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‘‘Machine learning’’ and intuitive understanding

Machine learning can be used to predict materials’ properties or to distill
large amounts of complex data in a human-understandable form
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Representing patterns and mapping structures

Understanding emergent structural complexity by analyzing simulations

Recognizing the building-blocks at the atomic scale
An effective and flexible framework for comparing structures
Mapping structural complexity. Key to make the best out of big data
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Recognizing molecular patterns

‘‘Chemical intuition’’ builds on recognizing recurring patterns in atomic
configurations

Atomistic models provide large amount of data for statistical analysis

Automatic scheme to single out structural motifs in simulations
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An Agnostic Definition of the H-Bond

Most general description of a H-bond geometry: 3 distances. Many
heuristic definitions available

How to recognize automatically what is a H-bond, based only on analysis
of a simulation?
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Mode Analysis of a Distribution

A natural way of recognizing patterns in a distribution is to identify its
modes, and the basin of attraction of each mode.

One can then fit a simple Gaussian model (with fixed centers), and use
posteriors to assign fingerprints to each cluster
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An Adaptive, Data-Driven Definition

Ab initio water PAMM recognizes multiple modes - one corresponds to
the H-bond

Adaptive, context-dependent definition - details of the model,
thermodynamic conditions, type of HB
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Defects and correlations in water

Disentangling the correlations between topological defects in the H-bond
network of water

Angular correlations between standard 2D2A water correspond to ice Ih,
but undercoordinated defects are similar to ice VIII
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PAMM Analysis of a Water Wire

Use PAMM to identify proton-like molecules in a wire, based on the
position of Wannier centers relative to oxygens
One can identify two separate clusters
PAMM fingerprints recognize a ‘‘proton wavepacket’’ moving in a
concerted way along the wire (then you can do quantum dynamics and
measure diffusion rate)
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Representing chemical environments

A kernel to compare chemical environments based on the overlap of
atomic densities (SOAP)

Invariant to permutations, translations and rotations
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Comparing with multiple species

What to do when comparing with multiple species?

Density representation with multiple ‘‘channels’’

Treating alchemical as well as structural complexity on the same footings
by introducing an alchemical similarity kernel
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From environment kernels to structural kernels

Given the kernel matrix between the environments of the two structures,
we can build a global structural kernel

1 By averaging: K̄ (A,B) = 1
N2

∑
ij k
(
X A

i ,X B
i

)
2 By picking the best-match permutation K̂ (A,B) = 1

N maxπ

∑
i k
(
X A

i ,X B
πi

)
3 By regularized best-match permutation

K̂ (A,B) = 1
N maxP

∑
ij Pjik

(
X A

i ,X B
j

)
− γ

∑
ij Pij lnPij
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Teaching chemistry to a computer

Using kernel-ridge regression to learn molecular properties (pioneered by
Von Lilienfeld, Müller, Tkatchenko, Rupp, . . . )
SOAP-REMatch kernel gives chemical accuracy, effortlessly (QM7b
dataset)
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Teaching chemistry to a computer

Using kernel-ridge regression to learn molecular properties (pioneered by
Von Lilienfeld, Müller, Tkatchenko, Rupp, . . . )
SOAP-REMatch kernel gives chemical accuracy, effortlessly (QM7b
dataset)

Property (eV, Å3) SD MAE RMSE MAE[1] RMSE[1]
E (PBE0) 9.70 0.04 0.07 0.16 0.36
α (PBE0) 1.34 0.05 0.07 0.11 0.18
α (SCS) 1.47 0.02 0.04 0.08 0.12
HOMO (GW) 0.70 0.12 0.17 0.16 0.22
HOMO (PBE0) 0.63 0.11 0.15 0.15 0.21
LUMO (GW) 0.48 0.12 0.17 0.13 0.21
LUMO (PBE0) 0.68 0.08 0.12 0.12 0.20
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Learning rate & kernel hyperparameters

Excellent learning rate up to the full dataset
The kernel can be modified with a non-linear transform K ← K ξ , and the
KRR procedure can be regularized with a diagonal term σ1. The REMatch
kernel contains itself the entropy regularization parameter γ, and the
SOAP kernels depend on the environment cutoff rmax
Lots of room for development - e.g. on the alchemical kernel front....
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local←→long range
rmax [Å] (γ = 0.5) 2.0 3.0 4.0 5.0
MAE (E , 30% test) ( kcalmol ) 5.6 1.0 1.6 1.8

best match←→average
γ 0 0.2 0.5 1.0 2.0 5.0 10 50 ∞
MAE (E , 30% test) ( kcalmol ) 5e3 92 1.0 0.8 0.8 0.8 0.9 1.1 3.0
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Learning rate & kernel hyperparameters

Excellent learning rate up to the full dataset
The kernel can be modified with a non-linear transform K ← K ξ , and the
KRR procedure can be regularized with a diagonal term σ1. The REMatch
kernel contains itself the entropy regularization parameter γ, and the
SOAP kernels depend on the environment cutoff rmax
Lots of room for development - e.g. on the alchemical kernel front....

καβ = e−(Eα−Eβ)
2
/2 →MAE=0.55kcal/mol!

. . . whad do we learn about electronegativity?
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Growing larger

With proper normalization, the average kernel is equivalent to an
atom-centered energy decomposition Eavg (A) ≡

∑
i e
(
X A

i

)
.

A connection between chemical & potential learning.

Training with the average kernel on GDB9 shows its limitations

. . . but REMatch-ing brings you the extra mile down to< 1kcal/mol MAE
with 15% training set!
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Dimensionality reduction

Distances describe the relations between different molecules or
structures. However, to visualize such relations we need to generate a
low-dimensionalmap that is (approximately) consistent with the metric.

Take a set of configurations⇒ high-dim. landmark points
Define a measure of dissimilarity between the points
Arrange low-dim. points so that the dissimilarities are preserved
Locate other configurations with an out-of-sample embedding
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Sketch-map algorithm

In ‘‘metric’’ MDS a stress function that measures how well distances are
reproduced is minimized
Modify the objective function to aim for proximity matching

Distances are transformed by sigmoid functions in both high and low
dimension, to disregard thermal fluctuations

χ2 =
N∑

i,j=1

[∣∣Xi − Xj

∣∣− ∣∣xi − xj
∣∣]2
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A periodic table of molecules

Mapping QM7b. Variable number and nature of atoms

Maps based on combination of local kernels represents nicely
stoichiometry and energetics

Modifying the alchemical similarity kernel modifies the metric and
modulates the emphasis of the map between structure and composition

19 Michele Ceriotti http://cosmo.epfl.ch Machine learning for materials and molecules

data fromMontavon et al. NJP 2013



A periodic table of molecules

Mapping QM7b. Variable number and nature of atoms

Maps based on combination of local kernels represents nicely
stoichiometry and energetics

Modifying the alchemical similarity kernel modifies the metric and
modulates the emphasis of the map between structure and composition

19 Michele Ceriotti http://cosmo.epfl.ch Machine learning for materials and molecules



A periodic table of molecules

Mapping QM7b. Variable number and nature of atoms

Maps based on combination of local kernels represents nicely
stoichiometry and energetics

Modifying the alchemical similarity kernel modifies the metric and
modulates the emphasis of the map between structure and composition

19 Michele Ceriotti http://cosmo.epfl.ch Machine learning for materials and molecules



A periodic table of molecules

Mapping QM7b. Variable number and nature of atoms

Maps based on combination of local kernels represents nicely
stoichiometry and energetics

Modifying the alchemical similarity kernel modifies the metric and
modulates the emphasis of the map between structure and composition

19 Michele Ceriotti http://cosmo.epfl.ch Machine learning for materials and molecules



Silicon phase diagram
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data from Amsel et at. PRB 2015; C. Pickard; A. Bartók



Clustering and Classification of M&M

Automatic classifications of ligands for molecular electronics -
hierarchical clustering based on REMatch-SOAP
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Azapentacene - Structure & Properties

Azapentacene: a candidate molecular electron transporter
Dual challenge: enumeration and classification of polymorphs, and
prediction of stability and electron mobility

22 Michele Ceriotti http://cosmo.epfl.ch Machine learning for materials and molecules

Data from G. Day and J. Yang



Structural Classification

Clustering/sketch-maps based on REMatch-SOAP correlate well with
qualitative classification of packing motifs, and with properties
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Structural Classification

Clustering/sketch-maps based on REMatch-SOAP correlate well with
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Structure and stability of oligopeptides

Representing geometry and stability of (locally) stable conformers in a
large database of aminoacids and dipeptides

24 Michele Ceriotti http://cosmo.epfl.ch Machine learning for materials and molecules

data from: Ropo, Blum, Baldauf, Scientific Data (2016)



Structure and stability of oligopeptides

Representing geometry and stability of (locally) stable conformers in a
large database of aminoacids and dipeptides
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Structure and stability of oligopeptides

Off-the-shelf hierarchical clustering shows structure in the dataset. . .
Clusters clearly correlate with structural parameters (semi-trivial) and
properties (non-trivial!)
Sketch-maps give a more comprehensive picture of the relation between
structures in the landscape, and complement nicely a clustering analysis
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Structure and stability of oligopeptides

Checking for data integrity in databases is going to be one of the
challenges in pushing high-throughput studies

Analysis of similarity makes it possible to detect duplicates. Distances
within clusters should roughly correlate with spread of properties.

Lack of correlations is a sign of inconsistency. We could detect and
resolve half a dozen instances within the aminoacids database
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Outlook

A comprehensive framework for the analysis of atomistic simulations
A similarity kernel based on a combination of environment descriptors
Recognizing recurring patterns by a probabilistic analysis
Non-linear mapping of complex (free)-energy landscapes

The same framework can be used for molecules and materials, to predict
properties, represent intuitively databases, detect outliers and resolve
data inconsistencies
(Development) code available on http://epfl-cosmo.github.io

27 Michele Ceriotti http://cosmo.epfl.ch Machine learning for materials and molecules
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Probabilistic Analysis of Molecular Motifs

Evaluate the probability distribution of molecular structures
Cluster it around the modes of the distribution
Naturally gives a fuzzy, continuous partitioning of configuration space

29 Michele Ceriotti http://cosmo.epfl.ch Machine learning for materials and molecules

Piero Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)
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