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WHATI IS
MACHINE LEARNING!?

* The context: A pattern exists ... but we cannot pin it down
mathematically ... we have data on 1t though ...

* The concept: Build a heuristic, predictive model ... basec

purely on past experience/data ... rather than explicitly solving
equations underlying known laws

* [he learning process should be “adaptive’, I.e., as more data
accumulates, the predictive power should increase



EXAMPLE: MOVIE RATINES
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Courtesy: Learning from data, Abu-Mustafa, Magnon-Ismail & Lin



ERANMPLE: CREDIT APPRONS

Applicant information

age 23 years
gender male
annual salary $30,000
years in residence 1 year
years in job 1 year
current debt $15,000

Approve credit!?

Courtesy: Learning from data, Abu-Mustafa, Magnon-Ismail & Lin



LEARNING COMPONENTS

Input: x (customer application)
Output: y (good/bad customer?)
Data: (x1, Y1), (X2, ¥2), ..., (XN, YN) (historical records)

(To be determined, refined,

Hypothesis: g(x) =y and used in the future)

“Training set” versus ‘“test set”



WHEN TO USE
MACHINE LEARNING!?

* When fundamental laws underlying a process don't exist
le.g., soclal science problems]

* When such fundamental laws may exist, but are

enormously complex [e.g., weather prediction]

- When we have a lot of data and we are looking for
simple rules and correlations [e.g., Hall-Petch equation]




MACHINE LEARNING [N
MATERIALS SCIENCE

Data Generation
via Laborious

Computations/Experiments

Instant Property
Fingerprint Predictions

via Statistical Learning

“Machine learning in materials science: Recent progress and emerging applications,”’
Mueller, Kusne & Ramprasad, Reviews of Computational Chemistry (2016)

“Atomistic calculations and materials informatics: A review”
Ward & Wolverton, Current Opinion in Solid State and Materials Science (2016)



FINGERPRINT [STKEH

The “fingerprint” is a numerical representation of the material
[t should be defined based on the application & domain knowledge
[t should be inturtive, and inexpensive to compute

't should be invariant to transformations of the material, such as
translation, rotation, and permutations of like elements

Fingerprints can be macroscopic or microscopic



ERAMPLE |: COARSE FINGERPRINGES
PREDICTING ELECTRICAL BREAKDOWN

Predicting the intrinsic electrical

breakdown field of an insulator Dependence on Chemistry?
from first principles is difficult ...

MMsteleicrmined by the
balance between energy gained
by an electron from the field
and energy lost to phonons ...

... but can the breakdown field
be estimated rapidly using a

simple heuristic model ? ... consider 82 binary octets

Frohlich, Nature 151, 339 (1943)
Sun, Boggs & Ramprasad, Appl. Phys. Lett. 101, 132906 (2012)
Kim, Pilania & Ramprasad, Chemistry of Materials 28, 1 304 (2016)




LEARNING FROM DATA

Intrinsic breakdown field Easily accessible material
of 82 binary octets properties

Band gap
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Correlation analysis & Machine learning



pEA T URE CREATICHS

8 Primary features 12 prototype functions
E,  Bandgap x 1/x  «x? x2
Wma  Phonon cutoff frequency x3 x3 vxoo 1/vx
Wnean Mean phonon frequency In(x) 1/In(x) ef e=
Eo Dielectric constant (electronic) —

€0  Dielectric constant (total)
N4q Nearest neighbor distance
4 Density

M Bulk modulus

96 features 4,480 compound features 183,368 compound features
with 1 function with 2 functions with 3 functions
96
1 96 96
- -1l :

ex) In(x) ex) x2/ex ex) x3 In(x) /vVx

Total 187,952 features

See also: Ghiringhelll, et al, Phys. Rev. Lett. (2015)



FEATURE SELECTICHS
WITH “LASSO”

Absolute
. C d Pearson
Total 187,952 features Ranking  “Feiure  correlation
/w InF,
l 1 InE, Inw,,,, Ndyy 0.899
. Vo V :
LASSO-based down-selection ? s 0590
3 VO oy INE, 0.890
Feature  (n=1~187,952) . VE, Ino, 0,889
l 5 VE, / dyy 0.885
-
Highly correlated? No ‘ s/ e
(based on LASSO . InE, / expld) 0.880
coefficient) ,
Discard
8 VE, / Indyy 0.879
Yes 1
9 o E,/Ino,,, 0.871
Survive
10 Vo, ! Ve, 0.869

36 compound features 36 Ve VE, 0.450



PREDICTION (& DESIGN?)

The finding

Fy = 24.442exp(0.315 [E, 0, )
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Note: This is a heuristic, not a law; we cannot
take it too seriously!



AN APPLICATION

209 ABX, Prediction of Compounds with
perovskites breakdown field  highest breakdown field

Contour: _---- At
Breakdown field 0“3 4 5 & 7

Kim, Pilania & Ramprasad, J. Phys. Chem. C 120, 14575 (2016)
Kim, Pilania & Ramprasad, Chemistry of Materials 28, 1304 (2016)



EXAMPLE 2: MEDIUM FINGERPRINTS
PREDICTING POLYMER PROPERTIES

Organic Blocks: CH;, CO, CS5, O, NH, CgH4, C4H2S

Fingerprint Choice |:"Singles™ - number of CHy, NH, CO, CgHa, etc.
Fingerprint Choice 2:"Doubles” - number of CH-CHy, NH-CH,, CO-NH, etc.
Fingerprint Choice 3:"Triples” - number of CHy-CH-CHa, NH-CH»-CO, etc.

Mannodi-Kanakkithodi et al,, Sci. Rep. 6, 20952 (2016)
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ITHE LEARNING FRAMEWORK

Kernel ridge regression

Measure of similarity: Euclidean distance
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d(i,j) = \/(‘x -X; |x - X,

X, —X
p

Property Estimation:
Sum of weighted Gaussians

N
) 1
Y(P)= a,-exp[-—wz d(P,P,-f]
i=1

Rupp, Tkatchenko, Muller; Von Lilienfeld, “Fast and accurate modeling of molecular
atomization energies with machine learning’’, Phys. Rev. Lett. 108,058301 (2012)



INSTANT PROPERTY PREDICTIONS

... using a DFT dataset for about 300 organic polymers

ML Predictions
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< | khazana.uconn.edu

A Computational Materials Knowledgebase

1.0
I I O ZO | I O A platiorm 10 store structure and property data created by atomistic simulations,

and tools to design materials by leaming from the data.

Design Search Contact About

Polymer Dielectrics Property Prediction @

Obtain properties predicted by DFT and/or machine learning [1,2)

Choose the building blocks (co-polymers) of polymer repeat unit.

i - co EB- s B cene B - Blocks ) - Blocks ) - Block7 | - Blocks | - Block9 [ - Bk 10 | -
Predict Properties

References

1. A Mannodi-Kanakkithodi, G. Pilania, T. D. Huan, T. Lookman, R. Ramprasad Machine learning strategy for accelerated design of polymer
dielectrics Scientific Reports, 6, 20952 (2016). Artice

2. T. D. Huan, A. Mannodi-Kanakkithodi, R. Ramprasad Accelerated materials property predictions and design using motif-based fingerprints
Physical Review B, 92, 014106 (2015). Artcie

Target polymer summary

Repeat unit: -(-NH-CO-NH-CgH4~)

H O H 1
Number of buliding blocks (co-polymers): 4 h" _(Ll _’j‘ Q
Chemical formula: C7HgON; .

Predicted properties using machine learning model

Band Gap

Method Polymer Dielectric Constant Refractive Index )
HSEODG (eV)

C7HgON2

Machine Leaming (1] 495 1.98 3.30
Ne4-CO-NR4-CEM4
7HsON
Machine Learning (2] it 4.90 1.93 328
NH-CO-NH-Cit4
DFT (ID: 0299) 02C14H12N 4.91 1.97 3.45

N-CO-NM-CEMNE
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A Computational Materials Knowledgebase

1.0
E < h O ZG I l O A platform to store structure and property data created by atomistic simulations

and tools to design materials by learning from the data

Design Search Contact About

Polymer Dielectrics Property Prediction {ﬂ

Obtain properties predicted by DFT and/or machine learning [1,2]

Choose the building blocks (co-polymers) of polymer repeat unit.

N B-co B-nNn B ces B-ciz B- caes B-cs B- o B- ce - sk -

Predict Properties

References

1. A. Mannodi-Kanakkithodi, G. Pilania, T. D. Huan, T. Lookman, R. Ramprasad Machine learning strategy for accelerated design of polymer
dielectrics Scientific Reports, 6, 20952 (2016). Artcle

2. T. D. Huan, A. Mannodi-Kanakkithodi, R. Ramprasad Accelerated materials property predictions and design using motif-based fingerprints
Physical Review B, 92, 014106 (2015). Article

Target polymer summary

Repeat unit: -(-NH-CO-NH-CgH-CHy-C 4HsS-CS-O-CHa-) r

H O H H S H
Number of building blocks (co-polymers): 9 ,L_g_,L@‘é N-E—0—2¢
Chemical formula: Cy4H1202N2S3 'I‘ \ : r!| n

Predicted properties using machine learning model

Band Gap,
Method Polymer Dielectric Constant Refractive Index

HSEODG (eV)
C14H1205N
Machine Leaming [1] 14H1202N2Ss 4.51 1.92 3.92
NH-CO-NH-COMH4-CHZ-CAMZSCS-0-CH2
H1202N
Machine Leaming (2] C14H1202N25s 4.46 1.92 3.35

NH-CO-NH-CoH4-CH2-C4M2ZSCS-0-CH2



ERAIMPLE 5: FINE FINGERFPRIFNSS
PREDICTING ATOMIC FORCES

 Given only the atomic
configuration, can we
directly predict the
atomic forces rapidly &
accurately?

» Atoms respond to forces,
and force Is a local
quantity (unlike energy)

AUGUST 15, 19359

PHYSICAL REVIEW

VOLUME 56

Forces in Molecules

R. P. FrvNMAN
Massackusells Institnte of Technology, Cambridge, Massackusetls

(Received June 22, 1939)

Formulas have been developed to calculate the forces in a molecular system directly, rather
than indirectly through the agency of energy. This permits an independent calculation of the
slope of the curves of energy 4. position of the nuclei, and may thus increase the accuracy, or
decrease the labor involved in the calculation of these curves. The force on a nucleus in an
atomic system is shown to be just the classical electrostatic force that would be exerted on this
nucleus by other nucles and by the electrons’ charge distribution, Qualitative implications of

this are discussed.

ANY of the problems of molecular structure

are concerned essentially with forces. The
stifiness of wvalence bonds, the distortions in
geometry due to the various repulsions and
attractions between atoms, the tendency of
valence bonds to occur at certain definite angles
with each other, are some examples of the kind
of problem in which the idea of force is para-
mount.

Usually these problems have been considered
through the agency of energy, and its changes
with changing configuration of the molecule.
The reason for this indirect attack through
energy, rather than the more qualitatively illumi-
nating one, by considerations of force, is perhaps
twofold. First it ig probably thought that force
is a quantity that is not easily described or calcu-
lated by wave mechanics, while energy is, and
second, the first molecular problem to be solved
is the analysis of band spectra, strictly a problem
of energy as such. It is the purpose of this paper

entire process it repeated for a new nuclear
position, and the new value of energy calculated.
Proceeding in this way, a plot of energy us,
position is obtained. The force on a nucleus is
of course the slope of this curve.

The following method is one designed to
obtain the forces at a given configuration, when
oply the configuration is known. It deoes not
require the calculations at neighboring Nmﬁgnm-.
tions. That is, it permits a calculation of the
slope of the energy curve as well as its value,
for any particular configuration. It is to be
emphasized that this allows a considerable saving
of labor of calculations. To obtain force under the
usual scheme the energy needs to be calculated
for two or more different and neighboring con-
figurations. Each point requires the calculation
of the wave functions for the entire system.
In this new: method, only one configuration, the
one in question, need have its wave functions
computed in detail. Thus the labor is consider-
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Machine Learning Atomic force
> dependent property

“Fingerprint”

Force Field

Botu & Ramprasad, [JQC (2014) & Phys. Rev. B (2015)
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Force field preparation

(AGNI)
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BECOME [ RY OPIMIZATICHS

~ 850 ARaueie
in FCC phase

with vacancies




LARGE-SCALE MOTIONS

Adatom migration on Al (I | )
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s the physics underlying dynamics preserved?



ML Force H-J

FURTHER VALIDATION

... on situations not used during “training”

Grain Boundaries
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BRERGY FROM FORCES

MD simulations of bulk Al
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HIERARCHY OF FINGERPRINTS

llustrative Examples Accuracy

Material constituent features — breakdown strength, phase stability,
catalytic activity, friction coefficient, etc.

Kim, et al, Chem. Mat. (2016); Pilania, et al, Sci. Rep. (2016); Ghiringhelli, et al, PRL

(2015); Bucholtz, et al, Tribol Lett (2012)

Coarse Moderate

| Building units, Substructures, Motifs — Properties
MIYelIS1aalll |'annodi-Kanakkithodi, et al, Sci. Rep. (2016): Tran Huan, et al, PRB (2015); Yang, Ceder; Moderate
et al, PRB (2014)

Atomic/electronic arrangements (Coulomb matrix, SOAP, Symmetry

functions) — Properties, Energies, Forces Hioh
Botu, Ramprasad, PRB (2015) & JQC (2014); Hansen, et al, JPC Lett (2015); Bartok, 2
et al, JQC (2015); Behler, [JQC (2015); Li, et al, PRL (2015)



ERITICAL NEXT STES.

» Decision on whether to use machine learning

» Choice of fingerprints
» Uncertainty (out-of-domain) quantification

» Automatic & adaptive improvement of model

* Show the valuel
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BURINGS "LEARNING MACHIINESS

Instead of trying to produce a program to simulate the adult
mind, why not rather try to produce one which simulates the
child's ? If this were then subjected to an appropriate course of
education one would obtain the adult brain ...

‘Computing Machinery and Intelligence”
A. M. Turing
Mind, Vol. LIX, No. 236, . 433 (1950)



