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“Machine learning” and intuitive understanding

o Machine learning can be used to predict materials’ properties orto distill
large amounts of complex data in a human-understandable form

Hypotetical carbon "molecular”
allotropes obtained by
Ab Initio Random Structure Search

(structures from C. Pickard) " layered %E‘
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Representing patterns and mapping structures

e Understanding emergent structural complexity by analyzing simulations

o Recognizing the building-blocks at the atomic scale

o) =1
v, o
Simulation °
° ) ° data ° : o
°e o 3 ° °
® e X X > 0(X)=0
Abstract description of Probabilistic analysis of Posterior probability as
chemical environments structural correlations a structural fingerprint
0(X) = Pogo(X)

T 2k Prgk(X)

Piero Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)
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Representing patterns and mapping structures

e Understanding emergent structural complexity by analyzing simulations

o Recognizing the building-blocks at the atomic scale
o An effective and flexible framework for comparing structures

De, Bartok, Csanyi, Ceriotti, PCCP (2016)
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Representing patterns and mapping structures

e Understanding emergent structural complexity by analyzing simulations

o Recognizing the building-blocks at the atomic scale
o An effective and flexible framework for comparing structures
o Mapping structural complexity. Key to make the best out of big data

XiGRD

P P4
_>
High-dimensional descriptors Non-linear dimensionality Intuitive maps of
of a complex system reduction (sketch-map) structural stability

Ceriotti, Tribello, Parrinello, PNAS (2011)
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Recognizing molecular patterns

e "“Chemical intuition” builds on recognizing recurring patterns in atomic
configurations

e Atomistic models provide large amount of data for statistical analysis
e Automatic scheme to single out structural motifs in simulations

o

Sp Sp Sp
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An Agnostic Definition of the H-Bond

e Most general description of a H-bond geometry: 3 distances. Many
heuristic definitions available
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An Agnostic Definition of the H-Bond

e Most general description of a H-bond geometry: 3 distances. Many
heuristic definitions available

e How to recognize automatically what is a H-bond, based only on analysis
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An Agnostic Definition of the H-Bond

e Most general description of a H-bond geometry: 3 distances. Many
heuristic definitions available

e How to recognize automatically what is a H-bond, based only on analysis
of a simulation?
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An Agnostic Definition of the H-Bond

e Most general description of a H-bond geometry: 3 distances. Many
heuristic definitions available

e How to recognize automatically what is a H-bond, based only on analysis
of a simulation?
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Mode Analysis of a Distribution

e A natural way of recognizing patterns in a distribution is to identify its
modes, and the basin of attraction of each mode.

P(x)
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Mode Analysis of a Distribution

e A natural way of recognizing patterns in a distribution is to identify its
modes, and the basin of attraction of each mode.
o One can then fit a simple Gaussian model (with fixed centers), and use
posteriors to assign fingerprints to each cluster
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An Adaptive, Data-Driven Definition

e Abinitio water PAMM recognizes multiple modes - one corresponds to
the H-bond

Piero Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)
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An Adaptive, Data-Driven Definition

e Abinitio water PAMM recognizes multiple modes - one corresponds to
the H-bond

o Adaptive, context-dependent definition - details of the model,
thermodynamic conditions, type of HB

Piero Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)
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An Adaptive, Data-Driven Definition

e Abinitio water PAMM recognizes multiple modes - one corresponds to
the H-bond

o Adaptive, context-dependent definition - details of the model,
thermodynamic conditions, type of HB
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Piero Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)
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Defects and correlations in water

o Disentangling the correlations between topological defects in the H-bond
network of water
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Gasparotto, Hassanali, Ceriotti, JCTC 2016
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Defects and correlations in water

o Disentangling the correlations between topological defects in the H-bond
network of water

o Angular correlations between standard 2524 water correspond toice Ih,
but undercoordinated defects are similar to ice VIl

Al
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Gasparotto, Hassanali, Ceriotti, JCTC 2016
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PAMM Analysis of a Water Wire

o Use PAMM to identify proton-like molecules in a wire, based on the
position of Wannier centers relative to oxygens

@"“‘tvwwrirvrr&v “»A\,.\ e
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PAMM Analysis of a Water Wire

o Use PAMM to identify proton-like molecules in a wire, based on the
position of Wannier centers relative to oxygens

@"“‘swwrirvrrkw “»A\,.‘ e
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Marzari, Vanderbilt PRB 1997
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PAMM Analysis of a Water Wire

o Use PAMM to identify proton-like molecules in a wire, based on the
position of Wannier centers relative to oxygens
e One can identify two separate clusters
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PAMM Analysis of a Water Wire

o Use PAMM to identify proton-like molecules in a wire, based on the
position of Wannier centers relative to oxygens
e One can identify two separate clusters
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Rossi, Ceriotti, Manolopoulos, JPCL 2016
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PAMM Analysis of a Water Wire

o Use PAMM to identify proton-like molecules in a wire, based on the
position of Wannier centers relative to oxygens

e One can identify two separate clusters

o PAMM fingerprints recognize a “proton wavepacket” movingin a
concerted way along the wire (then you can do quantum dynamics and
measure diffusion rate)
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Molecule index
Rossi, Ceriotti, Manolopoulos, JPCL 2016
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Representing chemical environments

o Akernel to compare chemical environments based on the overlap of
atomic densities (SOAP)

o Invariant to permutations, translations

Bartok, Kondor, Csanyi, PRB (2013)

1 Michele Ceriotti http://cosmo.epfl.ch Machine learning For materials and molecules



Representing chemical environments

o Akernel to compare chemical environments based on the overlap of
atomic densities (SOAP)

o Invariant to permutations, translations

Xi
X0

{Xz’ —Xo} — X

Bartok, Kondor, Csanyi, PRB (2013)
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Representing chemical environments

e Akernel to compare chemical environments based on the overlap of
atomic densities (SOAP)

o Invariant to permutations, translations

Pa (X) = Ziea g(X - X’i)

Bartok, Kondor, Csanyi, PRB (2013)
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Representing chemical environments

e Akernel to compare chemical environments based on the overlap of
atomic densities (SOAP)

o Invariant to permutations, translations

(X, X7) = [ p(x)p'(x)

Bartok, Kondor, Csanyi, PRB (2013)
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Representing chemical environments

e Akernel to compare chemical environments based on the overlap of
atomic densities (SOAP)

o Invariant to permutations, translations and rotations

KX, = [ AR [ () ()|

Bartok, Kondor, Csanyi, PRB (2013)
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Comparing with multiple species

e What to do when comparing with multiple species?
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Comparing with multiple species

e What to do when comparing with multiple species?
o Density representation with multiple “channels”

P =20 Pa(X) )
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e What to do when comparing with multiple species?
o Density representation with multiple “channels”
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Comparing with multiple species

e What to do when comparing with multiple species?
o Density representation with multiple “channels”

o Treating alchemical as well as structural complexity on the same footings
by introducing an alchemical similarity kernel

(a]B) = Kap
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From environment kernels to structural kernels

o Given the kernel matrix between the environments of the two structures,
we can build a global structural kernel

O

De, Bartok, Csanyi, Ceriotti, PCCP (2016)
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From environment kernels to structural kernels

o Given the kernel matrix between the environments of the two structures,
we can build a global structural kernel

J
CoP = k(XA XP)

1]
De Bartok, Csanyi, Ceriotti, PCCP (2016)
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From environment kernels to structural kernels

o Given the kernel matrix between the environments of the two structures,
we can build a global structural kernel

CoP = k(XA XP)

)

De Bartok, Csanyi, Ceriotti, PCCP (2016)
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From environment kernels to structural kernels

o Given the kernel matrix between the environments of the two structures,
we can build a global structural kernel

© Byaveraging: K (A,B) = 7; >, k (X, xP)

De, Bartok, Csanyi, Ceriotti, PCCP (2016)
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From environment kernels to structural kernels

o Given the kernel matrix between the environments of the two structures,
we can build a global structural kernel
© Byaveraging: K (A,B) = 7; >, k (X, xP)
@ By picking the best-match permutation K (A, B) = 5 max, >, k (X7, x2)

> A.B
K(A, B) x max, »_, C;-
De, Bartok, Csanyi, Ceriotti, PCCP (2016)
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From environment kernels to structural kernels

o Given the kernel matrix between the environments of the two structures,
we can build a global structural kernel
© Byaveraging: K (A,B) = 7; >, k (X, xP)
O By picking the best-match permutation K (A, B) = & max. >, k (xf, x2)
© By regularized best-match permutation
K (A B) =} maxe Y, Pik (X2, XF) — 32, PyIn Py

K7(A, B) x
maxpcy ZZJ sz(CA’B — ’yln P]z)

() .
M. Cuturi, NIPS 2013
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Teaching chemistry to a computer

o Using kernel-ridge regression to learn molecular properties (pioneered by
Von Lilienfeld, Mdller, Tkatchenko, Rupp, . . .)
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Teaching chemistry to a computer

o Using kernel-ridge regression to learn molecular properties (pioneered by
Von Lilienfeld, Mdller, Tkatchenko, Rupp, . . .)

E(A) = GK(AA)
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Teaching chemistry to a computer

e Using kernel-ridge regression to learn molecular properties (pioneered by
Von Lilienfeld, Mdller, Tkatchenko, Rupp, . . .)

o SOAP-REMatch kernel gives chemical accuracy, effortlessly (QM7b
dataset)

Property (eV,A’) SD MAE RMSE MAE[1] RMSE[1]

E (PBEO) 9.70 0.04 0.07 0.16 0.36
« (PBEO) 1.34 0.05 0.07 0.11 0.18
a (SCS) 147 0.02 0.04 0.08 0.12
HOMO (GW) 0.70 0.12 0.17 0.16 0.22
HOMO (PBEO) 0.63 0.11 0.15 0.15 0.21
LUMO (GW) 0.48 0.12 0.17 0.13 0.21
LUMO (PBEO) 0.68 0.08 0.12 0.12 0.20

[1] data from Montavon et al. NJP 2013
http://quantum-machine.org/
De, Bartok, Csanyi, Ceriotti, PCCP 2016
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Learning rate & kernel hyperparameters

o Excellent learning rate up to the full dataset

103pa

test error [meV]

102

Ll L PR |

102 10°

train size
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Learning rate & kernel hyperparameters

o Excellent learning rate up to the full dataset

o The kernel can be modified with a non-linear transform K + K¢, and the
KRR procedure can be regularized with a diagonal term 1. The REMatch
kernel contains itself the entropy regularization parameter ~, and the
SOAP kernels depend on the environment cutoff rmax

local—:long range

MAE (E, 30% test) (*¢) 56 1.0 1.6 1.8

‘mol

best match+—average

¥ 0 02 05 10 20 50 10 50 oo

MAE (E, 30% test) (*¢) 5¢3 92 1.0 0.8 08 08 09 1.1 3.0

‘mol
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Learning rate & kernel hyperparameters

o Excellent learning rate up to the full dataset

o The kernel can be modified with a non-linear transform K + K¢, and the
KRR procedure can be regularized with a diagonal term 1. The REMatch
kernel contains itself the entropy regularization parameter ~, and the
SOAP kernels depend on the environment cutoff rmax

o Lots of room for development - e.g. on the alchemical kernel front....

kas = e~ (E—E)°/2 _, MAE=0.55kcal/mol!

. whad do we learn about electronegativity?
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Growing larger

e With proper normalization, the average kernel is equivalent to an
atom-centered energy decomposition Eyuq (A) = 3, e (X7).
A connection between chemical & potential learning.

E(A) = Eavg(% Zz Xz‘A) E(A) Z (XA)
= 2. e\
Work in progress w/Gabor and Albert
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Growing larger

e With proper normalization, the average kernel is equivalent to an
atom-centered energy decomposition Eyuq (A) = 3, e (X7).
A connection between chemical & potential learning.

e Training with the average kernel on GDB9 shows its limitations

102_ LA | ¥ LB LR | ¥ LB LR | ]
— Avg. kernel ]
5
E
<10 | E
X f ]
w
<C
=
1F E
1l L L1l L L1l
10? 10° 10*

n. train
Work in progress w/Gabor and Albert
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Growing larger

e With proper normalization, the average kernel is equivalent to an
atom-centered energy decomposition Eyuq (A) = 3, e (X7).
A connection between chemical & potential learning.

e Training with the average kernel on GDB9 shows its limitations
o ... but REMatch-ing brings you the extra mile down to < 1kcal/mol MAE
with 15% training set!

102__' LB LR | ¥ LB LR | ¥ LB LR | '__
F — Avg. kernel ]
= — REMatch, y=1
(@]
E
<10 | E
=, E ]
w
<C
=
1 E
1l L L1l L L1l
102 103 10*
n. train

Work in progress w/Gabor and Albert
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Dimensionality reduction

e Distances describe the relations between different molecules or
structures. However, to visualize such relations we need to generate a
low-dimensional map that is (approximately) consistent with the metric.
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low-dimensional map that is (approximately) consistent with the metric.

o Take a set of configurations = high-dim. landmark points

Us r r

Uy
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Fp
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low-dimensional map that is (approximately) consistent with the metric.

o Take a set of configurations = high-dim. landmark points
o Define a measure of dissimilarity between the points
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structures. However, to visualize such relations we need to generate a
low-dimensional map that is (approximately) consistent with the metric.

o Take a set of configurations = high-dim. landmark points
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o Arrange low-dim. points so that the dissimilarities are preserved
o Locate other configurations with an out-of-sample embedding
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Sketch-map algorithm

o In “metric” MDS a stress function that measures how well distances are
reproduced is minimized

N

V=0 (X=X - x - x)°
ij=1

Ceriotti, Tribello, Parrinello, PNAS (2011); JCTC (2013)

18 Michele Ceriotti http://cosmo.epfl.ch Machine learning For materials and molecules



Sketch-map algorithm

o In "metric” MDS a stress function that measures how well distances are
reproduced is minimized
o Modify the objective function to aim for proximity matching

o Distances are transformed by sigmoid Functions in both high and low
dimension, to disregard thermal fluctuations

X* = 2_: [s (1% = 1) s (| = %])]°

s(r)

0

rlo
thermal fluctuations

Ceriotti, Tribello, Parrinello, PNAS (2011); JCTC (2013)
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A periodic table of molecules

e Mapping QM7b. Variable number and nature of atoms

data from Montavon et al. NJP 2013
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A periodic table of molecules

e Mapping QM7b. Variable number and nature of atoms

e Maps based on combination of local kernels represents nicely
stoichiometry and energetics

~
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A periodic table of molecules

e Mapping QM7b. Variable number and nature of atoms

e Maps based on combination of local kernels represents nicely
stoichiometry and energetics

o Modifying the alchemical similarity kernel modifies the metric and
modulates the emphasis of the map between structure and composition

~

Rap = 1
1800
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A periodic table of molecules

e Mapping QM7b. Variable number and nature of atoms

e Maps based on combination of local kernels represents nicely
stoichiometry and energetics

o Modifying the alchemical similarity kernel modifies the metric and
modulates the emphasis of the map between structure and composition
(Eq—Eg)?
Kag =€ 2

1800 E, = Electronegativity
of species o

~

(=)

3]

w

Number of atoms
N

»

Energy (eV)

-

o
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Silicon phase diagram

Low densityX .
Polymorphs

Simple Hexagonal

Polymorphs
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data from Amsel et at. PRB 2015; C. Pickard; A. Barték
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Clustering and Classification of M&M

o Automatic classifications of ligands for molecular electronics -
hierarchical clustering based on REMatch-SOAP
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Clustering and Classification of M&M

o Automatic classifications of ligands for molecular electronics -
hierarchical clustering based on REMatch-SOAP
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o Automatic classifications of ligands for molecular electronics -
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Azapentacene - Structure & Properties

o Azapentacene: a candidate molecular electron transporter
o Dual challenge: enumeration and classification of polymorphs, and
prediction of stablllty and electron moblllty

Data from G. Day and J. Yang
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Structural Classification

o Clustering/sketch-maps based on REMatch-SOAP correlate well with
qualitative classification of packing motifs, and with properties
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Structural Classification

o Clustering/sketch-maps based on REMatch-SOAP correlate well with
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Structural Classification

o Clustering/sketch-maps based on REMatch-SOAP correlate well with
qualitative classification of packing motifs, and with properties
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Structural Classification

o Clustering/sketch-maps based on REMatch-SOAP correlate well with
qualitative classification of packing motifs, and with properties
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Structure and stability of oligopeptides

o Representing geometry and stability of (locally) stable conformers in a
large database of aminoacids and dipeptides
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data from: Ropo, Blum, Baldauf, Scientific Data (2016)
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Structure and stability of oligopeptides

e Representing geometry and stability of (locally) stable conformers in a
large database of aminoacids and dipeptides
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Structure and stability of oligopeptides

o Off-the-shelf hierarchical clustering shows structure in the dataset. . .
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Structure and stability of oligopeptides

o Off-the-shelf hierarchical clustering shows structure in the dataset. . .
o Clusters clearly correlate with structural parameters (semi-trivial) and
properties (non-trivial!)
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Structure and stability of oligopeptides

o Off-the-shelf hierarchical clustering shows structure in the dataset. . .

o Clusters clearly correlate with structural parameters (semi-trivial) and
properties (non-trivial!)

o Sketch-maps give a more comprehensive picture of the relation between
structures in the landscape, and complement nicely a clustering analysis
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Structure and stability of oligopeptides

e Checking for data integrity in databases is going to be one of the
challenges in pushing high-throughput studies

e Analysis of similarity makes it possible to detect duplicates. Distances
within clusters should roughly correlate with spread of properties.
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Structure and stability of oligopeptides

26

e Checking for data integrity in databases is going to be one of the
challenges in pushing high-throughput studies

e Analysis of similarity makes it possible to detect duplicates. Distances
within clusters should roughly correlate with spread of properties.

o Lack of correlations is a sign of inconsistency. We could detect and
resolve half a dozen instances within the aminoacids database
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Outlook

o A comprehensive framework for the analysis of atomistic simulations
o Asimilarity kernel based on a combination of environment descriptors
o Recognizing recurring patterns by a probabilistic analysis
o Non-linear mapping of complex (free)-energy landscapes
o The same framework can be used for molecules and materials, to predict
properties, represent intuitively databases, detect outliers and resolve
data inconsistencies
o (Development) code available on http://epfl-cosmo.github.io

http://sketchmap.org/
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Probabilistic Analysis of Molecular Motifs

e Evaluate the probability distribution of molecular structures

Piero Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)
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Probabilistic Analysis of Molecular Motifs

e Evaluate the probability distribution of molecular structures
o Cluster it around the modes of the distribution
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Probabilistic Analysis of Molecular Motifs

e Evaluate the probability distribution of molecular structures
o Cluster it around the modes of the distribution
o Naturally gives a fuzzy, continuous partitioning of configuration space
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