

Archetype Analysis: a framework for selecting representative objects

Volker Roth, Department of Mathematics and Computer Science, University of Basel

Machine Learning: Supervised Setting

Machine Learning: Uncertain Labels

Sometimes even the best experts make errors. Labels might be uncertain or missing...

Machine Learning: Unsupervised Setting

A Repeated Pattern: Search for Representative Observations

Archetype Analysis: Biological Motivation

Is there a theoretical foundation of the "archetype concept"?

 \sim O. Shoval, H. Sheftel, G. Shinar, Y. Hart, O. Ramote, A. Mayo, E. Dekel, K. Kavanagh, U. Alon: **Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space**. Science, 2012

Archetypes and Evolutionary Trade-offs

Gene Expression Space

Human colon crypt cells fall in a tetrahedron in gene expression space.

PC1

The four vertices of this tetrahedron are each enriched with genes for a specific task related to stemness and early differentiation.

Computational Archetype Selection

Cutler & Breiman, Archetypal Analysis, Technometrics 1994.

- n observations $\{x_1, \ldots, x_n\} \in \mathbb{R}^p$, as rows of data matrix $X \in \mathbb{R}^{n imes p}$
- Aim: find K archetypes $\Rightarrow Z \in \mathbb{R}^{K \times p}$; $K \ll n$ fixed.
- Observations are convex mixtures of archetypes

$$\boldsymbol{x}_i = Z^t \boldsymbol{a}_i + \epsilon_i, \quad a_{ij} \ge 0 \text{ and } \sum_{j=1}^K a_{ij} = 1.$$

Computational Archetype Selection

• Archetypes themselves are convex mixtures of observations:

• Constrained optimization problem involving two sets of coefficients $\{a_{ij}\}$ and $\{b_{ij}\}$: iteratively minimize sum of squares

$$(\hat{A},\hat{B}) = \operatorname{argmin}_{A,B} \|X - AZ\|^2 = \|X - ABX\|^2.$$

Basic Algorithm

1. Given K archetypes $Z_{K \times p}$, update the compositions a_i of the *i*-th object (a QP):

$$\boldsymbol{a}_i = rg\min_{\boldsymbol{a}\in\mathbb{R}^p_+:\boldsymbol{a}^t\boldsymbol{1}=1}\|\boldsymbol{x}_i-Z^t\boldsymbol{a}\|^2.$$

2. Given compositions $A_{n \times K}$, update archetypes by solving the least-squares problem

$$Z = \arg \min_{Z \in \mathbb{R}^{K \times p}} \|X - AZ\|^2.$$

3. Move ATs back to the convex hull (also a QP):

$$\boldsymbol{b}_k = \arg\min_{\boldsymbol{b}\in\mathbb{R}^n_+:\boldsymbol{b}^t\boldsymbol{1}_n=1}\|\boldsymbol{z}_k-X^t\boldsymbol{b}\|^2.$$

Computational Archetype Selection

Problems:

- High computational complexity,
- Solution heavily depends on initialization of archetypes,
- Have to fix the number of archetypes K a priori.
- Assume that we have a suitable **representation** such that it makes sense to search for "triangles"...

Archetype Analysis: Model Selection

How many archetypes?

Model selection: how many archetypes?

- Solve for all numbers and choose "best"
 → Bayesian model comparison.
- A clever way for looking at all nubers?
- Initialize all observations as archetypes, apply **sparse regression** methods to shrink most archetypes to zero.

Sparse Regression via the Group-Lasso

Least-squares: $\min_{\beta} ||X\beta - y||^2$. Treat regression coefficients β_i as **resources** needed for optimization. Idea: **limit resources** \rightsquigarrow model must concentrate on **important features**.

Automatic detection of archetypes

Rewrite ||X - AZ|| as $||\vec{x} - (A \otimes I_p)\vec{z}||$, where \vec{x} means column-wise vectorization of X and use $\ell_{1,2}$ block-norm constraint: $\sum_{j=1}^{K} ||\boldsymbol{z}_j|| \leq \kappa$.

GroupLasso constraint will shrink some archetypes z_j to zero, depending on constraint value κ .

A solution for the model selection problem

• Use GL algorithm that approximates the whole solution path on a fine grid of κ values

• For every κ -value, use BIC score

$$\mathsf{BIC}(\hat{\mu}) = \frac{\|\vec{x} - \hat{\mu}\|^2}{n\sigma^2} + \frac{\log(n)}{n} \cdot \widehat{df}(\hat{\mu}),$$

and select the best scoring model.

Archetype Analysis: Algorithms

Will it work for huge datasets?

Efficient algorithms

(Bauckhage et al., 2015):

Solve step 1 and combined (2,3)-step with Frank-Wolfe algorithm Idea: use **linear optimization oracle** over constraint set.

• Linear minimization oracle

$$\begin{array}{lll} \Delta(\boldsymbol{x}) &=& \arg\min_{\boldsymbol{z}} \langle \boldsymbol{x}, \boldsymbol{z} \rangle, \\ & \text{ s.t. } g(\boldsymbol{z}) \leq \kappa \end{array}$$

• Update $\boldsymbol{x} \leftarrow (1-\gamma)\boldsymbol{x} + \gamma\Delta(\nabla_f(\boldsymbol{x}))$

M. Jaggi, 2015

Pros: Highly efficient for one fixed value of κ **Cons:** Not efficient for the whole solution path \sim model selction trick does not work well.

Alternative: Forward stagewise

Technically similar to Frank-Wolfe:

• Linear minimization oracle (LMO)

$$\begin{array}{lll} \Delta(\boldsymbol{x}) &=& \operatorname*{argmin}_{\boldsymbol{z}} \langle \boldsymbol{x}, \boldsymbol{z} \rangle, \\ & \text{s.t.} & g(\boldsymbol{z}) \leq \boldsymbol{\epsilon} \ll \kappa \end{array}$$

• Update $\boldsymbol{x} \leftarrow \boldsymbol{x} + \Delta(\nabla_f(\boldsymbol{x}))$

...but very different behaviour:

- incremental path following behaviour \sim efficient for computing the whole solution path
- built-in monotonicity "regularization" → very stable, can be extended to non-convex "norms" for increased sparsity.

Forward stagewise

Consider step 1 in AT analysis:

Given K archetypes $Z_{K \times p}$, update the compositions a_i of the *i*-th object x_i under convexity constraints:

$$\boldsymbol{a}_i = rg\min_{\boldsymbol{a}\in\mathbb{R}^p_+:\boldsymbol{a}^t\boldsymbol{1}=1}\|\boldsymbol{x}_i-Z^t\boldsymbol{a}\|^2.$$

This is a non-negative lasso estimate

$$egin{array}{lll} \min_{m{a}} & \|m{x}_i - Z^t m{a}\|^2 \ {
m s.t.} & \|m{a}\|_1 = 1, \; a_j \geq 0 \end{array}$$

Use projected gradient: $\boldsymbol{a} \leftarrow \boldsymbol{a} + \Delta(\nabla_f^+(\boldsymbol{a}))$

Forward stagewise

- Useful if LMO can be computed easily: all norms, block-norms etc.
- NN lasso: LMO is intersection of simplex and linear function

 → find best vertex l, update l-th component of a as a_l ← a_l + ε
 → a is monotone increasing in every component.
- Simple and efficient: iterate until $\|\boldsymbol{a}\|_1 = 1 \rightsquigarrow 1/\epsilon$ iterations needed.
- Conceptually the same behaviour for group-lasso estimate in step 2.

Further algorithmic tricks

- Pre-select candidate points on convex hull:
 - Points on **convex hull in any linear projection** are also on the "full" convex hull.
 - Convex hull computation very efficient in 2D: $O(n \log n)$
 - Randomly project data to planes, compute points on convex hull, aggregate.
- Alternative to random projections: use **pairwise PCA projections**.
 - PCA is a good preprocessing step anyway, since convex polygon with K vertices can be embedded in a space with < K dimensions.
- We can easily solve AT problems with > 100 millions of objects.

Archetype Analysis: Data representation

How to encode the data such that we can see "triangles"?

Representation issues

Representations

- different domains
 (*p*-values, body size, weight)
- monotone transformations (e.g. log)

Problem: archetypal analysis is sensitive to choice of representation

Solution: Copula extension

- representation independence
- robust against outliers
- mixed data & missing values

Copula

Copula density

- p-dim pdf on $[0,1]^p$
- uniform marginals
- defines dependency structure

Property

• construct arbitrary multivariate distribution $y_j = F_j^{-1}(u_j)$ (Sklar 1959)

Independence Copula

Copula

Copula density

- p-dim pdf on $[0,1]^p$
- uniform marginals
- defines dependency structure

Property

• construct arbitrary multivariate distribution $y_j = F_j^{-1}(u_j)$ (Sklar 1959)

Gaussian Copula

Semi-parametric Gaussian Copula

Hierarchical model:

$$egin{array}{c} R \ ec{x} \ oldsymbol{x} \ ec{x} \ ec{y}_i \ = f_i(x_i) \end{array}$$

- ATs invariant against monotone marginal transformations
- ATs depend only on ranks \rightsquigarrow insensitive to outliers.

- Idea: reconstruct latent space $x_j = (\Phi^{-1} \circ F_j)(y_j)$
- Use empirical cdf's $\hat{F}_j = \frac{\operatorname{ranks}(Y[\cdot,j])}{n+1}$

Mixed Continous / Discrete Data

Problem with discrete data: ties, empirical copula no longer uniform

Extended rank likelihood (Hoff, 2007): stochastic associationpreserving mapping Algorithm: Gibbs sampler

- 1. sample latent variables $oldsymbol{x}$, $R|oldsymbol{x}$
- 2. compute archetypes z

Artificial Data

- Monotone transformation with beta marginals
- Variables quantised to 5 levels

Why use the Gaussian copula?

Generative model

$$a_{i} \sim \operatorname{Dir}_{K}(\alpha)$$

$$x_{i}|Z, a_{i} \sim \mathcal{N}(Z^{t}a_{i}, \eta I_{p})$$

$$X|Z, A \sim \mathcal{M}\mathcal{N}\left(\widehat{AZ}, I, \eta I\right)$$

$$X^{t}X \sim \mathcal{W}_{\mathsf{nc}}\left(n, nI, M^{t}M\right)$$

$$\approx \mathcal{W}_{\mathsf{c}}\left(n, \frac{1}{n}M^{t}M + \eta I\right)$$
(Steyn and Roux, 1972)

Under the assumed generative model, a Gaussian covariance structure is plausible.

Archetype Analysis: Applications

What is it good for?

Analysis of E.coli Data

Archetypical Chemical Compounds

Idea: find ATs in list of compounds identified in an AIDS antiviral screen performed by the Developmental Therapeutics Program of the NCI/NIH, enriched with all available anti-HIV drugs

Archetypical Chemical Compounds

Archetypical Chemical Compounds

AZT It is of the nucleoside reverse-transcriptase inhibitor (NRTI) class. It inhibits the enzyme (reverse transcriptase) that HIV uses to synthesize DNA.

HIV protease inhibitors (they block a peptide cleaving enzyme).

Calanolide A is an experimental non-nucleoside reverse transcriptase inhibitor (NNRTI).

IPAM MPSWS1 2016, V Roth

- Reuters Corpus Volume 1 (RCV1): an archive of news documents
- 4 categories: Economics, Government, Corporate, Markets
- 23149 documents, vocabulary of 57180 words.
- Documents represented by word frequencies: Term frequency (TF) times Inverse Document Frequency (IDF).
- Automatically detect "pure" or archetypical documents (which might represent "pure" topics)

43

hang retreat e kev data ake Iondon c eng S stoc end NZ finish session recorc J^a gold Spi ê ec good un e high <u>e</u> strong profit ທ

Pose analysis

Making Archetypal Analysis Practical 279

Fig. 5. (a) 2D projection of the Weizman set containing 5.000 body poses; points on the convex hull are shown as pictures. (b) 6 archetypal poses extracted from the data.

Image Encoding

Fig. 3: Image patches $(16 \times 16 \text{ pixels})$ for archetypal autoencoding experiments.

50

Conclusion

- Archetype analysis is a powerful tool identifying **representative objects** in large data collections.
- Many technical challenges:
 - data types, representation
 - \rightsquigarrow invariances due to semi-parametric copula construction
 - computational/memory complexity
 - \sim stagewise forward algorithms, convex hull approximations, etc.
- Many **application areas:** objects can be bacteria, genes, documents, chemical compounds, images, etc. etc.
- Open questions: AT analysis essentially is an auto-encoding technique
 → neural implementations,
 - \rightsquigarrow use as building-blocks in deep belief networks, etc.

Acknowledgments

Department of Mathematics and Computer Science, University of Basel: Dinu Kaufmann, Sebastian Keller, Damian Murezzan, Sonali Parbhoo, Sandhya Prabhakaran, Mélanie Rey, Aleksander Wieczorek, Mario Wieser

University Hospital Zurich: Francesca Di Giallonardo, Yannick Duport, Christine Leemann, Stefan Schmutz, Nottania K. Campbell, Beda Joos, Osvaldo Zagordi, Huldrych F. Günthard, Karin J. Metzner

Department of Biosystems Science and Engineering, ETH Zurich: Armin Töpfer, Christian Beisel, Niko Beerenwinkel

Functional Genomics Center Zurich: Maria R.Lecca, Andrea Patrignani

Inst. Medical Virology, U Zurich: Peter Rusert, Alexandra Trkola