Archetype Analysis: a framework for selecting representative objects

Volker Roth, Department of Mathematics and Computer Science, University of Basel

Machine Learning: Supervised Setting

Machine Learning: Uncertain Labels

Sometimes even the best experts make errors.
Labels might be uncertain or missing...

Machine Learning: Unsupervised Setting

A Repeated Pattern: Search for Representative Observations

"most perfect possible form"

(Cluster-)Prototypes
"an attempt at something"

Archetype Analysis: Biological Motivation

Is there a theoretical foundation of the "archetype concept"?
$~$ O. Shoval, H. Sheftel, G. Shinar, Y. Hart, O. Ramote, A. Mayo, E. Dekel, K. Kavanagh, U. Alon: Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space. Science, 2012

Archetypes and Evolutionary Trade-offs

Trait 3
B 3 tasks

C 4 tasks

Gene Expression Space

Human colon crypt cells fall in a tetrahedron in gene expression space.

The four vertices of this tetrahedron are each enriched with genes for a specific task related to stemness and early differentiation.

Computational Archetype Selection

Cutler \&Breiman, Archetypal Analysis, Technometrics 1994.

- n observations $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \in \mathbb{R}^{p}$, as rows of data matrix $X \in \mathbb{R}^{n \times p}$
- Aim: find K archetypes $\Rightarrow Z \in \mathbb{R}^{K \times p} ; K \ll n$ fixed.
- Observations are convex mixtures of archetypes

$$
\boldsymbol{x}_{i}=Z^{t} \boldsymbol{a}_{i}+\epsilon_{i}, \quad a_{i j} \geq 0 \quad \text { and } \quad \sum_{j=1}^{K} a_{i j}=1
$$

Computational Archetype Selection

- Archetypes themselves are convex mixtures of observations: $\boldsymbol{z}_{i}=\sum_{j=1}^{n} b_{i j} \boldsymbol{x}_{j}, \quad$ where $b_{i j} \geq 0 \quad$ and $\quad \sum_{j=1}^{n} b_{i j}=1$

Archetypes approximate the convex hull!

- Constrained optimization problem involving two sets of coefficients $\left\{a_{i j}\right\}$ and $\left\{b_{i j}\right\}$: iteratively minimize sum of squares

$$
(\hat{A}, \hat{B})=\operatorname{argmin}_{A, B}\|X-A Z\|^{2}=\|X-A B X\|^{2} .
$$

Basic Algorithm

1. Given K archetypes $Z_{K \times p}$, update the compositions \boldsymbol{a}_{i} of the i-th object (a QP):

$$
\boldsymbol{a}_{i}=\arg \min _{\boldsymbol{a} \in \mathbb{R}_{+}^{p}: \boldsymbol{a}^{t} \mathbf{1}=1}\left\|\boldsymbol{x}_{i}-Z^{t} \boldsymbol{a}\right\|^{2}
$$

2. Given compositions $A_{n \times K}$, update archetypes by solving the least-squares problem

$$
Z=\arg \min _{Z \in \mathbb{R}^{K \times p}}\|X-A Z\|^{2}
$$

3. Move ATs back to the convex hull (also a QP):

$$
\boldsymbol{b}_{k}=\arg \min _{\boldsymbol{b} \in \mathbb{R}_{+}^{n_{1}}: \boldsymbol{b}^{t_{1_{n}}=1}}\left\|\boldsymbol{z}_{k}-X^{t} \boldsymbol{b}\right\|^{2}
$$

Computational Archetype Selection

Problems:

- High computational complexity,
- Solution heavily depends on initialization of archetypes,
- Have to fix the number of archetypes K a priori.
- Assume that we have a suitable representation such that it makes sense to search for "triangles"...

Archetype Analysis: Model Selection

How many archetypes?

Model selection: how many archetypes?

- Solve for all numbers and choose "best"
\sim Bayesian model comparison.
- A clever way for looking at all nubers?
- Initialize all observations as archetypes, apply sparse regression methods to shrink most archetypes to zero.

Sparsity constraint

Sparse Regression via the Group-Lasso

Least-squares: $\min _{\boldsymbol{\beta}}\|X \boldsymbol{\beta}-\boldsymbol{y}\|^{2}$.
Treat regression coefficients β_{i} as resources needed for optimization. Idea: limit resources \sim model must concentrate on important features.

$$
\|\boldsymbol{\beta}\|_{1} \leq \kappa \quad \sum_{j=1}^{K}\left\|\boldsymbol{\beta}_{j}\right\|_{2} \leq \kappa
$$

Automatic detection of archetypes

Rewrite $\|X-A Z\|$ as $\left\|\vec{x}-\left(A \otimes I_{p}\right) \vec{z}\right\|$, where \vec{x} means column-wise vectorization of X and use $\ell_{1,2}$ block-norm constraint: $\sum_{j=1}^{K}\left\|\boldsymbol{z}_{j}\right\| \leq \kappa$.

GroupLasso constraint will shrink some archetypes \boldsymbol{z}_{j} to zero, depending on constraint value κ.

A solution for the model selection problem

- Use GL algorithm that approximates the whole solution path on a fine grid of κ values

- For every κ-value, use BIC score

$$
\operatorname{BIC}(\hat{\mu})=\frac{\|\vec{x}-\hat{\mu}\|^{2}}{n \sigma^{2}}+\frac{\log (n)}{n} \cdot \hat{d f}(\hat{\mu}),
$$

and select the best scoring model.

Archetype Analysis: Algorithms

Will it work for huge datasets?

Efficient algorithms

(Bauckhage et al., 2015):
Solve step 1 and combined (2,3)-step with Frank-Wolfe algorithm Idea: use linear optimization oracle over constraint set.

- Linear minimization oracle

$$
\begin{array}{r}
\Delta(\boldsymbol{x})=\underset{\boldsymbol{z}}{\operatorname{argmin}}\langle\boldsymbol{x}, \boldsymbol{z}\rangle, \\
\text { s.t. } g(\boldsymbol{z}) \leq \kappa
\end{array}
$$

- Update $\boldsymbol{x} \leftarrow(1-\gamma) \boldsymbol{x}+\gamma \Delta\left(\nabla_{f}(\boldsymbol{x})\right)$
- Decrease γ

M. Jaggi, 2015

Pros: Highly efficient for one fixed value of κ
Cons: Not efficient for the whole solution path \sim model selction trick does not work well.

Alternative: Forward stagewise

Technically similar to Frank-Wolfe:

- Linear minimization oracle (LMO)

$$
\begin{aligned}
\Delta(\boldsymbol{x})= & \underset{\boldsymbol{z}}{\operatorname{argmin}}\langle\boldsymbol{x}, \boldsymbol{z}\rangle \\
& \text { s.t. } g(\boldsymbol{z}) \leq \epsilon \ll \kappa
\end{aligned}
$$

- Update $\boldsymbol{x} \leftarrow \boldsymbol{x}+\Delta\left(\nabla_{f}(\boldsymbol{x})\right)$

...but very different behaviour:
- incremental path following behaviour
\leadsto efficient for computing the whole solution path
- built-in monotonicity "regularization" \sim very stable, can be extended to non-convex "norms" for increased sparsity.

Forward stagewise

Consider step 1 in AT analysis:
Given K archetypes $Z_{K \times p}$, update the compositions \boldsymbol{a}_{i} of the i-th object \boldsymbol{x}_{i} under convexity constraints:

$$
\boldsymbol{a}_{i}=\arg \min _{\boldsymbol{a} \in \mathbb{R}_{+}^{p}: \boldsymbol{a}^{t} \mathbf{1}=1}\left\|\boldsymbol{x}_{i}-Z^{t} \boldsymbol{a}\right\|^{2}
$$

This is a non-negative lasso estimate

$$
\begin{array}{cl}
\min _{\boldsymbol{a}} & \left\|\boldsymbol{x}_{i}-Z^{t} \boldsymbol{a}\right\|^{2} \\
\text { s.t. } & \|\boldsymbol{a}\|_{1}=1, a_{j} \geq 0
\end{array}
$$

Use projected gradient:
$\boldsymbol{a} \leftarrow \boldsymbol{a}+\Delta\left(\nabla_{f}^{+}(\boldsymbol{a})\right)$

Forward stagewise

- Useful if LMO can be computed easily: all norms, block-norms etc.
- NN lasso: LMO is intersection of simplex and linear function \sim find best vertex l, update l-th component of \boldsymbol{a} as $a_{l} \leftarrow \boldsymbol{a}_{l}+\epsilon$ $\sim \boldsymbol{a}$ is monotone increasing in every component.
- Simple and efficient: iterate until $\|\boldsymbol{a}\|_{1}=1 \sim 1 / \epsilon$ iterations needed.
- Conceptually the same behaviour for group-lasso estimate in step 2.

Further algorithmic tricks

- Pre-select candidate points on convex hull:
- Points on convex hull in any linear projection are also on the "full" convex hull.
- Convex hull computation very efficient in 2D: $O(n \log n)$
- Randomly project data to planes, compute points on convex hull, aggregate.
- Alternative to random projections: use pairwise PCA projections.
- PCA is a good preprocessing step anyway, since convex polygon with K vertices can be embedded in a space with $<K$ dimensions.
- We can easily solve AT problems with >100 millions of objects.

Archetype Analysis: Data representation

How to encode the data such that we can see "triangles"?

Representation issues

Representations

- different domains
(p-values, body size, weight)
- monotone transformations (e.g. log)

Problem: archetypal analysis is sensitive to choice of representation

Solution: Copula extension

- representation independence
- robust against outliers
- mixed data \& missing values

Copula

Copula density

- p-dim pdf on $[0,1]^{p}$
- uniform marginals
- defines dependency structure

Property

- construct arbitrary multivariate distribution

$$
y_{j}=F_{j}^{-1}\left(u_{j}\right)
$$

(Sklar 1959)

Copula

Copula density

- p-dim pdf on $[0,1]^{p}$
- uniform marginals
- defines dependency structure

Property

- construct arbitrary multivariate distribution

$$
y_{j}=F_{j}^{-1}\left(u_{j}\right)
$$

(Sklar 1959)

Semi-parametric Gaussian Copula

- Idea: reconstruct latent space

$$
x_{j}=\left(\Phi^{-1} \circ F_{j}\right)\left(y_{j}\right)
$$

- Use empirical cdf's $\hat{F}_{j}=\frac{\operatorname{ranks}(Y[\cdot, j])}{n+1}$

$$
\begin{aligned}
& \boldsymbol{x} \sim \mathcal{N}(\mathbf{0}, R) \\
& y_{i}=f_{i}\left(x_{i}\right)
\end{aligned}
$$

- ATs invariant against monotone marginal transformations
- ATs depend only on ranks
\sim insensitive to outliers.

Mixed Continous / Discrete Data

Problem with discrete data: ties, empirical copula no longer uniform

Extended rank likelihood (Hoff, 2007):
stochastic associationpreserving mapping
Algorithm: Gibbs sampler

1. sample latent variables
$\boldsymbol{x}, R \mid \boldsymbol{x}$
2. compute archetypes z

Artificial Data

- Monotone transformation with beta marginals
- Variables quantised to 5 levels

Why use the Gaussian copula?

Generative model

$$
\begin{gathered}
\boldsymbol{a}_{i} \sim \operatorname{Dir}_{K}(\boldsymbol{\alpha}) \\
\boldsymbol{x}_{i} \mid Z, \boldsymbol{a}_{i} \sim \mathcal{N}\left(Z^{t} \boldsymbol{a}_{i}, \eta I_{p}\right) \\
X \mid Z, A \sim \mathcal{M N}(\overbrace{A Z}^{M}, I, \eta I) \\
X^{t} X \sim \mathcal{W}_{\mathrm{nc}}\left(n, n I, M^{t} M\right) \\
\approx \mathcal{W}_{\mathrm{c}}\left(n, \frac{1}{n} M^{t} M+\eta I\right)
\end{gathered}
$$

(Steyn and Roux, 1972)

Under the assumed generative model,
a Gaussian covariance structure is plausible.

Archetype Analysis: Applications

What is it good for?

Analysis of E.coli Data

Identified Archetypes

Archetypical Chemical Compounds

Idea: find ATs in list of compounds identified in an AIDS antiviral screen performed by the Developmental Therapeutics Program of the NCI/NIH, enriched with all available anti-HIV drugs

Archetypical Chemical Compounds

Archetypical Chemical Compounds

Compounds explained by AT 5

AZT It is of the nucleoside reverse-transcriptase inhibitor (NRTI) class. It inhibits the enzyme (reverse transcriptase) that HIV uses to synthesize DNA.

Compounds explained by AT 7

HIV protease inhibitors (they block a peptide cleaving enzyme).

Compounds explained by AT 10

Calanolide A is an experimental non-nucleoside reverse transcriptase inhibitor (NNRTI).

Compounds explained by AT 18

Text categorization

- Reuters Corpus Volume 1 (RCV1): an archive of news documents
- 4 categories: Economics, Government, Corporate, Markets
- 23149 documents, vocabulary of 57180 words.
- Documents represented by word frequencies: Term frequency (TF) times Inverse Document Frequency (IDF).
- Automatically detect "pure" or archetypical documents (which might represent "pure" topics)

Text categorization

Text categorization

```
                                    gmt institut
                            rise
season lowdoldrum %
```

washington
milit northerndemo faction rival arbil confirm clash forc KO tehr party kurdist war attack iran wiv war heavy talaban accus

immedirna
enclav ceasefir shell protect
react barzanguerrill
massoud invitat

Pose analysis

Fig. 5. (a) 2 D projection of the Weizman set containing 5.000 body poses; points on the convex hull are shown as pictures. (b) 6 archetypal poses extracted from the data.

Image Encoding

Fig. 3: Image patches (16×16 pixels) for archetypal autoencoding experiments.

(a) $k=4$ archetypes

(d) $k=64$ archetypes

(b) $k=9$ archetypes

(e) $k=256$ archetypes

(c) $k=16$ archetypes

(f) $k=1024$ archetypes

Conclusion

- Archetype analysis is a powerful tool identifying representative objects in large data collections.
- Many technical challenges:
- data types, representation
\sim invariances due to semi-parametric copula construction
- computational/memory complexity
$~$ stagewise forward algorithms, convex hull approximations, etc.
- Many application areas: objects can be bacteria, genes, documents, chemical compounds, images, etc. etc.
- Open questions: AT analysis essentially is an auto-encoding technique \sim neural implementations,
\sim use as building-blocks in deep belief networks, etc.

Acknowledgments

Department of Mathematics and Computer Science, University of Basel: Dinu Kaufmann, Sebastian Keller, Damian Murezzan, Sonali Parbhoo, Sandhya Prabhakaran, Mélanie Rey, Aleksander Wieczorek, Mario Wieser

University Hospital Zurich: Francesca Di Giallonardo, Yannick Duport, Christine Leemann, Stefan Schmutz, Nottania K. Campbell, Beda Joos, Osvaldo Zagordi, Huldrych F. Günthard, Karin J. Metzner

Department of Biosystems Science and Engineering, ETH Zurich:
Armin Töpfer, Christian Beisel, Niko Beerenwinkel
Functional Genomics Center Zurich: Maria R.Lecca, Andrea Patrignani
Inst. Medical Virology, U Zurich: Peter Rusert, Alexandra Trkola

