Using machine learning to map the structure and predict the properties of materials and molecules

Michele Ceriotti http://cosmo.epfl.ch

IPAM - 27.09.2016

Acknowledgements

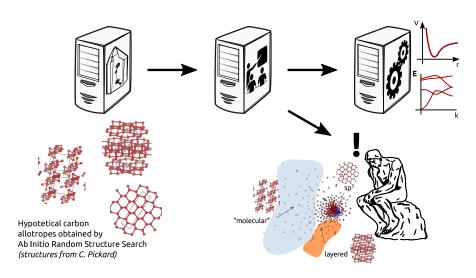
Sandip De Piero Gasparotto Mariana Rossi

Robert Meßner Felix Musil Andrea Anelli

G. Csányi, A. Bartók, C. Baldauf, C. Pickard, G. Day, S. Goedecker

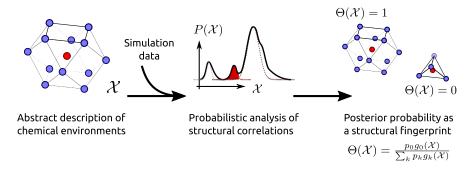
"Machine learning" and intuitive understanding

 Machine learning can be used to predict materials' properties or to distill large amounts of complex data in a human-understandable form



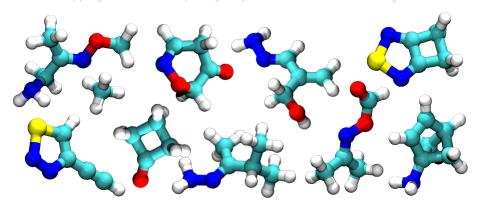
Representing patterns and mapping structures

- Understanding emergent structural complexity by analyzing simulations
 - Recognizing the building-blocks at the atomic scale
 - An effective and flexible framework for comparing structures
 - Mapping structural complexity. Key to make the best out of big data



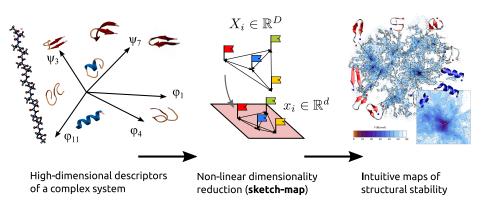
Representing patterns and mapping structures

- Understanding emergent structural complexity by analyzing simulations
 - Recognizing the building-blocks at the atomic scale
 - An effective and flexible framework for comparing structures



Representing patterns and mapping structures

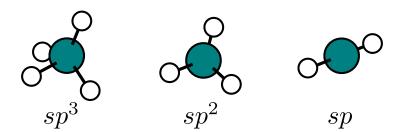
- Understanding emergent structural complexity by analyzing simulations
 - Recognizing the building-blocks at the atomic scale
 - An effective and flexible framework for comparing structures
 - Mapping structural complexity. Key to make the best out of big data



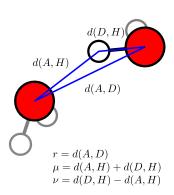
Ceriotti, Tribello, Parrinello, PNAS (2011)

Recognizing molecular patterns

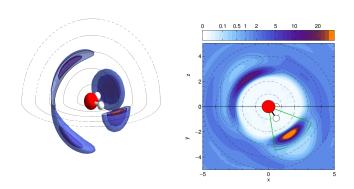
- "Chemical intuition" builds on recognizing recurring patterns in atomic configurations
- Atomistic models provide large amount of data for statistical analysis
- Automatic scheme to single out structural motifs in simulations



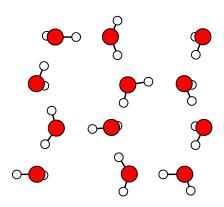
- Most general description of a H-bond geometry: 3 distances. Many heuristic definitions available
- How to recognize automatically what is a H-bond, based only on analysis of a simulation?



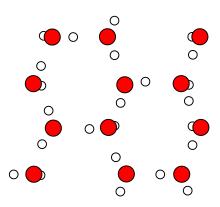
- Most general description of a H-bond geometry: 3 distances. Many heuristic definitions available
- How to recognize automatically what is a H-bond, based only on analysis
 of a simulation?



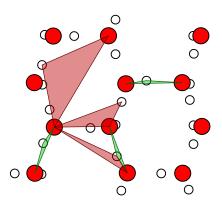
- Most general description of a H-bond geometry: 3 distances. Many heuristic definitions available
- How to recognize automatically what is a H-bond, based only on analysis of a simulation?



- Most general description of a H-bond geometry: 3 distances. Many heuristic definitions available
- How to recognize automatically what is a H-bond, based only on analysis of a simulation?



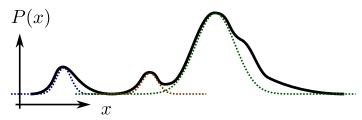
- Most general description of a H-bond geometry: 3 distances. Many heuristic definitions available
- How to recognize automatically what is a H-bond, based only on analysis of a simulation?



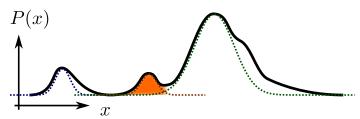
- A natural way of recognizing patterns in a distribution is to identify its modes, and the basin of attraction of each mode.
 - One can then fit a simple Gaussian model (with fixed centers), and use posteriors to assign fingerprints to each cluster

- A natural way of recognizing patterns in a distribution is to identify its modes, and the basin of attraction of each mode.
 - One can then fit a simple Gaussian model (with fixed centers), and use posteriors to assign fingerprints to each cluster

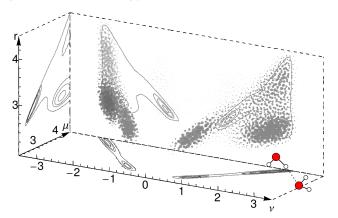
- A natural way of recognizing patterns in a distribution is to identify its modes, and the basin of attraction of each mode.
 - One can then fit a simple Gaussian model (with fixed centers), and use posteriors to assign fingerprints to each cluster



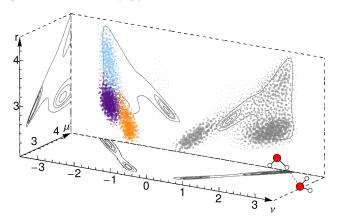
- A natural way of recognizing patterns in a distribution is to identify its modes, and the basin of attraction of each mode.
 - One can then fit a simple Gaussian model (with fixed centers), and use posteriors to assign fingerprints to each cluster



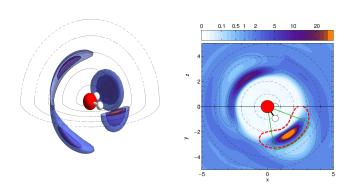
- Ab initio water PAMM recognizes multiple modes one corresponds to the H-bond
- Adaptive, context-dependent definition details of the model,



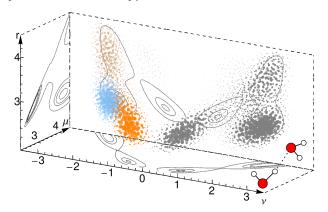
- Ab initio water PAMM recognizes multiple modes one corresponds to the H-bond
- Adaptive, context-dependent definition details of the model,



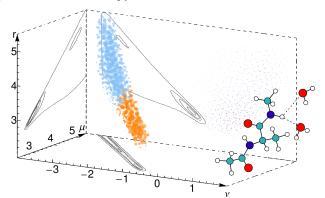
- Ab initio water PAMM recognizes multiple modes one corresponds to the H-bond
- Adaptive, context-dependent definition details of the model, thermodynamic conditions, type of HB



- Ab initio water PAMM recognizes multiple modes one corresponds to the H-bond
- Adaptive, context-dependent definition details of the model, thermodynamic conditions, type of HB

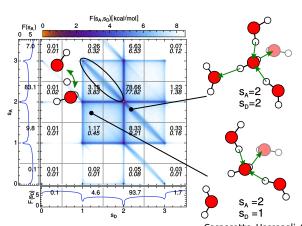


- Ab initio water PAMM recognizes multiple modes one corresponds to the H-bond
- Adaptive, context-dependent definition details of the model, thermodynamic conditions, type of HB



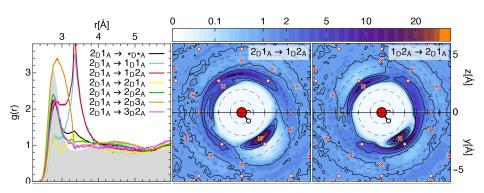
Defects and correlations in water

- Disentangling the correlations between topological defects in the H-bond network of water
- Angular correlations between standard $2_D 2_A$ water correspond to ice Ih, but undercoordinated defects are similar to ice VIII



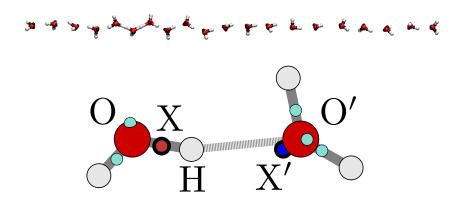
Defects and correlations in water

- Disentangling the correlations between topological defects in the H-bond network of water
- Angular correlations between standard 2_D2_A water correspond to ice Ih, but undercoordinated defects are similar to ice VIII

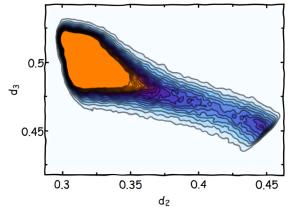


- Use PAMM to identify proton-like molecules in a wire, based on the position of Wannier centers relative to oxygens
- One can identify two separate clusters
- PAMM fingerprints recognize a "proton wavepacket" moving in a concerted way along the wire (then you can do quantum dynamics and measure diffusion rate)

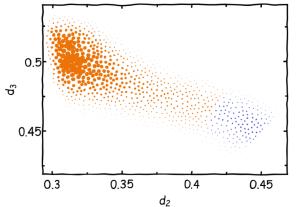
- Use PAMM to identify proton-like molecules in a wire, based on the position of Wannier centers relative to oxygens
- One can identify two separate clusters
- PAMM fingerprints recognize a "proton wavepacket" moving in a concerted way along the wire (then you can do quantum dynamics and measure diffusion rate)



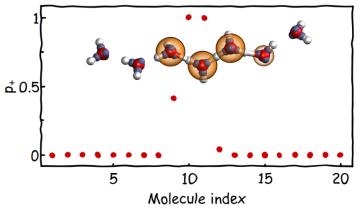
- Use PAMM to identify proton-like molecules in a wire, based on the position of Wannier centers relative to oxygens
- One can identify two separate clusters
- PAMM fingerprints recognize a "proton wavepacket" moving in a concerted way along the wire (then you can do quantum dynamics and measure diffusion rate)



- Use PAMM to identify proton-like molecules in a wire, based on the position of Wannier centers relative to oxygens
- One can identify two separate clusters



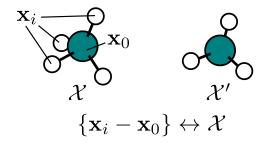
- Use PAMM to identify proton-like molecules in a wire, based on the position of Wannier centers relative to oxygens
- One can identify two separate clusters
- PAMM fingerprints recognize a "proton wavepacket" moving in a concerted way along the wire (then you can do quantum dynamics and measure diffusion rate)



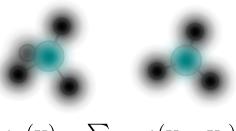
Rossi, Ceriotti, Manolopoulos, JPCL 2016

- A kernel to compare chemical environments based on the overlap of atomic densities (SOAP)
- Invariant to permutations, translations and rotations

- A kernel to compare chemical environments based on the overlap of atomic densities (SOAP)
- Invariant to permutations, translations and rotations



- A kernel to compare chemical environments based on the overlap of atomic densities (SOAP)
- Invariant to permutations, translations and rotations



$$\rho_{\alpha}(\mathbf{x}) = \sum_{i \in \alpha} g(\mathbf{x} - \mathbf{x}_i)$$

- A kernel to compare chemical environments based on the overlap of atomic densities (SOAP)
- Invariant to permutations, translations and rotations

$$k(\mathcal{X}, \mathcal{X}') = \int \rho(\mathbf{x}) \rho'(\mathbf{x})$$

- A kernel to compare chemical environments based on the overlap of atomic densities (SOAP)
- Invariant to permutations, translations and rotations

$$k(\mathcal{X}, \mathcal{X}') = \int d\hat{R} \left| \int \rho(\mathbf{x}) \rho'(\hat{R}\mathbf{x}) \right|^2$$

Bartók, Kondor, Csányi, PRB (2013)

- A kernel to compare chemical environments based on the overlap of atomic densities (SOAP)
- Invariant to permutations, translations and rotations

$$k(\mathcal{X}, \mathcal{X}') = \int d\hat{R} \left| \int \rho(\mathbf{x}) \rho'(\hat{R}\mathbf{x}) \right|^2$$

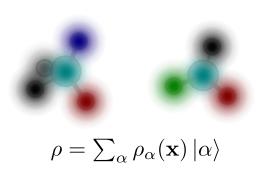
Bartók, Kondor, Csányi, PRB (2013)

Comparing with multiple species

- What to do when comparing with multiple species?
- Density representation with multiple "channels"
- Treating alchemical as well as structural complexity on the same footings by introducing an alchemical similarity kernel

Comparing with multiple species

- What to do when comparing with multiple species?
- Density representation with multiple "channels"
- Treating alchemical as well as structural complexity on the same footings by introducing an alchemical similarity kernel



Comparing with multiple species

- What to do when comparing with multiple species?
- Density representation with multiple "channels"
- Treating alchemical as well as structural complexity on the same footings by introducing an alchemical similarity kernel

$$\langle \alpha | \beta \rangle = \delta_{\alpha\beta}$$

$$\longleftrightarrow$$

$$\int d\hat{R} \left| \sum_{\alpha} \int \rho_{\alpha}(\mathbf{x}) \rho_{\alpha}'(\hat{R}\mathbf{x}) \right|^{2}$$

Comparing with multiple species

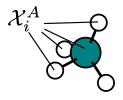
- What to do when comparing with multiple species?
- Density representation with multiple "channels"
- Treating alchemical as well as structural complexity on the same footings by introducing an **alchemical similarity kernel**

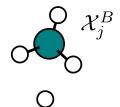
$$\langle \alpha | \beta \rangle = \kappa_{\alpha\beta}$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$\int d\hat{R} \left| \sum_{\alpha\beta} \kappa_{\alpha\beta} \int \rho_{\alpha}(\mathbf{x}) \rho_{\beta}'(\hat{R}\mathbf{x}) \right|^{2}$$

- Given the kernel matrix between the environments of the two structures, we can build a global structural kernel
 - By averaging: $\bar{K}(A, B) = \frac{1}{N^2} \sum_{ij} k\left(\mathcal{X}_i^A, \mathcal{X}_i^B\right)$
 - ② By picking the best-match permutation $\hat{K}(A,B) = \frac{1}{N} \max_{\pi} \sum_{i} k\left(\mathcal{X}_{i}^{A}, \mathcal{X}_{\pi_{i}}^{B}\right)$
 - **3** By **regularized** best-match permutation $\hat{K}(A,B) = \frac{1}{N} \max_{P} \sum_{ij} P_{ji} k \left(\mathcal{X}_{i}^{A}, \mathcal{X}_{i}^{B} \right) \gamma \sum_{ij} P_{ij} \ln P_{ij}$





 Given the kernel matrix between the environments of the two structures, we can build a global structural kernel

- By averaging: $\bar{K}(A,B) = \frac{1}{N^2} \sum_{ij} k(\mathcal{X}_i^A, \mathcal{X}_i^B)$
- ② By picking the best-match permutation $\hat{K}(A,B) = \frac{1}{N} \max_{\pi} \sum_{i} k(\mathcal{X}_{i}^{A}, \mathcal{X}_{\pi}^{B})$
- $\hat{K}(A,B) = \frac{1}{N} \max_{P} \sum_{ii} P_{ji} k\left(\mathcal{X}_{i}^{A}, \mathcal{X}_{i}^{B}\right) \gamma \sum_{ii} P_{ij} \ln P_{ij}$

$$\mathcal{X}_{i}^{A}$$
 i
 \mathcal{X}_{j}^{B}

$$C_{ij}^{A,B} = k(\mathcal{X}_i^A, \mathcal{X}_j^B)$$

De, Bartók, Csányi, Ceriotti, PCCP (2016)

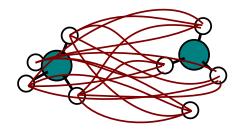
 Given the kernel matrix between the environments of the two structures, we can build a global structural kernel

- **①** By averaging: $\bar{K}(A, B) = \frac{1}{N^2} \sum_{ij} k\left(\mathcal{X}_i^A, \mathcal{X}_i^B\right)$
- ② By picking the best-match permutation $\hat{K}(A, B) = \frac{1}{N} \max_{\pi} \sum_{i} k\left(\mathcal{X}_{i}^{A}, \mathcal{X}_{\pi_{i}}^{B}\right)$
- **9** By **regularized** best-match permutation $\hat{K}(A,B) = \frac{1}{N} \max_{P} \sum_{ij} P_{ij} \ln P_{ij} \ln P_{ij}$

$$C_{ij}^{A,B} = k(\mathcal{X}_i^A, \mathcal{X}_j^B)$$

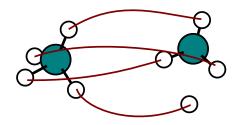
De, Bartók, Csányi, Ceriotti, PCCP (2016)

- Given the kernel matrix between the environments of the two structures, we can build a global structural kernel
 - By averaging: $\bar{K}(A, B) = \frac{1}{N^2} \sum_{ij} k\left(\mathcal{X}_i^A, \mathcal{X}_i^B\right)$
 - ② By picking the best-match permutation $\hat{K}(A, B) = \frac{1}{N} \max_{\pi} \sum_{i} k\left(\mathcal{X}_{i}^{A}, \mathcal{X}_{\pi_{i}}^{B}\right)$
 - **3** By **regularized** best-match permutation $\hat{K}(A,B) = \frac{1}{N} \max_{P} \sum_{ij} P_{ji} k \left(\mathcal{X}_{i}^{A}, \mathcal{X}_{i}^{B} \right) \gamma \sum_{ij} P_{ij} \ln P_{ij}$



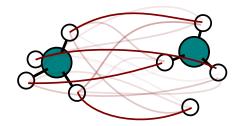
$$ar{K}(A,B) \propto \sum_{ij} C^{A,B}_{ij}$$
De, Bartók, Csányi, Ceriotti, PCCP (2016)

- Given the kernel matrix between the environments of the two structures, we can build a global structural kernel
 - By averaging: $\bar{K}(A,B) = \frac{1}{N^2} \sum_{ij} k\left(\mathcal{X}_i^A, \mathcal{X}_i^B\right)$
 - **3** By picking the best-match permutation $\hat{K}(A, B) = \frac{1}{N} \max_{\pi} \sum_{i} k\left(\mathcal{X}_{i}^{A}, \mathcal{X}_{\pi_{i}}^{B}\right)$
 - **9** By **regularized** best-match permutation $\hat{K}(A, B) = \frac{1}{N} \max_{P} \sum_{ij} P_{jj} k \left(\mathcal{X}_{i}^{A}, \mathcal{X}_{j}^{B} \right) \gamma \sum_{ij} P_{ij} \ln P_{ij}$



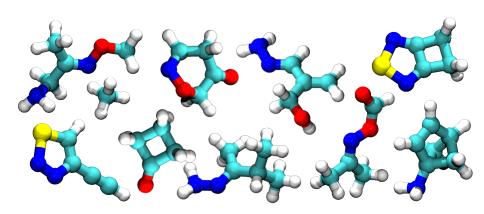
$$\hat{K}(A,B) \propto \max_{\pi} \sum_{i} C_{i\pi_{i}}^{A,B}$$
De, Bartók, Csánvi, Ceriotti, PCCP (2016)

- Given the kernel matrix between the environments of the two structures, we can build a global structural kernel
 - **1** By averaging: $\bar{K}(A,B) = \frac{1}{N^2} \sum_{ij} k\left(\mathcal{X}_i^A, \mathcal{X}_i^B\right)$
 - **2** By picking the best-match permutation $\hat{K}(A, B) = \frac{1}{N} \max_{\pi} \sum_{i} k\left(\mathcal{X}_{i}^{A}, \mathcal{X}_{\pi_{i}}^{B}\right)$
 - **3** By **regularized** best-match permutation $\hat{K}(A, B) = \frac{1}{N} \max_{\mathbf{P}} \sum_{ij} P_{ij} k \left(\mathcal{X}_{i}^{A}, \mathcal{X}_{i}^{B} \right) \gamma \sum_{ij} P_{ij} \ln P_{ij}$

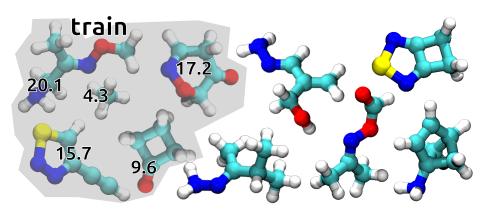


$$\hat{K}^{\gamma}(A,B) \propto \max_{\mathbf{P} \in \mathcal{U}} \sum_{ij} P_{ji} (C_{ij}^{A,B} - \gamma \ln P_{ji})$$

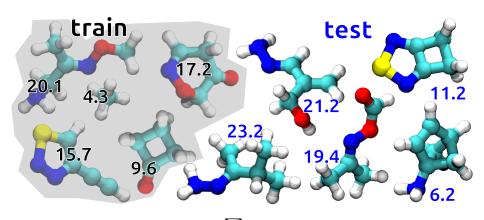
- Using kernel-ridge regression to learn molecular properties (pioneered by Von Lilienfeld, Müller, Tkatchenko, Rupp, . . .)
- SOAP-REMatch kernel gives chemical accuracy, effortlessly (QM7b dataset)



- Using kernel-ridge regression to learn molecular properties (pioneered by Von Lilienfeld, Müller, Tkatchenko, Rupp, . . .)
- SOAP-REMatch kernel gives chemical accuracy, effortlessly (QM7b dataset)



- Using kernel-ridge regression to learn molecular properties (pioneered by Von Lilienfeld, Müller, Tkatchenko, Rupp, . . .)
- SOAP-REMatch kernel gives chemical accuracy, effortlessly (QM7b)



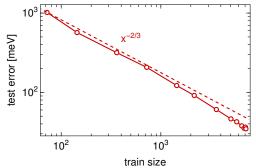
- Using kernel-ridge regression to learn molecular properties (pioneered by Von Lilienfeld, Müller, Tkatchenko, Rupp, . . .)
- SOAP-REMatch kernel gives chemical accuracy, effortlessly (QM7b dataset)

Property (eV, Å ³)	SD	MAE	RMSE	MAE[1]	RMSE[1]
<i>E</i> (PBE0)	9.70	0.04	0.07	0.16	0.36
lpha (PBE0)	1.34	0.05	0.07	0.11	0.18
α (SCS)	1.47	0.02	0.04	0.08	0.12
HOMO (GW)	0.70	0.12	0.17	0.16	0.22
HOMO (PBE0)	0.63	0.11	0.15	0.15	0.21
LUMO (GW)	0.48	0.12	0.17	0.13	0.21
LUMO (PBE0)	0.68	0.08	0.12	0.12	0.20

[1] data from Montavon et al. NJP 2013 http://quantum-machine.org/ De, Bartók, Csányi, Ceriotti, PCCP 2016

Learning rate & kernel hyperparameters

- Excellent learning rate up to the full dataset
- The kernel can be modified with a non-linear transform $K \leftarrow K^{\xi}$, and the KRR procedure can be regularized with a diagonal term σ 1. The REMatch kernel contains itself the entropy regularization parameter γ , and the SOAP kernels depend on the environment cutoff r_{max}
- Lots of room for development e.g. on the alchemical kernel front....



Learning rate & kernel hyperparameters

- Excellent learning rate up to the full dataset
- The kernel can be modified with a non-linear transform $K \leftarrow K^{\xi}$, and the KRR procedure can be regularized with a diagonal term σ 1. The REMatch kernel contains itself the entropy regularization parameter γ , and the SOAP kernels depend on the environment cutoff r_{max}
- Lots of room for development e.g. on the alchemical kernel front....

local \longleftrightarrow long range							
$ au_{max}$ [Å] ($\gamma = 0.5$)	2.0	3.0	4.0	5.0			
MAE (E , 30% test) ($\frac{kcal}{mol}$)	5.6	1.0	1.6	1.8			

best match←→average									
γ			0.5						
MAE (E , 30% test) ($\frac{kcal}{mol}$)	5e3	92	1.0	0.8	0.8	0.8	0.9	1.1	3.0

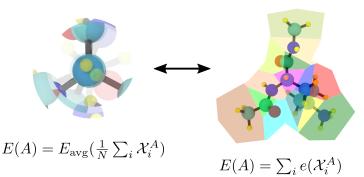
Learning rate & kernel hyperparameters

- Excellent learning rate up to the full dataset
- The kernel can be modified with a non-linear transform $K \leftarrow K^{\xi}$, and the KRR procedure can be regularized with a diagonal term σ 1. The REMatch kernel contains itself the entropy regularization parameter γ , and the SOAP kernels depend on the environment cutoff r_{max}
- Lots of room for development e.g. on the alchemical kernel front....

$$\kappa_{\alpha\beta} = e^{-(E_{\alpha}-E_{\beta})^2/2} \to \text{MAE=0.55kcal/mol!}$$
 ... whad do we learn about electronegativity?

Growing larger

- With proper normalization, the average kernel is equivalent to an atom-centered energy decomposition $E_{\text{avg}}(A) \equiv \sum_{i} e(\mathcal{X}_{i}^{A})$. A connection between chemical & potential learning.
- Training with the average kernel on GDB9 shows its limitations
- . . . but REMatch-ing brings you the extra mile down to < 1kcal/mol MAE

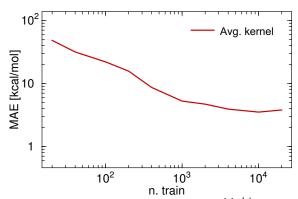


Work in progress w/Gabor and Albert

16

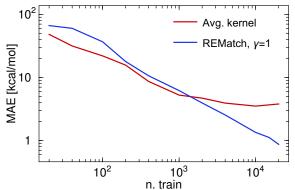
Growing larger

- With proper normalization, the average kernel is equivalent to an atom-centered energy decomposition $E_{\text{avg}}(A) \equiv \sum_i e\left(\mathcal{X}_i^A\right)$. A connection between chemical & potential learning.
- Training with the average kernel on GDB9 shows its limitations
- . . . but REMatch-ing brings you the extra mile down to < 1kcal/mol MAE with 15% training set!

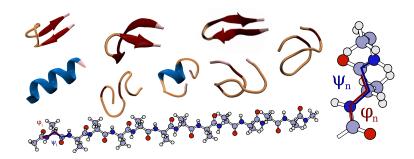


Growing larger

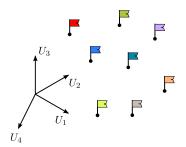
- With proper normalization, the average kernel is equivalent to an atom-centered energy decomposition $E_{\text{avg}}(A) \equiv \sum_i e\left(\mathcal{X}_i^A\right)$. A connection between chemical & potential learning.
- Training with the average kernel on GDB9 shows its limitations
- ... but REMatch-ing brings you the extra mile down to < 1kcal/mol MAE with 15% training set!



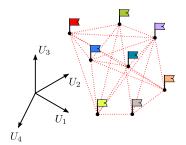
- Distances describe the relations between different molecules or structures. However, to visualize such relations we need to generate a low-dimensional map that is (approximately) consistent with the metric.
 - Take a set of configurations ⇒ high-dim. landmark points
 - Define a measure of dissimilarity between the points
 - Arrange low-dim. points so that the dissimilarities are preserved
 - Locate other configurations with an out-of-sample embedding



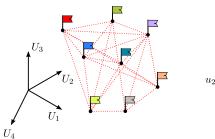
- Distances describe the relations between different molecules or structures. However, to visualize such relations we need to generate a low-dimensional map that is (approximately) consistent with the metric.
 - Take a set of configurations ⇒ high-dim. landmark points
 - Define a measure of dissimilarity between the points
 - Arrange low-dim. points so that the dissimilarities are preserved
 - Locate other configurations with an out-of-sample embedding

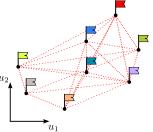


- Distances describe the relations between different molecules or structures. However, to visualize such relations we need to generate a low-dimensional map that is (approximately) consistent with the metric.
 - Take a set of configurations ⇒ high-dim. landmark points
 - Define a measure of dissimilarity between the points
 - Arrange low-dim. points so that the dissimilarities are preserved
 - Locate other configurations with an out-of-sample embedding

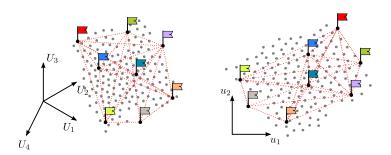


- Distances describe the relations between different molecules or structures. However, to visualize such relations we need to generate a low-dimensional map that is (approximately) consistent with the metric.
 - Take a set of configurations ⇒ high-dim. landmark points
 - Define a measure of dissimilarity between the points
 - Arrange low-dim. points so that the dissimilarities are preserved
 - Locate other configurations with an out-of-sample embedding

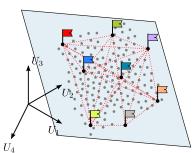


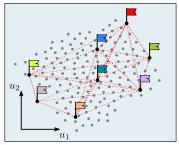


- Distances describe the relations between different molecules or structures. However, to visualize such relations we need to generate a low-dimensional map that is (approximately) consistent with the metric.
 - Take a set of configurations ⇒ high-dim. landmark points
 - Define a measure of dissimilarity between the points
 - Arrange low-dim. points so that the dissimilarities are preserved
 - Locate other configurations with an out-of-sample embedding



- Distances describe the relations between different molecules or structures. However, to visualize such relations we need to generate a low-dimensional map that is (approximately) consistent with the metric.
 - Take a set of configurations ⇒ high-dim. landmark points
 - Define a measure of dissimilarity between the points
 - Arrange low-dim. points so that the dissimilarities are preserved
 - Locate other configurations with an out-of-sample embedding





Sketch-map algorithm

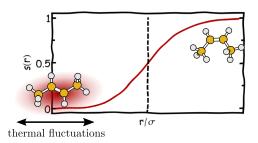
- In "metric" MDS a stress function that measures how well distances are reproduced is minimized
- Modify the objective function to aim for proximity matching

$$\chi^2 = \sum_{i,j=1}^{N} [|X_i - X_j| - |x_i - x_j|]^2$$

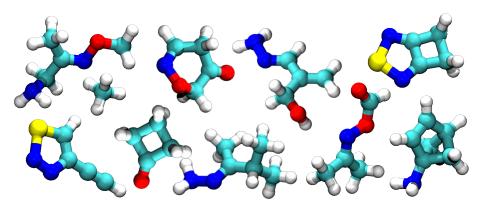
Sketch-map algorithm

- In "metric" MDS a stress function that measures how well distances are reproduced is minimized
- Modify the objective function to aim for proximity matching
 - Distances are transformed by sigmoid functions in both high and low dimension, to disregard thermal fluctuations

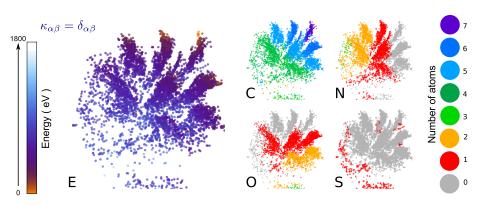
$$\chi^{2} = \sum_{i,j=1}^{N} [s(|X_{i} - X_{j}|) - s(|x_{i} - x_{j}|)]^{2}$$



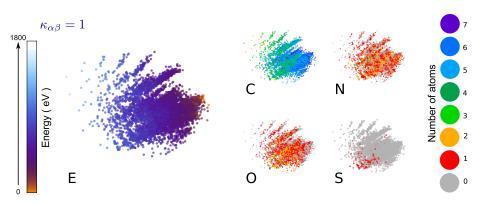
- Mapping QM7b. Variable number and nature of atoms
- Maps based on combination of local kernels represents nicely stoichiometry and energetics
- Modifying the alchemical similarity kernel modifies the metric and modulates the emphasis of the map between structure and composition



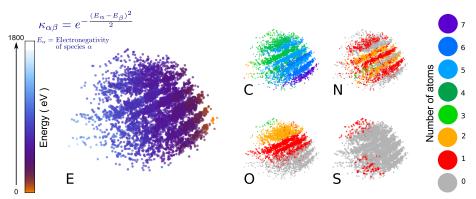
- Mapping QM7b. Variable number and nature of atoms
- Maps based on combination of local kernels represents nicely stoichiometry and energetics
- Modifying the alchemical similarity kernel modifies the metric and modulates the emphasis of the map between structure and composition



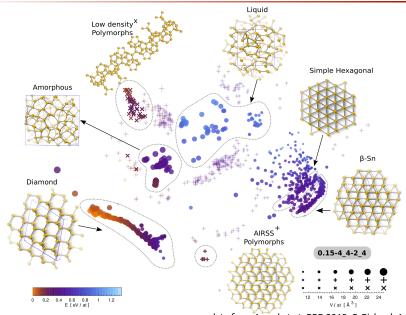
- Mapping QM7b. Variable number and nature of atoms
- Maps based on combination of local kernels represents nicely stoichiometry and energetics
- Modifying the alchemical similarity kernel modifies the metric and modulates the emphasis of the map between structure and composition

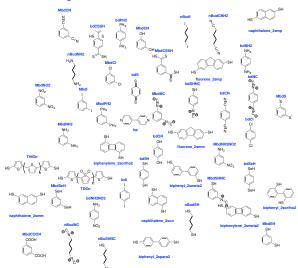


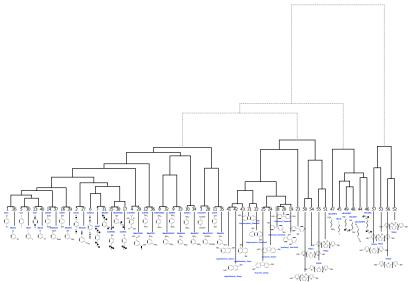
- Mapping QM7b. Variable number and nature of atoms
- Maps based on combination of local kernels represents nicely stoichiometry and energetics
- Modifying the alchemical similarity kernel modifies the metric and modulates the emphasis of the map between structure and composition

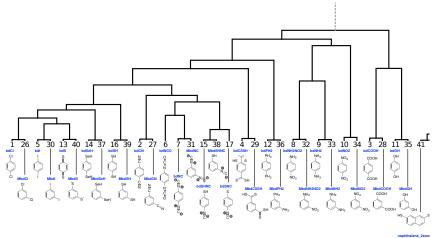


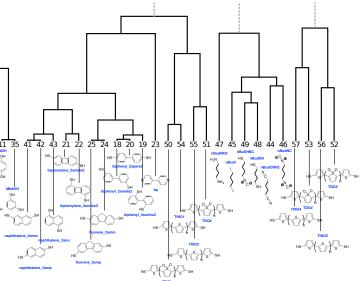
Silicon phase diagram





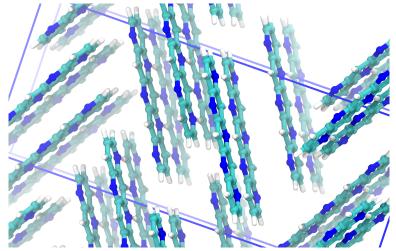


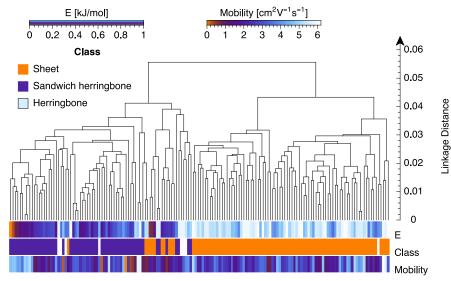


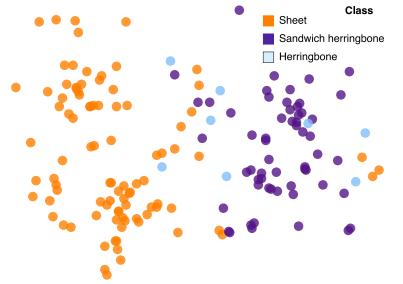


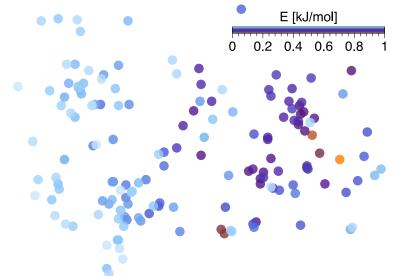
Azapentacene - Structure & Properties

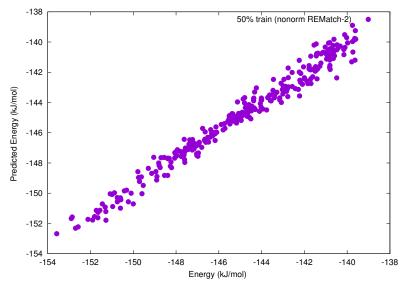
- Azapentacene: a candidate molecular electron transporter
- Dual challenge: enumeration and classification of polymorphs, and prediction of stability and electron mobility



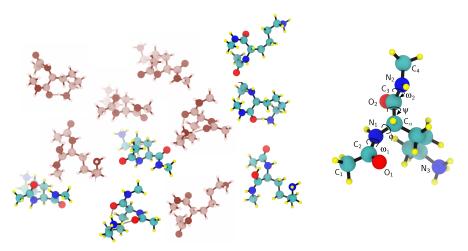




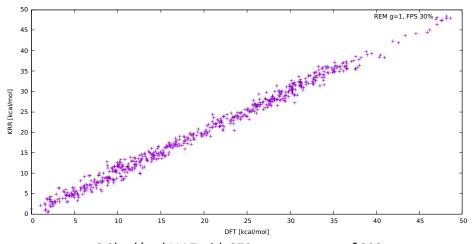




 Representing geometry and stability of (locally) stable conformers in a large database of aminoacids and dipeptides

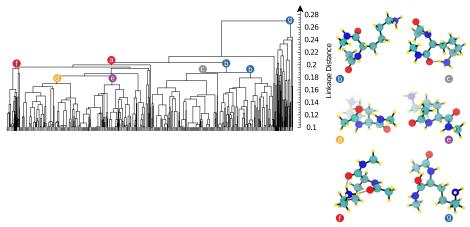


 Representing geometry and stability of (locally) stable conformers in a large database of aminoacids and dipeptides

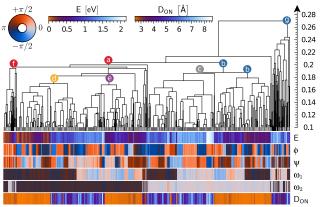


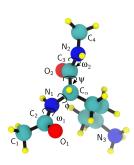
0.9kcal/mol MAE with 270 structures out of 900

- Off-the-shelf hierarchical clustering shows structure in the dataset. . .
- Clusters clearly correlate with structural parameters (semi-trivial) and properties (non-trivial!)
- Sketch-maps give a more comprehensive picture of the relation between structures in the landscape, and complement nicely a clustering analysis

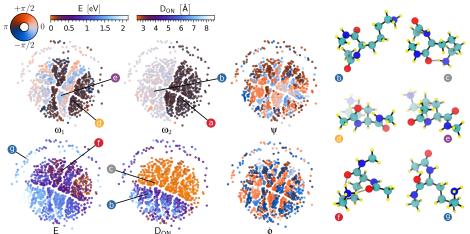


- Off-the-shelf hierarchical clustering shows structure in the dataset. . .
- Clusters clearly correlate with structural parameters (semi-trivial) and properties (non-trivial!)
- Sketch-maps give a more comprehensive picture of the relation between structures in the landscape, and complement nicely a clustering analysis

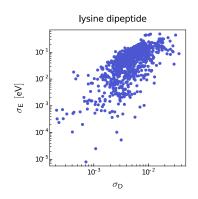




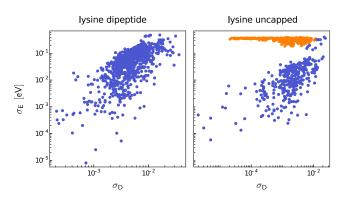
- Off-the-shelf hierarchical clustering shows structure in the dataset. . .
- Clusters clearly correlate with structural parameters (semi-trivial) and properties (non-trivial!)
- Sketch-maps give a more comprehensive picture of the relation between structures in the landscape, and complement nicely a clustering analysis



- Checking for data integrity in databases is going to be one of the challenges in pushing high-throughput studies
- Analysis of similarity makes it possible to detect duplicates. Distances within clusters should roughly correlate with spread of properties.
- Lack of correlations is a sign of inconsistency. We could detect and resolve half a dozen instances within the aminoacids database

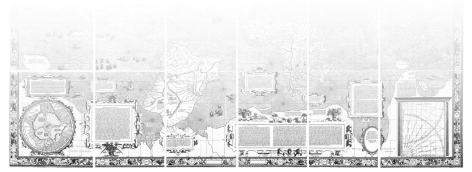


- Checking for data integrity in databases is going to be one of the challenges in pushing high-throughput studies
- Analysis of similarity makes it possible to detect duplicates. Distances within clusters should roughly correlate with spread of properties.
- Lack of correlations is a sign of inconsistency. We could detect and resolve half a dozen instances within the aminoacids database

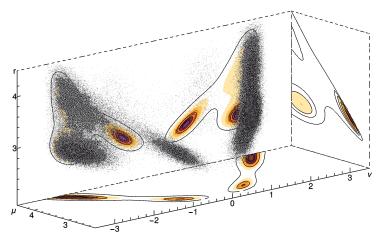


Outlook

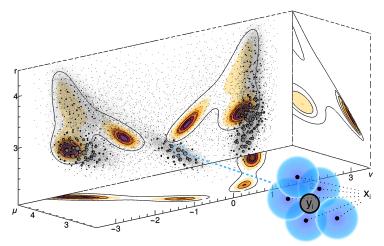
- A comprehensive framework for the analysis of atomistic simulations
 - A similarity kernel based on a combination of environment descriptors
 - Recognizing recurring patterns by a probabilistic analysis
 - Non-linear mapping of complex (free)-energy landscapes
- The same framework can be used for molecules and materials, to predict properties, represent intuitively databases, detect outliers and resolve data inconsistencies
- (Development) code available on http://epfl-cosmo.github.io



- Evaluate the probability distribution of molecular structures

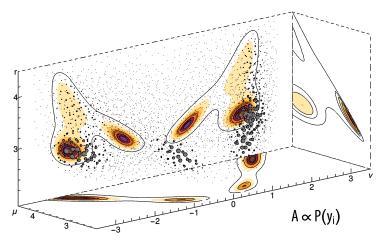


- Evaluate the probability distribution of molecular structures



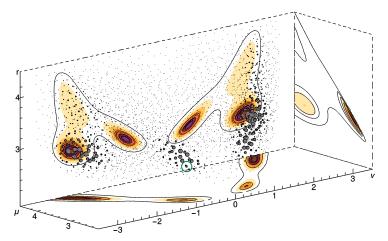
Piero Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)

- Evaluate the probability distribution of molecular structures
- Cluster it around the modes of the distribution.

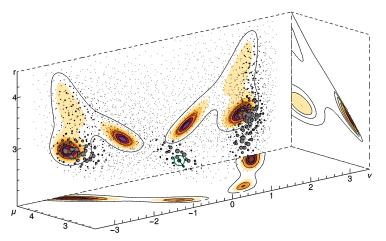


Piero Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)

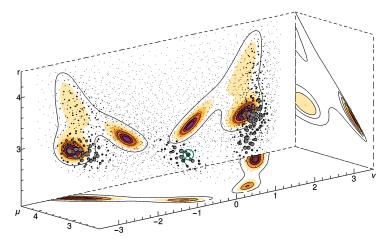
- Evaluate the probability distribution of molecular structures
- Cluster it around the modes of the distribution.



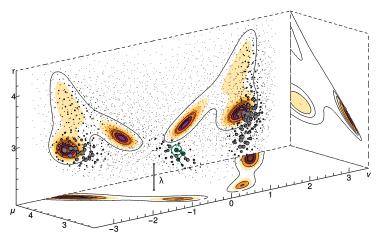
- Evaluate the probability distribution of molecular structures
- Cluster it around the modes of the distribution.



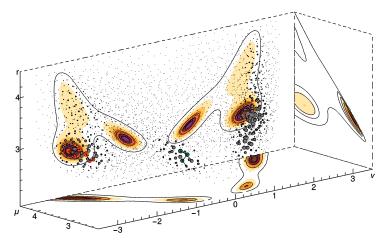
- Evaluate the probability distribution of molecular structures
- Cluster it around the modes of the distribution.



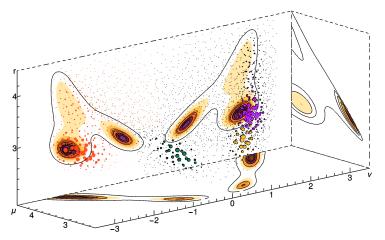
- Evaluate the probability distribution of molecular structures
- Cluster it around the modes of the distribution.



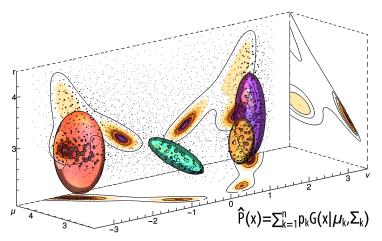
- Evaluate the probability distribution of molecular structures
- Cluster it around the modes of the distribution.



- Evaluate the probability distribution of molecular structures
- Cluster it around the modes of the distribution.
- Naturally gives a fuzzy, continuous partitioning of configuration space

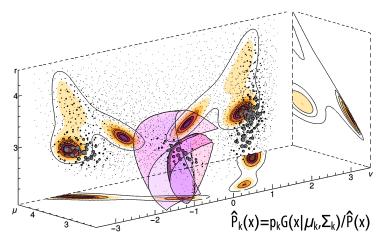


- Evaluate the probability distribution of molecular structures
- Cluster it around the modes of the distribution
- Naturally gives a fuzzy, continuous partitioning of configuration space



Piero Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)

- Evaluate the probability distribution of molecular structures
- Cluster it around the modes of the distribution.
- Naturally gives a fuzzy, continuous partitioning of configuration space



Piero Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)