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WHAT  IS 
MACHINE  LEARNING?

• The context:  A pattern exists … but we cannot pin it down 
mathematically … we have data on it though …

• The concept:  Build a heuristic, predictive model … based 
purely on past experience/data … rather than explicitly solving 
equations underlying known laws

• The learning process should be “adaptive”, i.e., as more data 
accumulates, the predictive power should increase



EXAMPLE:  MOVIE  RATING 

Courtesy: Learning from data, Abu-Mustafa, Magnon-Ismail & Lin



EXAMPLE:  CREDIT  APPROVAL
Applicant information

Approve credit?

Courtesy: Learning from data, Abu-Mustafa, Magnon-Ismail & Lin



LEARNING  COMPONENTS

Input: x (customer application)

Output: y (good/bad customer?)

Data: (x1, y1), (x2, y2), …, (xN, yN) (historical records)

Hypothesis: g(x) = y (To be determined, refined, 
and used in the future)

“Training set”  versus  “test set”



WHEN  TO  USE  
MACHINE  LEARNING?

• When fundamental laws underlying a process don't exist 
[e.g., social science problems]

• When such fundamental laws may exist, but are 
enormously complex [e.g., weather prediction]

• When we have a lot of data and we are looking for 
simple rules and correlations [e.g., Hall-Petch equation]



MACHINE  LEARNING  IN  
MATERIALS  SCIENCE

Material Property
via Laborious  

Computations/Experiments

Data Generation

Fingerprint
Instant Property 

Predictions

via Statistical Learning

“Machine learning in materials science:  Recent progress and emerging applications,” 
Mueller, Kusne & Ramprasad, Reviews of Computational Chemistry (2016)

“Atomistic calculations and materials informatics: A review”
Ward & Wolverton, Current Opinion in Solid State and Materials Science (2016)



FINGERPRINT  IS  KEY!
• The “fingerprint” is a numerical representation of the material

• It should be defined based on the application & domain knowledge

• It should be intuitive, and inexpensive to compute

• It should be invariant to transformations of the material, such as 
translation, rotation, and permutations of like elements

• Fingerprints can be macroscopic or microscopic



EXAMPLE  1:  COARSE  FINGERPRINTS
PREDICTING  ELECTRICAL  BREAKDOWN

Frohlich, Nature 151, 339 (1943)
Sun, Boggs & Ramprasad, Appl. Phys. Lett. 101, 132906 (2012)
Kim, Pilania & Ramprasad, Chemistry of Materials 28, 1304 (2016)

Predicting the intrinsic electrical 
breakdown field of an insulator 
from first principles is difficult … 

… it is determined by the 
balance between energy gained 
by an electron from the field 
and energy lost to phonons …

… but can the breakdown field 
be estimated rapidly using a 
simple heuristic model ?

Dependence on Chemistry?

… consider 82 binary octets



LEARNING  FROM  DATA

Band gap
Phonon cutoff frequency
Mean phonon frequency 

Dielectric constant (electronic) 
Dielectric constant (total)
Nearest neighbor distance

Density
Bulk modulus

Intrinsic breakdown field 
of 82 binary octets

Easily accessible material 
properties

Correlation analysis & Machine learning

Fb = f(A,B,…)?



FEATURE  CREATION

Total 187,952 features

12 prototype functions

x 1/x x2 x-2

x3 x-3 √x 1/√x
ln(x) 1/ln(x)    ex e-x

96 features !
with 1 function 

8

12

183,368 compound features!
with 3 functions

4,480 compound features!
with 2 functions

96

96

96

96
96

ex) ln(x) ex) x2/ex ex) x3 ln(x) /√x

          8 Primary features 

Eg Band gap
ωmax Phonon cutoff frequency
ωmean Mean phonon frequency 
εe Dielectric constant (electronic) 
εtot Dielectric constant (total)
Ndd Nearest neighbor distance
ρ Density
M Bulk modulus

See also: Ghiringhelli, et al, Phys. Rev. Lett. (2015)



FEATURE  SELECTION
WITH  “LASSO”

Featuren (n=1~187,952)

!
Highly correlated?

(based on LASSO !
coefficient)

Yes

No

Survive

Discard

36 compound features

LASSO-based down-selection

Ranking Compound 
Feature

Absolute 
Pearson 

correlation !
/w lnFb

1 lnEg lnωmax /√dNN  0.899

2 √ωmax √Eg  0.890

3 √ωmax lnEg  0.890

4 √Eg lnωmax  0.889

5 √Eg / dNN  0.885

6  lnEg / dNN
2  0.883

7 lnEg / exp(dNN) 0.880

8 √Eg / lndNN  0.879

9 ωmax √Eg / lnωmean  0.871

10 √ωmax / √εe  0.869

… … …

36 √εtot √Eg 0.480

Total 187,952 features



PREDICTION  (& DESIGN?)
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Note: This is a heuristic, not a law; we cannot 
take it too seriously!

The finding



AN  APPLICATION

Kim, Pilania & Ramprasad, J. Phys. Chem. C 120, 14575 (2016)
Kim, Pilania & Ramprasad, Chemistry of Materials 28, 1304 (2016)



Fingerprint Choice 1: “Singles” - number of CH2, NH, CO, C6H4, etc.
Fingerprint Choice 2: “Doubles” - number of CH2-CH2, NH-CH2, CO-NH, etc.
Fingerprint Choice 3: “Triples” - number of CH2-CH2-CH2, NH-CH2-CO, etc.

Mannodi-Kanakkithodi et al., Sci. Rep. 6, 20952 (2016) 
Tran et al., Phys. Rev. B 92, 014106 (2015)

Pilania et al., Sci. Rep. 3, 2810 (2013)

EXAMPLE  2:  MEDIUM  FINGERPRINTS
PREDICTING  POLYMER  PROPERTIES

Organic Blocks: CH2, CO, CS, O, NH, C6H4, C4H2S



THE  LEARNING  FRAMEWORK

1

2

3

4

Kernel ridge regression

Measure of similarity: Euclidean distance

Property Estimation: 
Sum of weighted Gaussians

i

d(i,1)

d(i,2)

d(i,3)

d(i,4)

Rupp, Tkatchenko, Muller, Von Lilienfeld, “Fast and accurate modeling of molecular 
atomization energies with machine learning”, Phys. Rev. Lett. 108, 058301 (2012)



INSTANT  PROPERTY  PREDICTIONS
… using a DFT dataset for about 300 organic polymers

Mannodi-Kanakkithodi et al., Scientific Reports 6, 20952 (2016)
Tran et al., Phys. Rev. B 92, 014106 (2015)







• Given only the atomic 
configuration, can we 
directly predict the 
atomic forces rapidly & 
accurately?

• Atoms respond to forces, 
and force is a local 
quantity (unlike energy)

EXAMPLE  3:  FINE  FINGERPRINTS
PREDICTING  ATOMIC  FORCES



THE  CONCEPT
Potential energy 
 global property of 

entire system
Fi

Atomic force  
local environment-

dependent property
“Fingerprint”

Machine Learning

Force Field

Botu & Ramprasad, IJQC (2014) & Phys. Rev. B (2015)
Also see: Li, et al, Phys. Rev. Lett. (2015)



THE  ML  FORCE  FIELD
(AGNI)



GEOMETRY  OPTIMIZATION

~ 850 Al atoms 
in FCC phase 
with vacancies



LARGE-SCALE  MOTIONS
Adatom migration on Al (111)

1/Temperature (1/K)
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Is the physics underlying dynamics preserved?



FURTHER  VALIDATION
… on situations not used during “training”



ENERGY  FROM  FORCES
MD simulations of bulk Al



HIERARCHY  OF  FINGERPRINTS

Scale Illustrative Examples Accuracy

Coarse
Material constituent features ⟶ breakdown strength, phase stability, 

catalytic activity, friction coefficient, etc. 
Kim, et al, Chem. Mat. (2016); Pilania, et al, Sci. Rep. (2016); Ghiringhelli, et al, PRL 

(2015); Bucholtz, et al, Tribol Lett (2012)
Moderate

Medium
Building units, Substructures, Motifs ⟶ Properties 

Mannodi-Kanakkithodi, et al, Sci. Rep. (2016); Tran Huan, et al, PRB (2015); Yang, Ceder, 
et al, PRB (2014)

Moderate

Fine
Atomic/electronic arrangements (Coulomb matrix, SOAP, Symmetry 

functions) ⟶ Properties, Energies, Forces 
Botu, Ramprasad, PRB (2015) & IJQC (2014); Hansen, et al, JPC Lett (2015); Bartok, 

et al, IJQC (2015); Behler, IJQC (2015); Li, et al, PRL (2015)
High



CRITICAL  NEXT  STEPS
• Decision on whether to use machine learning

• Choice of fingerprints

• Uncertainty (out-of-domain) quantification

• Automatic & adaptive improvement of model

• Show the value!
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TURING’S  “LEARNING  MACHINES”

Instead of trying to produce a program to simulate the adult 
mind, why not rather try to produce one which simulates the 

child’s ? If this were then subjected to an appropriate course of 
education one would obtain the adult brain …

“Computing Machinery and Intelligence”
A. M. Turing

Mind, Vol. LIX, No. 236, p. 433 (1950)


