Machine learning for materials discovery: **catalysts**, grain boundaries, superlattices and RNAs

Koji Tsuda University of Tokyo NIMS RIKEN (from Oct 1)

Kashiwa Campus, University of Tokyo

www.tsudalab.org

Tsuda Lab.	Home Members Public	ations Projects Lectures Contact 日本語
Koji Tsuda	Kaoru Shibutani	David duVerle
Professor	Secretary	Assistant Professor
Kazuki Yoshizoe	Aika Terada	Thaer Dieb
Post-Doc Researcher	JST PRESTO Researcher	Post-Doc Researcher
Kei Terayama	Shogo Takeuchi	Xiufeng Yang
Post-Doc Researcher	Post-Doc Researcher	Doctoral Student
Diptesh Das	Koki Kitai	Hiroaki Takada
Researcher	Master Student	Master Student
Kenichi Himeno	Seiji Sasaoka	Kento Shin
Master Student	Undergraduate Student	Undergraduate Student

Open Postdoc Positions !

Discovery of new functional molecules and materials is of national importance

- President Obama, June 2011 at Carnegie Mellon University

First Principles Calculations

Accurate, Slow

- Full configuration interaction
 - Wave function based
 - Density functional theory
 - Semi-empirical
 - Empirical potentials

Inaccurate, Fast

Talk Agenda: From Prediction to Automatic Design

- Prediction of d-band center of bimetals (Takigawa et al., RSC Advances, 2016)
- Automatic Design by Bayesian Optimization
 - Optimization of grain boundary (Kiyohara et al., JJAP, 2016)
 - Design of Si-Ge nanostructures (Ju et al., in submission)
 - COMBO: Fast python library for Bayesian opt. (Ueno et al., Mater. Discov., 2016)
- Automatic Design by Monte Carlo Tree Search
 - Designing optimal RNA sequences (Yang et al., in submission)

Prediction of d-band center

- Catalytic bimetals: host and guest metals
 - Doped in the surface
 - Surface monolayer
- Binding between a metal surface and an adsorbate depends on the electronic structure of the metal
- D-band center = key indicator of catalytic activity

D-band center (Doped)

B. Hammer and J. K. Nørskov, Adv. Catal., 2000

Mg Mh	Fe	Со	Ni	Cu	Ru	Rh	Pd	Ag	lr	Pt	Au
Fe	-0.92	-0.87	-1.12	-1.05	-1.21	-1.46	-2.16	-1.75	-1.28	-2.01	-2.34
Со	-1.16	-1.17	-1.45	-1.33	-1.41	-1.75	-2.54	-2.08	-1.53	-2.36	-2.73
Ni	-1.20	-1.10	-1.29	-1.10	-1.43	-1.60	-2.26	-1.82	-1.43	-2.09	-2.42
Cu	-2.11	-2.07	-2.40	-2.67	-2.09	-2.35	-3.31	-3.37	-2.09	-3.00	-3.76
Ru	-1.20	-1.15	-1.40	-1.29	-1.41	-1.58	-2.23	-1.68	-1.39	-2.03	-2.25
Rh	-1.49	-1.39	-1.57	-1.29	-1.69	-1.73	-2.27	-1.66	-1.56	-2.08	-2.22
Pd	-1.46	-1.29	-1.33	-0.89	-1.59	-1.47	-1.83	-1.24	-1.30	-1.64	-1.66
Ag	-3.58	-3.46	-3.63	-3.83	-3.46	-3.44	-4.16	-4.30	-3.16	-3.80	-4.45
lr	-1.90	-1.84	-2.06	-1.90	-2.02	-2.26	-2.84	-2.24	-2.11	-2.67	-2.85
Pt	-1.92	-1.77	-1.85	-1.53	-2.11	-2.02	-2.42	-1.81	-1.87	-2.25	-2.30
Au	-2.93	-2.79	-2.93	-3.01	-2.86	-2.81	-3.39	-3.35	-2.58	-3.10	-3.56

D-band center (Monolayer)

B. Hammer and J. K. Nørskov, Adv. Catal., 2000

Mg Mg	Fe	Со	Ni	Cu	Ru	Rh	Pd	Ag	lr	Pt	Au
Fe	-0.92	-0.78	-0.96	-0.97	-1.65	-1.64	-2.24	-2.17	-1.87	-2.40	-3.11
Со	-1.18	-1.17	-1.37	-1.23	-1.87	-2.12	-2.82	-2.53	-2.26	-3.06	-3.56
Ni	-0.33	-1.18	-1.29	-1.17	-1.92	-2.03	-2.61	-2.43	-2.15	-2.82	-3.39
Cu	-2.42	-2.29	-2.49	-2.67	-2.89	-2.94	-3.71	-3.88	-2.99	-3.82	-4.63
Ru	-1.11	-1.04	-1.12	-1.11	-1.41	-1.53	-1.88	-1.81	-1.54	-2.02	-2.27
Rh	-1.42	-1.32	-1.39	-1.51	-1.70	-1.73	-2.12	-1.81	-1.70	-2.18	-2.30
Pd	-1.47	-1.29	-1.29	-1.03	-1.94	-1.58	-1.83	-1.68	-1.52	-1.79	-1.97
Ag	-3.75	-3.56	-3.62	-3.68	-3.80	-3.63	-4.03	-4.30	-3.50	-3.93	-4.51
lr	-1.78	-1.71	-1.78	-1.55	-2.12	-2.14	-2.53	-2.20	-2.11	-2.60	-2.70
Pt	-1.90	-1.72	-1.71	-1.47	-2.13	-2.01	-2.23	-2.06	-1.96	-2.25	-2.33
Au	-3.03	-2.82	-2.85	-2.86	-3.09	-2.89	-3.21	-3.44	-2.77	-3.13	-3.56

Machine Learning

 Randomly partition d-band centers into training / test sets

		Fe	Со	Ni	Cu	Ru	Rh	Pd	Ag	lr	Pt	Au
	Fe	-0.92	-0.87	?	-1.05	?	?	-2.16	-1.75	-1.28	-2.01	?
	Со	-1.16	?	-1.45	-1.33	?	?	?	?	-1.53	?	-2.73
~	Ni	?	-1.1	?	-1.1	-1.43	-1.6	-2.26	-1.82	-1.43	-2.09	-2.42
alo	Cu	?	-2.07	-2.4	?	?	?	-3.31	-3.37	?	-3	?
let	Ru	?	?	?	-1.29	?	-1.58	?	?	-1.39	-2.03	-2.25
8	Rh	?	?	?	?	?	-1.73	-2.27	-1.66	?	-2.08	-2.22
st	Pd	?	-1.29	?	-0.89	-1.59	-1.47	?	-1.24	?	?	?
Ξ I	Ag	-3.58	?	-3.63	-3.83	?	?	?	?	?	?	?
	lr	-1.9	?	-2.06	-1.9	?	?	?	-2.24	?	-2.67	?
	Pt	-1.92	-1.77	?	?	-2.11	?	-2.42	-1.81	-1.87	-2.25	?
	Au	?	?	?	?	?	-2.81	?	-3.35	-2.58	?	-3.56

Guest metals

Descriptors (Host & Guest)

- Group (*G*)
- Bulk Wigner-Seitz radius (R) in Å
- Atomic number (AN)
- Atomic mass (AM) in g mol⁻¹
- Period (P)
- Electronegativity (EN)
- Ionization energy (IE) in eV
- Enthalpy of fusion ($\Delta_{fus}H$) in J g⁻¹
- Density at 25 C (ρ) in g cm⁻³

Methods Used

Abbreviation	Method	Tuning parameters [tested range]
Linear Method	S	
OLS	Ordinary least squares regression	(No tuning parameters)
PLS	Partial least squares regression	n_components \in [1,2,,# of vars]
Nonlinear Met	hods	
GPR	Gaussian process regression	theta0 ∈ [1.0,10 ⁻¹ ,10 ⁻² ,10 ⁻³ ,10 ⁻⁴ ,10 ⁻⁵]
GBR	Gradient boosting regression	learning_rate ∈ [1.0,10 ⁻¹ ,10 ⁻² ,10 ⁻³ ,10 ⁻⁴ ,10 ⁻⁵] max_depth ∈ [4,6,8,10] n_estimators ∈ [100,250,500]

'Doped' Averaged 100 Times (25% hidden)

Variable Importance in Gradient Boosting Regression

Using Top Descriptors Only

'Doped' Averaged 100 Times (25% hidden)

Changing Train/Test Fraction

'Doped' averaged 100 Times w/ selected 6 descriptors

CHEMISTRY WORLD

HOME NEWS OPINION MATTER ENERGY EARTH LIFE CULTURE CAREERS PODCASTS WEBINARS

NEWS

Machine-learning accelerates catalytic trend spotting

BY ANNA MEEHAN | 9 JUNE 2016

f 💙 in 🖾

Example of what you can gain when 'people from different disciplines start looking at the same problems'

Researchers in Japan have used a machine-learning method to cut the time it takes to predict the catalytic potential of different metals.

Binding between a metal surface and an adsorbate mainly depends on the electronic structure of the metal. More energy at centre of the metal's d-band creates a stronger bond between its surface and the adsorbate. Based on this theory, scientists have long regarded a value called the d-band centre as a key indicator of a metal's catalytic activity.

www.HidenAnalytical.com

MOST POPULAR MOST COMMENTED

World's first commercial MOF keeps fruit fresh

Nucleic acid instability challenges RNA world hypothesis

Automatic Design by Machine Learning

Screening by first principles calculations alone

| Mat. |
|------|------|------|------|------|------|------|------|------|------|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

| Score |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| | | | | | | | | | |

Bayesian Optimization (Jones et al., 1998)

 Find best data points with minimum number of observations

 Choose next point to observe to discover the best ones as early as possible

Bayesian Optimization (1)

| Mat. |
|------|------|------|------|------|------|------|------|------|------|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

First Principles Calc.

Bayesian Optimization (2)

Bayesian Optimization (3)

First Principles Calc.

Score	Score	Score	Score
1	2	3	8

Bayesian Optimization (4)

First Principles Calc.

Score 1	Score 2	Score 3	Score 8	Pred. Score 4	Pred. Score 5	Pred. Score 6	Pred. Score 7	Pred. Score 9	Pred. Score 10
				Var. 4	Var. 5	Var. 6	Var. 7	Var. 9	Var. 10

Where to observe next?

Gaussian Process

Maximum probability of improvement

Grain boundary structure determination

(dx, dy, dz) to minimize the grain boundary energy

Acceleration of Discovery

<u>Cu [001] (210) Σ5 grain boundary</u>

Exhaustive calculations

GB energy=0.96J/m²

Number of energy calculations = 16,983

Bayesian optimization GB energy=0.96J/m²

Number of energy calculations =69

S. Kiyohara et al., Jpn. J. Appl. Phys., 2016.

Design nanostructures for phonon transport via material informatics

Interface structure design has wide application in thermal devices.

High Conductance Low Conductance Cooling-- Superallov Bond-Air Film Hot Substrate Thermal-Barrier-Coat Top-Coat ~100 µm 100-400 µm CPU Cooler Coated Temp. Turbine Blade TGO Al,O 1-10 um Ð Thermal Interface Air Cooling / Ð Cold Microprocessor 100 um Distance Interface materials **Thermoelectric** Thermal barrier coating various parameters Iow developing efficiency parameters effect coupled high experimental cost transport vs local atomic configurations long calculation time

interference/resonance effects

the University of Tokyo

31

Alloy Structure Optimization

Question: How to organize 16 alloy atoms (Si: 8, Ge: 8) to obtain the largest and smallest interfacial thermal conductance?

Calculator: Atomistic Green's Function (AGF): Phonon transmission

Evaluator: Interfacial Thermal Conductance (ITC)

Optimization method: Thompson Sampling (Bayesian Optimization)

🌈 the University of Tokyo

Department of Mechanical Engineering, Thermal Energy Engineering Lab

Alloy Structure Optimization

Optimal structures were obtained by calculating only 3.4% of all candidates.

Department of Mechanical Engineering, Thermal Energy Engineering Lab

Superlattices Structure Optimization

Topic: Arrange 10-layer superlattices structure (5 layers Si + 5 layers of Ge) between Si and Si to obtain minimal thermal conductance (1 layer thickness = 5.43 A)

Best Structure:

Superlattices Structure Optimization

Layers	Si-Si	Si-Si	Si-Ge	Si-Ge
	Si:Ge=1:1	Si:Ge=no limit	Si:Ge=1:1	Si:Ge= no limit
8	11000101	11101101	10100110	10100110
	(70)	(256)	(70)	(256)
10	1101010001	1110110101	100010110	100010110
	(252)	(1024)	(252)	(1024)
12	101100100101	1101101001	100101010110	100101010110
	(924)	(4096)	(924)	(4096)
14	11011000101001	11001010110111	10011001010110	10010101101110
	(3432)	(16384)	(3432)	(16384)
16	1100010010110101	1100101110110101	1010110110010010	1001010101101110
	(12870)	(65536)	(12870)	(65536)

Department of Mechanical Engineering, Thermal Energy Engineering Lab

Why aperiodic patterns?

Ju et al., Arxiv 1609.04972, 2016

COMBO: COMmon Bayesian Optimization Python Library https://github.com/tsudalab/combo

- Fast learning by Thompson sampling, random feature maps, one-rank Cholesky update
- Automatic hyperparameter initialization & update
- Multi-probe design

• • • Otsudalab/combo: COMmon ×	
← → C 🔒 GitHub, Inc. [US] https://github.com/tsudalab/combo	* 🗸
🎬 アプリ 🛛 M Gmail - 受信トレイ - 📄 💙 Pocket : マイリスト 🛛 ログイン - サイボウズ 🔺	ᅛ GitLab Tsudalab 🛄 JBpress(日本ビジネス 🗋 ホーム - 東大ポータル 🎦 ナノ機造情報のフロン 🛛 » 🚞 その他のブックマ
This repository Search	Pull requests Issues Gist 🜲 +- 🕆 -
la tsudalab / combo	O Unwatch → 3 ★ Unstar 1 ♀ Fork 0
<> Code ① Issues 0 ⑦ Pull requests 0 E W	Viki ⊸⊱Pulse 🔟 Graphs ⇔Settings
COMmon Bayesian Optimization — Edit	
🕝 25 commits 🐉 2 bran	nches 🛇 0 releases 2 contributors
Branch: master - New pull request	New file Find file HTTPS - https://github.com/tsud @ U Download ZIP
🕆 kojitsuda README	Latest commit c9f5e44 6 hours ago
iiii combo	update combo to version 0.1.1 3 days ago
in docs	add document 8 hours ago
examples/grain_bound	modify README 9 hours ago
.gitignore	add .gitignore 23 days ago
README.md	README 6 hours ago
setup.py	combo version 0.1.1 3 days ago
EB README.md	
COMmon Bayesian	Optimization Library (COMBO)

Ueno et al., *Materials Discovery*, 2016, published online. GP = Random Feature Map + Bayesian Linear Regression

Gaussian process (GP) is slow O(n³) due to the use of kernel function

$$k(\Delta) = \exp(-\|\Delta\|^2/2)$$

• Approximation by random feature maps (Rahimi and Recht, NIPS 2007)

$$E[z_{\boldsymbol{\omega},b}(\boldsymbol{x})z_{\boldsymbol{\omega},b}(\boldsymbol{x}')] = k(\boldsymbol{x} - \boldsymbol{x}')$$
$$z_{\boldsymbol{\omega},b}(\boldsymbol{x}) = \sqrt{2}\cos(\boldsymbol{\omega}^{\top}\boldsymbol{x} + b)$$

 ω is a vector of random samples from unit Gaussian distribution b is drawn uniformly from [0,2 π]

Computational Time of COMBO

RNA Inverse Folding

- Design RNA whose structure matches target
- 4ⁿ candidates: Too many for Bayesian Opt

Target Structure

AAAAGUAAACAAUAUUAUUGUCAUGAAUUCC UUUUUUAUUGGGAUAAUACUUUA

Monte Carlo Tree Search

ARTICLE

doi:10.1038/nature16961

Mastering the game of Go with deep neural networks and tree search

David Silver¹*, Aja Huang¹*, Chris J. Maddison¹, Arthur Guez¹, Laurent Sifre¹, George van den Driessche¹, Julian Schrittwieser¹, Ioannis Antonoglou¹, Veda Panneershelvam¹, Marc Lanctot¹, Sander Dieleman¹, Dominik Grewe¹, John Nham², Nal Kalchbrenner¹, Ilya Sutskever², Timothy Lillicrap¹, Madeleine Leach¹, Koray Kavukcuoglu¹, Thore Graepel¹ & Demis Hassabis¹

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses 'value networks' to evaluate board positions and 'policy networks' to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.

Monte Carlo Tree Search

- Candidates at leafs of search tree
- Reward at leafs: Energy
- Score at intermediate node by Playout
 - K random traverses to leafs
 - UCB score: Average reward + Penalty

MCTS-RNA and Existing Tools

Tools	Algorithm	GC content
RNAinverse (Hofacker, 2003)	Local search	No
RNA-SSD (Andronescu et al., 2004)	Stochastic local search+structure decomposition	No
INFO-RNA (Busch and Backofen, 2006)	Dynamic programming+local search	No
NUPACK (Zadeh et al., 2011)	Minimization of ensemble defect and structure decomposition	No
MODENA (Taneda, 2011)	Multi-objective genetic algorithm	No
Frnakenstein (Lyngsø et al., 2012)	Genetic algorithm	No
ERD (Esmaili-Taheri et al., 2014)	Evolutionary algorithm and structure decomposition	No
RNAifold (Garcia-Martin et al., 2013)	Constraint programming and structure decomposition	Yes
IncaRNAtion (Reinharz et al., 2013)	Weighted sampling algorithm	Yes
antaRNA (Kleinkauf et al., 2015)	Ant colony optimization	Yes
MCTS-RNA	Monte Carlo tree search	Yes

Comparison with antaRNA

Data				MCTS-RNA		ERD		MODENA	
Rfam	RfamID	Ν	l	Sc	time	Sc	time	Sc	time
RF00001	5S_rRNA	117	83	50/50	8.38	10/50	3.1	38/50	34.26
RF00002	5_8S_rRNA	151	127	32/50	88.32	12/50	3.86	41/50	35.29
RF00003	U1	161	121	48/50	83.02	0/50	_	14/50	53.86
RF00004	U2	193	149	50/50	1.35	21/50	2.62	38/50	13.16
RF00005	tRNA	74	53	50/50	0.3	31/50	1.35	48/50	14.3
RF00006	Vault	89	69	50/50	0.167	38/50	0.88	48/50	14.3
RF00007	U12	154	112	50/50	0.18	30/50	1.52	46/50	27.37
RF00008	Hammerhead_3	54	39	50/50	0.026	33/50	0.67	39/50	12.01
RF00009	RNaseP_nuc	348	293	23/50	61.7	32/50	19.25	40/50	118.85
RF00010	RNaseP_bact_a	357	255	0/50	-	0/50	_	0/50	-
RF00011	RNaseP_bact_b	382	286	0/50	-	0/50	_	0/50	-
RF00012	U3	215	176	50/50	4.08	8/50	15.3	47/50	72.14
RF00013	6S	185	137	50/50	0.6	28/50	2.43	39/50	52.12
RF00014	DsrA	87	58	50/50	0.03	32/50	0.77	45/50	15.88
RF00015	U4	140	109	50/50	0.73	25/50	1.74	45/50	24.91
RF00016	SNORD14	129	112	0/50	_	0/50	-	0/50	-
RF00017	SRP_euk_arch4	301	200	50/50	3.15	2/50	2.48	47/50	175.89
RF00018	CsrB	360	311	0/50	_	0/50	-	0/50	-
RF00019	Y_RNA	83	60	50/50	0.1	18/50	0.86	43/50	17.18
RF00020	U5	119	89	0/50	_	0/50	_	0/50	-
RF00021	Spot_42	118	81	50/50	0.06	38/50	0.83	31/50	35.07
RF00022	GcvB	148	115	50/50	1.05	31/50	1.94	34/50	29.27
RF00024	Telomerase-vert	451	346	0/50	_	0/50	_	0/50	-
RF00025	Telomerase-cil	210	173	50/50	20.23	6/50	4.59	44/50	57.59
RF00026	U6	102	97	50/50	2	50/50	0.73	44/50	14.6
RF00027	let-7	79	48	50/50	0.08	46/50	0.76	48/50	16.84
RF00028	Intron_gp	344	291	19/50	91.32	19/50	46.16	0/50	-
RF00029	Intron_gpI	73	54	50/50	1.2	25/50	0.79	46/50	10.82
RF00030	RNase_MRP	340	276	48/50	71.4	0/50	_	44/50	122.07
total				1070/1450		532/1450		909/1450	

Conclusion

 Machine learning techniques combined with first principles calculation have enormous power

