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Protein function
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Protein function regulation

Protein function is regulated at Geneon DNA| I

o transcriptional
1) transcriptional level Primary 1 com':-d
2) translational level transcript RNA
1 processing
NUCLEUS RNA
— | transport
CYTOSOL control
I
l translation
control

Protein o0 /" ®




Post-translational regulation of protein function

Regulators

(a) non-covalent interactions

OFF ON
(b) covalent modifications
(c) pH
(d) salt concentrations
©) ... ON OFF

( ) combination of any of the above TS




Mechanism of protein function

Understanding how a protein works requires a systematic assessment of relationships
between the structure, dynamics and energetics of its various states

State A

Structure Dynamics

Mechanism

State B

State C “ “ State D

Structure Dynamics




Pioneers: Molecular simulation methods for biomolecules

The 1970’s revolutionary vision...

Since energy drives structure, dynamics and

activity, shouldn’t we be able to predict them

directly, provided we truly understand the
energetics of underlying interactions?

Martin Karplus .
Michael Levitt Arieh Warshel



Direct estimation of activity from energy

2
H=X otV

Define V

Example: V=) V' +) Vst 4+ yanedd

ijk
electrostatics d
+2.V; + 2.V

Solve Hamilton’s equation of motion to get 7;(7)

dr,

+ ;
dt  dp, dt or

Model H

time
evolution

(t) —_—
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Statistical
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Activity/
Mechanism




How well do we understand inter-atomic interactions?

Reliability test: ab initio protein folding
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Pioneers

Nobel Prizes and
Laureates

' Chemistry Prizes s € 2013 2

¥ About the Nobel Prize in
Chemistry 2013
Summary
Prize Announcement
Press Release
Advanced Information
Popular Information
Greetings

» Martin Karplus
» Michael Levitt
» Arieh Warshel

All Nobel Prizes in Chemistry
All Nobel Prizes in 2013

% The Nobel Prize in Chemistry 2013
Martin Karplus, Michael Levitt, Arieh Warshel

The Nobel Prize in
Chemistry 2013

O Nobel Media AB Photo: Keilana via Photo: Wikimedia
Martin Karplus

Wikimedia Commons Lommons

Michael Levitt Arieh Warshel

The Nobel Prize in Chemistry 2013 was awarded jointly to Martin Karplus,
Michael Levitt and Arieh Warshel "for the development of multiscale
models for complex chemical systems”.



Does this imply that we can now blindly apply
molecular simulations to any protein?

NO!

While there is a lot that we can model, which we couldn’t just a decade ago,

there remains a lot more that we still cannot...

NEW YORK TIMES BESTSELLER

DOUGLAS
ADAMS

HTTHHAEES

GU“] }H’\ 1

Yes, | thought it over
quite thoroughly.'It's 42.




Our interests

— ‘ Model H ‘\

Development

1) Enhance reliability of atomistic
models to describe interactions
of proteins with ions

2) New methods to study
allosteric activation of proteins

time
evolution
\ .
Statistics +
(1) >| Statistical
mechanics
Activity/
Mechanism

Applications: Understand the
fundamental atomically-detailed principles
underlying

1) Selective ion transport by channels

2) Protein assembly

3) Allosteric regulation of protein activity




Allostery

Basic problem

Inactive
state

el A 8 Changein  [o %esd
y A l, ‘{‘/' ‘ﬁ: J / 1' \
- 3Conform§t|onal B 4
: density >

/

Protein AR
R > R/

Substrate

The regulatory signal
ARsignal C AR



Allostery

General problem

State 2

density

AR
R - R
The regulatory signal

A]Rsf’ignal C AR



Allosteric regulation involving large structural changes

For many proteins, their regulatory models can be understood in terms of
how their 3D structures, or conformations, change during transition

(a) Negligible overlap between conformational ensembles of 2 states

Example: Phosphodiesterase

R/ State2

Energy

State1

Catalytic

vlarge :
site

barriers

Difference between states discernible
Conformation by x-ray crystallography

Many methods are available to study allosteric signaling in such proteins



Allosteric regulation involving small structural changes

For several major pharmaceutical proteins, distinguishing their states
requires consideration of their finite temperature conformational ensembles

(b) Discernible overlap between conformational ensembles of 2 states

Example: PDZ domain

Inactive state
4 Active state
Do o Activating peptide

Energy

State1

small

barriers
Difference between states (0.4 A) is beyond

the resolution of x-ray crystallography

Conformation

Understanding mechanisms requires accounting for information on
both structure and dynamics from multiple states.



Role of dynamic allostery - examples

GPCR regulation by natural
compounds and drug molecules

Dendritic
cell (APC)




Methods required?

1) A method to quantify differences between conformational ensembles
of two states

Traditional approach

Compare summary statistics of two ensembles

ACoM = 0.001 A
< > /
R ARMSF =0.03 A R

Problem with comparing summary statistics: Need to know the “right
set” of summary statistics that differentiate ensembles. But how does
one identify such summary statistics beforehand?



Methods required?

2) A method to relate AR to regulatory signals

Current strategy

- Construct correlation matrices

- Determine efficient signaling paths from correlation matrices.

With structural water

Structural —4
waler molecule A\

08

Alloztenc ‘V Acﬁ\‘re-site

Amor et al. Nature Comm. 2015



Methods required?

2) A method to related AR to regulatory signals

Assumptions

(i) structural changes are large, and so conformational fluctuations can be ignored.

OR (ii) ignore AR and focus only on R’ of only the active state.

Problem: These assumptions break down for proteins regulated by dynamic allostery

Cilia et al. PLoS Comp Bio. 2012

AUC AUC

Method Description Predictions tot. num, TP TN FP FN (Fig. 3A) (Fig. 3B) TPR FPR
Fuentes et al 2004 Experimental measurements L18, 120, V22, V26, V30, 14 n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a.
A39, V40, V61, V64, L66,
A69, L78, T81, V85
Kong and Karplus 2009 Molecular Dynamics (MD) Al12, L18, V26, 141, A4S, 14 6 6 5 8 n. a. n. a. 043 0.45
approach A46, V58, LS9, L66, AG9,
A74, L78, 181, L89
aerek and Ozkan 2011 Perturbation Response L11, L18, 120, V22, T23, 26 1 3 8 3 n. a. n. a. 0.79 0.73
Scanning method 135, V37, A39, V40, 141,

A45, A46, V58, LS9, A6O,
V61, L66, A69, A74, V75,
T77, L78, T81, V85, L87



New method to quantify differences in ensembles

Instead of comparing summary statistics,
compare ensembles directly against each

other
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New method to quantify differences in ensembles

Works even for multi-modal distributions
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Machine Learning

Typical scenario: learning from data

. f
— @
- Given data set x and labels y Y, /

@
@
(generated by some joint probability distribution p(x,y)) /o @ @

- LEARN/INFER underlying unknown mapping
y =A%)

Learn f from examples such that Risk of prediction, is minimized

RUf1= [| 00— dP(x,)

Underfitting Just right! overfitting



“Inverse” machine learning

Typical scenario: learning from data

- Given data set x and labels y

(generated by some joint probability distribution p(x,y))

- LEARN/INFER underlying unknown mapping
y =A%)

Learn f from examples such that Risk of prediction, is minimized

Instead of training / for prediction
Construct and train f in an appropriate Hilbert space such that

it can be used to derive causalities in physical space



Support vector machine

A support vector machine is a binary classifier that is trained on a set of instances {x;} for
which their corresponding group identities ; = =1 are known.

It is constructed by defining two hyperplanes X,

yi(w-x—0)=1

that divide the instances into two groups,

yi(w-x—0)>1

which generates a classification function

2m | /



Support vector machine

The optimization task: maximize the distance (2 /||w||) between the two hyperplanes.

This constrained optimization problem can be cast in terms of Lagrangian multipliers as

2m
1
L= wl? =3 auly(wx; = b) — 1]
1=1

where 0 < o; < C are the Lagrange multipliers, and the limit C is a regularization
parameter

SetVL=0
2m
oL
— =0>=>w= ayXxX
ow z .




Support vector machine

2m
1
L = ;ozi — 5 ;@i&jyiyjk(xiaxj)

where k(x;,X;) = X; - X;

Non-linearly separably Linearly separably
In Euclidean space In alternative Hilbert space R

X2 ]
. ]

O

O ¢ L]

y 9 K =
- c%?f O “kernel-trick”

3 m

O

k(xi,Xj) = X; - X k(xi,%x5) = (9(x:).0(%5)) p = exp(—7|x; — x5°)



Support vector machine

Optimization of :
0 00 d
J DDDD oo OO0
O O
— o VL] N u []
L=3 o g Dokl oty g
o O cg o L H
. Q
yields two sets of «;. oooo O \\ =
00p @0 O

{o;} =0 and {ay} >0

| » corresponding X; are support vectors (S)
that constitute the hyperplane

The number of support vectors are bounded, that is, for type of instance 2 < s < 2m

Use {a;} > 0 to construct the classification function:

2m
F(x) =) a;yik(x;,Xx) ——> use for prediction
i—1



Support vector machine

Optimization of
2m 1
L = Z o — 5 Z Oéq;Oéqu;yjk(Xq;, Xj)

yields two sets of «;.

{o;} =0 and {ay} >0

| » corresponding X; are support vectors (S)
that constitute the hyperplane

The number of support vectors are bounded, that is, for type of instance 2 < s < 2m
It can be expected that

Higher the number of support vectors (s), the less discriminable are the two groups in a
given Hilbert space.

S
Is it possible to define discriminability between two groups as 1 = 1 — 2—
m



Selection of C and y

Possibility?

Can we select C and y such that J

n=1-s/2m
=1-||Overlap||

- 1-|RNR|

R R’

Such a definition of discriminability satisfies two
conditions

(i) [n(R >R’

=n(R’ > R)

(i) If [n(R —> R’) , then it does not

=n(R’ > R”)

=n(R - R”)

necessarily imply that ‘n(R —> R’)

Leighty and Varma, JCTC 2013



Selection of C and y

Possibility?
Can we select C and y such that

n=1-s/2m
=1-||Overlap||

=1-[RARY|

R R’

Gaussian Gaussian

Distributions distributions
with different with different

widths means



Selection of C and y

Runtime
< (+0) (aY] s oot
o o o @
[ | BB T ¥ I
, /
/4
V4
, '3
4
S
4
A
/
i

o = = &

o o o o

o o o o
VN Buluresy

(b)

AvIN Buiurel|

(a)

0.01F

108

10°

10*

108

102

10"

Leighty and Varma, JCTC 2013

Dutta, Siddiqui, Botlani, Varma. BJ 2016



Performance
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Performance

Works for multi-modal distributions
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New applications enabled

Simplifies data representation and analysis
Effect of oxidation on phosphatase structure and dynamics

3-
@8 PHPT1 control
déa @8 PHPT1 + 100uM H,0,
2-
% @® PHPT1 + 500uM H,0,
% @8 PHPT1 + 1mM H,0,
=
=) 0 pHis peptide (RT)
o 1]
]
- @ pHis peptide; PBS (37°C)
@8 pHis peptide; H,0, (37°C)
0 @ Heat-denatured PHPT1

0-5 5-10 10-15 15-20 20-25 25-30

Reaction time interval (min)

(b)

—
QD
~
—h

08

06 f

0.4 h '

Discriminability (n)

0.2

1 21 41 61 81 101 121
Residue number

Martin et al. Sci Rep. 2016



New applications enabled

Permits ranking of population shifts

n Index

B Top 25%
. . [ Intermediate
Inactive Active , B Bottom 25%
state state :

1.0

— 0.9

S

= 0.8

=

e 07

£

[

uo) 0.6 Large n Inde%

=) contribution to -y M High
0.5 NiV fusion ) : ol YA _,..’-‘:;,‘}.. = N195 ] Intermediate

e : £ B Low

188 271 354 437 520 603

NiV-G residue number

Small contribution to
G211 & NiV fusion

Leighty and Varma, JCTC 2013



New applications enabled

Enables comparison of two population shifts

Determine role of the discrete nature of water on ligand-induced ensemble shifts
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C——p
G G-B2
1 O .o. :..0.
-. .\ y ...0.' .i. 0 °
Rr,.’r‘;.u’z: it nlmplicil ]R/m;,u;..‘n'z.-‘ 08 | o .. 3. .f.. : }’:ﬂ
G G‘B2 B O 6 | : .... ]
gV U ' M (3T
§ . Y ‘o :.. .‘. ‘3; g
E 04 i % ° ::0.0 .. “ I
oo, © @ oy o
L .0 PN ‘....‘ .0' °
0.2 | R R SRR
p=0.28

0

0O 02 04 06 08 1.0

nExplicit

Dutta, Botlani, Varma. JPCB 2014



New applications enabled

Enables comparison of multiple population shifts

Intersecting signaling pathways: AR 0 C AR;py

AR;pt := ARps N ARp3 N ARpoypy, G(X1) G(X2)

ARx; N AR xo—
AR x1 N AR is defined by the inequalities: A X2

, ‘ G()
1) min{nx1,nx2} > Nx1/x2 @
2) [nx1 — nx2| < (nx1 — Nx2) ,, :

............................................

B Gt[ii?_:g \AY /
G(B3) G(Ba'}g‘\/_,; v
> G(B2m) /2N
QS I s} /23}‘”,’ 3
B3/B2m : ) )
GARMSE=01LA S
nB2m 1.0
G()«<—> G(B2m) MNpos3
0.9
© o8
Q nB2/82m 2
<, --;-' 0.7
G(B2) 06
0.5

05 06 0.7 08 09 1.0

1/3(15, + Mgy + Nz Varma, et al

Proteins 2014




New applications enabled

Enables comparison of multiple population shifts

Effect of mutation on ligand-induced population shifts

pi Mutant
D468 \d
RBD-FAD . R

wT Mutant interface .-

Ephrin free state
Ephrin bound state

soelBUl
agd-agy.-

\ 14 !;‘.; _\\ =
=Y L =
U %phrm
binding site

Set of residues affected by mutation satisfy at least one of the three conditions

m—n"| >2 x MAE,

nap0>erf(1/\/§), and
nbnd>erf(1/\/§).

Dutta, et al. BJ 2016



Source code and tutorials @ SimTK

simtk.org &

Projects ~» About ~ SignUp LoglIn

Statistical analysis of conformational 0000

ensembles

About Downloads Documents Forums Source Code Issues

Provide user-friendly codes and algorithms written using GROMACS/CHARMM APIs for statistical
analysis of conformational ensembles

111

This project provides computational tools and methods to analyze conformational ensembles of
biomolecules, as well as their assemblies, such as those obtained from molecular simulations.
(A) PROTEINS: The molecular understanding of the functional regulation of proteins requires Project Statistics
assessment of various states, including active and inactive states, as well as their
interdependencies. For several proteins, their various states can be distinguished from each
other on the basis of their minimum energy 3D structures. For many other proteins, like GPCRs,
PDZ domains, nuclear transcription factors, heat shock proteins, T-cell receptors and viral
attachment proteins, their states can be distinguished categorically from each other only when
their finite-temperature conformational ensembles are considered alongside their minimum-
energy structures. We are developing tools/methods for:

(A1) Direct comparison of conformational ensembles - The traditional approach to compare two
or more conformational ensembles is to compare their respective summary statistics. This
approach is, however, prone to artifactual bias, as data is compared after dimensionality
reduction. The proper way to compare ensembles is to compare them directly with each other
and prior to any dimensionality reduction. g_ensemble_comp is a tool we have developed that
does just that and reports the difference between ensembles in terms of a true metric defined
by the zeroth law of thermodynamics.

(A2) Prediction of allosteric signaling networks - method under development.

Sameer Varma

(B) LIPID MEMBRANES: The surface area of a lipid bilayer is related fundamentally to many other
observables, such as thermal phase transitions and domain formation in mixed lipid bilayers.
We have developed g_tessellate_area to compute the 3D surface area of a bilayer using Delunay

tessellation.

SimTK is maintained through Grant R01 GM107340 from the National Institutes of Our Pledge and Your Responsibility
Health (NIH). It was initially developed as part of the Simbios project funded by the NIH

as part of the NIH Roadmap for Medical Research, Grant U54 GM072970. Feedback About Join

Version 2.0.4. Website design by Viewfarm. Icons created by SimTK team using art by GraphBerry from www.flaticon.com under a CC
BY 3.0 license. Forked from FusionForge 5.3.2.

Dutta, Siddiqui, Botlani, Varma. BJ 2016
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