly through individual G head domains is unlikely.

CONCLUSIONS

The fusion of Nipah viruses with host cells is facili-
tated by two of their membrane proteins, the G protein

Figure 7
Correlation between ephrin-induced changes in conformational density
(g) and backbone deviation (d). The correlation plot has 106 filled
circles, and each circle represents a residue whose ensembles are per-
turbed statistically equivalently by the three ephrins. The backbone
deviations are estimated using Eq. (14), and transformed to the same
Hilbert space where g are computed. The transformation function used
is erfðd=

ffiffiffi
2
p
Þ (see Methods). The figures surrounding the correlation

plot show the conformational densities of four residues. The ensembles
of these residues are color coded, and each ensemble is represented
using 15 snapshots. DRMSF in these figures is the difference in the
root-mean-square fluctuations (RMSFs) between the G and G(X)
ensembles, averaged over the three G(X) ensembles. The residues that
lie close to the diagonal, such as S239, undergo primarily shifts in back-
bone positions. The residues that lie below the diagonal, such as resi-
dues Y231 and F504, undergo changes in side-chain orientations and/or
conformational entropy. The residues that lie above the diagonal, such
as L337, represent cases where backbone deviations are swamped by
smaller changes in whole residue deviations. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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the mutation abrogates this ephrin-induced perturbation. We
therefore suggest that the VVG mutation abrogates G stim-
ulation by suppressing the propagation of the ephrin binding
signal via the RBD-FAD interface.

CONCLUSIONS

We examined using MD how the RBD-RBD interface of
Nipah’s G protein is affected by ephrin binding. The initial
model of the RBD-RBD interface is templated on the RBD-
RBD interface of the homologous G protein of the Hendra vi-
rus (12). The ambiguity in the templated initial model lies not
in the identity of RBD’s dimerization face, but in the relative
orientation between the two RBDs, which we explore using
MD, for both the ephrin-free and ephrin-bound cases.

We find that ephrin binding induces a large change in
RBD-RBD interfacial orientation, which is reversible. Eph-
rin induces this reorientation by disfavoring certain contacts
and preferentially favoring other inter-RBD contacts. The
residues constituting the RBD-RBD interface do not exhibit
any specific preference toward residue chemistry or polarity,
and almost all of these residues undergo some form of
conformational ensemble shift, whether it is a change in
side-chain orientation or fluctuation or backbone center-
of-mass. None of the residues, however, undergoes any large
change in intrinsic structure. Essentially, ephrin induces
large inter-RBD reorientations through only minor changes
in individual RBDs.

Visualizing the ephrin-induced inter-RBD rearrangement
in the context of the position of the stalk domain (FAD),
we find that the interfacial rearrangement is such that
it will enhance the solvent-exposure of the FAD. This
finding essentially supports a proposed model of fusion
regulation of the Nipah virus where stimulation of G by
ephrin exposes G’s FAD, which, in turn, allows G to activate
F. To gain further insight, we also simulate the effect of

ephrin binding on the RBD-RBD interface of a stimula-
tion-deficient mutant. We find that while the mutation
does affect interfacial arrangement in the ephrin-bound
state, the ephrin-induced interfacial rearrangement is still
such that it will enhance the solvent-exposure of the FAD.
We therefore conclude that while ephrin-induced solvent
exposure of the stalk may be important to G stimulation,
it is, by itself, not a sufficient condition. Note, however,
that there is no experimental structure of the full-length ec-
todomain of the G protein, and this inference is derived
purely on the basis of a model of the ectodomain proposed
by Steffen et al. (5), which was homology modeled using the
x-ray structures of the full-length ectodomains of the recep-
tor binding proteins of other paramyxoviruses. Neverthe-
less, what is clear is that our simulations suggest that
ephrin induces equivalent RBD-RBD interfacial rearrange-
ments in both wild-type and stimulation-deficient RBD
dimers.

A statistical analysis of ephrin-induced conformational
ensemble shifts in the wild-type and stimulation-deficient
mutant dimer shows that the mutation has a global effect
on the conformational ensemble of the RBD. Additionally,
we find that the mutation suppresses ephrin-induced shifts
in residues located near the RBD-FAD interface, despite
the fact that the mutation is at the RBD-RBD interface.
This suggests that the mutation abrogates G stimulation
by suppressing the signal that is mediated to the FAD via
the RBD-FAD interface.

What remains undetermined are the specific relationships
between the conformational ensemble shifts ðDℝÞ at the
ephrin-binding site and the RBD-RBD interface. Identifying
such causal links between distant sites remains, in general,
an area of active research in the field of protein allostery,
and such relationships remain relatively unknown even for
several well-studied proteins like GPCRs and PDZ domains.
This is essentially an N-body correlation problem, but the

W
e
b
3
C

FIGURE 8 (a) Comparison of ephrin-induced conformational ensemble shifts between the wild-type RBD ðhÞ and the mutated RBD ðhmÞ. Residues iden-
tified to exhibit DℝsDℝm using MAE ¼ 5.8% in Eq. 3 are highlighted in orange. (b) X-ray structure of RBD (center) highlighting the subset of residues
(orange) that exhibit DℝsDℝm. Also shown are conformational ensembles of selected residues, including those proximal to the RBD-FAD interface. Note
that the RBD structures shown in the backgrounds in gray are representative structures, and are included solely for visual orientation. To see this figure in
color, go online.
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Effect of mutation on ligand-induced population shifts

the alanine-substitution of VVG affects the RBD-RBD
interface of the ephrin-bound state, suggesting that these
residues do contribute to the stability of the RBD-RBD
interface in the ephrin-bound state. The surprising result,
however, is that ephrin binding to the mutated RBD still in-
duces a large interfacial reorientation that brings the two
RBDs closer to each other, and away from the C-terminal
region of the stalk domain. Effectively, the nature of the
ephrin-induced interfacial rearrangement is still such that
it will enhance the solvent-exposure of the FAD. Because
we know from experiments that the triple mutation abro-
gates G-stimulation, these MD simulations suggest that
while ephrin-induced solvent exposure of the stalk may be
important, it is, by itself, not a sufficient condition for G
stimulation.

So how does the triple mutation abrogate G-stimulation?
The overall ephrin-binding signal that transduces to the FAD
is essentially part of the conformational ensemble shifts in
the RBD induced by ephrin binding (28,30–32). The triple
mutation must, therefore, be altering the original signal
in the wild-type RBD, Dℝ :¼ ℝapo/ℝbnd (quantified in
Fig. 5 a), to a different signal, Dℝm :¼ ℝm

apo/ℝm
bnd.

To gain insight into the mutation-induced shift in
the signal, we determine the subset of residues whose
DℝsDℝm. To accomplish this task, we first construct the
ensembles ℝm

apo and ℝm
bnd from the MD trajectories of the

mutated dimers and estimate the difference hm between
them, just as we determined h in Fig. 5 a from the ensembles
ℝapo and ℝbnd. We then also estimate hapo, which is the dif-
ference between the conformational ensembles ℝapo and
ℝm
apo, and hbnd, which is the difference between the confor-

mational ensembles ℝbnd and ℝm
bnd. The set of residues

whose DℝsDℝm are those that satisfy at least one of the
following three inequalities:

jh" hm j > 2 # MAE;

hapo > erf
!
1
. ffiffiffi

2
p #

; and

hbnd > erf
!
1
. ffiffiffi

2
p #

:

(3)

In the inequalities above, MAE is the mean absolute error of
our method. The first inequality, therefore, ensures that the
difference between the magnitudes of the ephrin-induced
ensemble shifts in the wild-type and mutant RBDs is greater
than the error of our method. In the latter two inequalities,
the upper limit erfð1=

ffiffiffi
2
p
Þ corresponds to a COM shift of

1 Å in the Hilbert space where h values are estimated
when there is no change in thermal fluctuation (28). The
latter two inequalities, therefore, place a tolerance on the
mutation-induced ensemble shift in the ephrin-free and eph-
rin-bound states.

Applying the inequalities above and choosing a MAE ¼
3.2%, which is the error of our method for quantifying dif-
ferences between Gaussian ensembles, we find that ~66%
residues exhibit DℝsDℝm. Choosing a larger MAE ¼
5.8%, which is the error of our method for quantifying dif-
ferences between non-Gaussian ensembles (Fig. 3), we find
that ~50% of the residues exhibit DℝsDℝm. Fig. 8 a com-
pares h against hm, and highlights the residues that exhibit
DℝsDℝm. Visualizing the identities of these residues on
the x-ray structure of the RBD 8b, we note that these resi-
dues are located not just near the mutation site, but are
spread across the entire RBD (Fig. 8 b). In general, one
would expect that the extent of the shift may be related
inversely to the distance from the mutation site. However,
we find no such relationship (Fig. S9).

Fig. 8 b also shows the conformational ensembles of
selected residues, including those near the RBD-FAD inter-
face. Experiments show that the alanine-substitution of
D468 impacts G-stimulation negatively, indicating that
it may be part of the signal transduction pathway (57). We
note, however, that in both the wild-type and mutant forms,
ephrin induces a negligible shift in D468’s conformational
ensemble, with h ¼ 0:52, hm ¼ 0:53 (see also Fig. 8 b).
This suggests that D468 does not participate directly in
signaling, and is instead important for the protein’s struc-
tural integrity. Fig. 8 b also shows the conformational en-
sembles of a cluster of five other residues proximal to the
RBD-FAD interface. These residues, in contrast to D468,
are perturbed by ephrin in the wild-type form; however,
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FIGURE 7 Effect of the triple mutation, V209 V210 G211 / AAA, on RBD-RBD interfaces in the ephrin-free and ephrin-bound states. The standard
deviations are estimated from block averaging. To see this figure in color, go online.
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