

Real and virtual screening for materials discovery through first principles calculations

Isao Tanaka^{1,2,3,4}

¹ Department of Materials Science and Engineering, Kyoto University, JAPAN
 ² Elements Strategy Initiative for Structural Materials, Kyoto University, JAPAN
 ³ Center for Materials Research by Information Integration, NIMS, JAPAN
 ⁴ Nanostructure Research Laboratory, Japan Fine Ceramics Center, JAPAN

Enormous number of chemical combinations

Periodic Table

Number of chemical elements	Number of chemical combinations (only for simple composition ratio)
1	~100
2	~100,000
3	~10,000,000
4	~1,000,000,000

Inorganic Crystal Structure Database (ICSD)

Getting Structure Types

c2015 by Fachinformationszentrum Karlsruhe, and the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. FIZ/NIST Inorganic Crystal Structure Database

Version 1.9.6

Database 2015-1 Fachinformationszentrum, Karlsruhe National Institute of Standards and Technology, Gaithersburg

Days left on license 110

World largest database for known inorganic crystals.

177,000 crystal structures
 → 40,000 structures
 excluding duplicates,
 incompletes, etc.

Many systems are yet-unexplored !

First Principles Calculations

Useful to fill the gap between enormous number of chemical combinations and experimental database.

Electronic structure calculations entirely based on quantum theory without using empirical parameters.

Total energy Force/Stress Electronic/Magnetic structures Physical properties

But this is not a magic box !!

Vast chemistry space to explore

Vast chemistry space to explore

- ✓ Systematic method to add as-yet-unknown & stable compounds to the inorganics database is desired.
- \checkmark It is still worthy to explore the space of known compounds.

High throughput screening 1

High throughput screening 2

"Virtual Screening"

Contents

Materials discovery through first principles calculations

✓ Discovery of a new Sn(II)-based oxide for daylight-driven photocatalyst REAL SCREENING

 ✓ Discovery of new low thermal conductivity materials from Mat. Proj. database (55,000 crystals)
 VIRTUAL SCREENING

Accelerated discovery of a novel Sn(II)-based oxide for daylight-driven photocatalyst

Hiroyuki Hayashi, Shota Katayama, Takahiro Komura, Yoyo Hinuma, Tomoyasu Yokoyama, Kou Mibu, Fumiyasu Oba and IT

Advanced Science 9, (2016). 1600246

Sustainable energy: Sunlight

- Solar cells & daylight-driven photocatalysts
 - Target band-gap range
 Solar cell absorber: 1.2 2.0 eV
 Photocatalyst: 1.5 3.0 eV

*) http://rredc.nrel.gov/solar/spectra/

Lotanien gracin upxiedem Ent(10) xielle(11) & Bi(111)

• Characteristic electronic structures

Known oxides: Sn(II), Pb(II) & Bi(III)

System	Compounds registered in ICSD
Sn(II)- <mark>M</mark> -O	47
Pb(II)- M -O	210
Bi(III)- <mark>M</mark> -O	213

Sn(II) oxides are yet-unexplored !

Chemical composition of interest

4A – 6A transition metal compounds

- Commonly used for photocatalysts ex. TiO₂, WO₃, NaTaO₃, TaON, ...
- Wide band gaps

Sn(II) oxides

Relatively narrow band gaps

 $SnO-MO_{q/2}$ pseudo binary systems

q	М	Known Compounds		
4	Ti, Zr, Hf	SnTiO ₃ , Sn ₂ TiO ₄		
5	V, Nb, Ta	SnNb ₂ O ₆ , Sn ₂ Nb ₂ O ₇ , SnTa ₂ O ₆ , Sn ₂ Ta ₂ O ₇ , SnTa ₄ O ₁₁		
6	Cr, Mo, W	SnWO ₄ , Sn ₂ WO ₅ , Sn ₃ WO ₆		

Only 10 oxides are known.

Reported as good photocatalyst.

Inorganic Crystal Structure Database (ICSD)

2

3

4

1,700

4,700

4,300

Crystal structures

Prototypes of A(II)-M(q+)-oxides

q	Number of prototype structures in ICSD	Examples	
4	586	Pb ₃ O ₄ , AlFeO ₃ , NdYbS ₃ ,	
5	207	K ₂ ZrF ₆ , Bi ₂ WO ₆ ,	
6	368	CrUO ₄ , β-SnWO ₄ ,	

Total : 1,161 crystal structures

SnO-MO_{q/2} pseudo binary systems NdYbS₃ type NdYbS₃ NdYbS₃ type SnTiO₃

Total: 1,163x3 = 3,483 candidate oxides

Screening procedure

- 1. Candidates generation : DFT calculations
 - 3,483 candidates
- 2. Phase stability
 - Formation energy vs. SnO and $MO_{q/2}$

$$E_{form} = E_{\mathrm{Sn}_x M_y \mathrm{O}_{x+yq/2}} - (x E_{\mathrm{SnO}} + y E_{M\mathrm{O}_{q/2}})$$

- 3. Band gap (E_g) by GGA(PBE)
 - Criterion: $E_g > 2 \text{ eV}$
- 4. Band edge position ($\varepsilon_{\rm CBM}$ and $\varepsilon_{\rm VBM}$) by GGA(PBE)
 - Criterion: $\varepsilon_{CBM} > H^+/H_2$ level and $\varepsilon_{VBM} < O_2/H_2O$ level

Phase stability

Formation energy

• SnO-WO₃ pseudo binary system

Formation energy

• SnO-MoO₃ pseudo binary system

Formation energy

• Convex hull of SnO- $MO_{a/2}$ pseudo binary systems

Reported oxides in ICSD (Red characters) are located on the convex hull.

Band gap

• Band gap of actual photocatalysts ≥ 2 eV (GGA)

Band edge position

Experimental results

• Synthesis of β-SnMoO₄

Crystal structure of SnMoO₄

Newly discovered compound

Photocatalytic activity of SnMoO₄

• Degradation of methylene blue under simulated daylight

Newly-discovered SnMoO₄ powder exhibits clear photocatalytic activity.

Discovery of new low thermal conductivity materials

First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization

Atsuto Seko, Atsushi Togo, Hiroyuki Hayashi,

Koji Tsuda, Laurent Chaput, and IT

Find ultra-low thermal conductivity materials of 0.1W/m·K level in Mat. Proj. database (55,000 crystals)

diamond

Background

Thermal Conductivity (TC)

 $\kappa = \kappa_{electonic} + \kappa_{lattice}$

Lattice Thermal Conductivity (LTC)

- \checkmark Reliable experimental dataset is limited (< 100 crystals).
- Reliable first principles calculations are very expensive.
 (CC5 class : 1 day/100 cores for 1 simple crystal.)
- ✓ Little knowledge to predict LTC deductively.

(Simple rule to determine LTC is not clear.)

Materials search has been made through "modification" of known compounds showing high/low LTC.

Cost for First Principles Calculations

Thermoelectric materials

Essential for utilizing otherwise waste heat.

Physical origin of thermal resistivity

Phonon-phonon scattering (phonon anharmonicity) Harmonic phonons do not interact.

phonopy: open source for ab-initio phonon calcs

http://phonopy.sf.net/

First principles phonon database

Phonon Database @ Kyoto University

Phonon database at Kyoto university About this web site Available data List of data Data associated with Materials Project IDs License The contents of this web site are licensed under a Creative Commons Attribution 4.0 International L unless another license is specially mentioned in each well properties at 0GPa (q), respectively. Contact

Atsushi Togo : atz.togo@gmail.com

d: phonon-DOS

t: thermal properties at constant volume

g: mode-Grüneisen parameters

q: physical properties at 0GPa

http://phonondb.mtl.kyoto-u.ac.jp/

The contents of this web site are licensed under a Creative Commons Attribution 4.0 International License unless another license is specially mentioned in each web page.

The data are generated by automated first-principles phonon calculations. Basically these data in every entry are not well examined, therefore some are considered wrong.

The characters "dtgg" besides the compound names show available plots of phonon-DOS (d), thermal properties at constant volume (t), mode-Gruneisen parameters (g), and physical

- Materials id 0000 0999
 - Materials id 25 / N2 / d.g.
 - Materials id 111 / Ne / d.g.
 - Materials id 149 / Si / dtgg
 - Materials id 154 / N2 / d.g.
 - Materials id 223 / GeO2 / d.g.
 - Materials id 239 / BaS3 / dtgq
 - Materials id 252 / BeTe / dtgg
 - Materials id 286 / YbSe / dtg.
 - Materials id 341 / PbF4 / dtg.
 - Materials id 375 / UO3 / d.g.
 - Materials id 380 / ZnSe / dtgg
 - Materials id 406 / CdTe / dtgq
 - Materials id 422 / BeS / dtgq
 - Materials id 463 / KF / dtgg
 - Materials id 470 / GeO2 / dtg.
 - Materials id 617 / PtO2 / dtg. • Materials id 661 / AlN / dtg.
 - Materials id 665 / SnSe2 / dtg.
 - Materials id 672 / CdS / dtg.
 - Materials id 682 / NaF / dtgq
 - Materials id 720 / TlF / d.g.
 - Materials id 733 / GeO2 / d.g.
 - Materials id 736 / Li3P / dtg.
 - Materials id 757 / Li3As / dtg.

Phonon Database @ Kyoto University

Materials id 239 / BaS3 / dtgq

- Date page updated: 2015-11-24
- Space group type: P-42_1m (113) / P -4 2ab
- Number of formula units (Z): 2
- Phonon raw data: mp-239.tar.lzma
- Link to Materials Project: https://www.materialsproject.org/materials/mp-239/

Mode Gruneisen parameter

Phonon DOS

Thermal properties at constant volume

Ab-initio Lattice Thermal Conductivity (LTC)

Phono3py 1.10.5 Site - Page - Work flow »

Welcome to phono3py

This software calculates phonon-phonon interaction related properties:

- Lattice thermal conductivity
- Phonon lifetime/linewidth
- · Imaginary part of self energy at the lowest order
- · Joint density of states (JDOS) and weighted-JDOS

The theoretical background is summarized in the paper found at

http://dx.doi.org/10.1103/PhysRevB.91.094306 or the draft in arxiv at http://arxiv.org/abs/1501.00691 .

Examples are found in example-phono3py directory.

Documentation

- Work flow
- Installation
- Output files
- Command options
- Interfaces to calculators
- Auxiliary tools
- How to cite phono3py
- Change Log

Atsushi TOGO

Lattice Thermal Conductivity (LTC)@300K

First principles calculation vs. Experimental data

phono3py

Virtual Screening

Candidates of descriptors for LTC

Model 1: Volume $\,\textit{V} \, and \, Density \, \rho$

Model 2: Model 1 + primitive elemental descriptors

	Н	Li	Ве	B	С	Ν	Ο	F	
LiH	1	1	0	0	0	0	0	0	
LiF	0	1	0	0	0	0	0	1	
BeO	0	0	1	0	0	0	1	0	
BN	0	0	0	1	0	1	0	0	
									41

Ranking of LTC for 54,779 compounds in MPD library

"Virtual screening"

Z-score

$$Z(\boldsymbol{x}^*) = [f(\boldsymbol{x}^*) - f_{\text{best}}] / \sqrt{\nu(\boldsymbol{x}^*)}$$

 $f = -\log \kappa_L$

The higher Z-score, the lower predicted LTC !

	Materials Id Formula		Z-score
1	mp-23517	RbPbI3	1.90
2	mp-571465	PbIBr	1.76
3	mp-28564	Rb4PbBr6	1.56
4	mp-23053	PbICl	1.56
5	mp-22997	PbBrCl	1.56
6	mp-23043	RbPb2Br5	1.45
7	mp-22883	Рыг	1.44
8	mp-567503	PbI2	1.43
9	mp-540839	CsPbI3	1.40
10	mp-569595	РЫ2	1.34
11	mp-567246	PbI2	1.34
12	mp-23436	Cs4PbBr6	1.34
13	mp-505148	ThPbI6	1.34
14	mp-22893	PbI2	1.34
15	mp-567199	PbI2	1.32
16	mp-580202	PbI2	1.32
17	mp-600089	CsPbBr3	1.31
18	mp-640058	PbI2	1.31
19	mp-574189	Рыг	1.30
20	mp-567542	РЫ2	1.30
21	mp-540789	PbI2	1.30
22	mp-567178	PbI2	1.29
23	mp-567629	CsPbBr3	1.29
24	mp-672671	PbI2	1.28
25	mp-561320	PbS	1.27
26	mp-680205	PbI2	1.25
27	mp-29883	Rb3PbCl5	1.25
28	mp-567681	CsPbBr3	1.24
29	mp-608081	Rb3Pb4Au	1.18
30	mp-27552	ТІРЫЗ	1.17
31	mp-674972	Rb6Pb5C116	1.15
32	mp-31508	KPb2Br5	1.15
33	mp-771814	CaPbI6	1.14

Materials Id		Formula	Z-score
34	mp-23037	CsPbC13	1.14
35	mp-675524	CsPbCl3	1.14
36	mp-675022	CsPbC13	1.14
37	mp-23475	Rb2PbC16	1.13
38	mp-29212	T14PbI6	1.12
39	mp-581775	Cs5(KPb6)3	1.09
40	mp-23380	T13PbI5	1.08
41	mp-630851	Cs3NaPb4	1.07
42	mp-574070	Cs4Pb9	1.05
43	mp-674339	T16PbI10	1.04
44	mp-23425	Cs2PbCl6	1.03
45	mp-771691	CaPbI6	1.01
46	mp-756313	CaPbI4	0.99
47	mp-673703	Rb3Bi7Pb3(IO)10	0.99
48	mp-680463	Rb4Pb9	0.97
49	mp-755943	CaPbI4	0.96
50	mp-622294	Hg2Pb(SBr)2	0.96
51	mp-21525	RbPb	0.96
52	mp-571638	Rb2Cu(BrCl)2	0.90
53	mp-756136	CaPbI4	0.90
54	mp-31317	La3PbI3	0.88
55	mp-756451	CaPbI4	0.88
56	mp-753670	CaPbI4	0.87
57	mp-569879	Cs2Ta6PbCl18	0.86
58	mp-570753	TI3PbBr5	0.86
59	mp-27451	T13PbBr5	0.85
60	mp-569238	Cs3LiI4	0.85
61	mp-755977	CaPbI4	0.84
62	mp-680159	CsTa6PbCl18	0.84
63	mp-557719	PbS	0.82
64	mp-755056	CaPbI4	0.82
65	mp-771827	Ca3Pb3I14	0.81
66	mp-754540	CaPbI4	0.81

	Materials Id	Formula	Z-score	
67	mp-622106	Ba5Pb3	0.81	
68	mp-771877	Ca3Pb3I14	0.80	
69	mp-621612	AgPb2Br5	0.80	
70	mp-21246	Ba2Pb	0.78	
71	mp-37163	Ag2HgI4	0.78	
72	mp-569465	Cs2Nb6PbCl18	0.77	
73	mp-554116	BaPb2BrF5	0.76	
- 74	mp-674993	KPb2C15	0.73	
75	mp-607267	KPb2C15	0.72	
76	mp-3	Cs	0.71	
- 77	mp-27662	CsI2Br	0.71	
78	mp-20136	BaPb	0.70	
79	mp-573579	Cs	0.70	
80	mp-672241	Cs	0.70	
81	mp-11832	Cs	0.70	
82	mp-1	Cs	0.69	
83	mp-639727	Cs	0.69	
84	mp-569225	Mo6PbI14	0.67	
85	mp-541112	ZrI4	0.66	
86	mp-28077	PbBr2	0.66	
87	mp-569866	Cs6K7	0.64	
88	mp-31288	La5Pb3I	0.64	
89	mp-554245	BaPb2IF5	0.64	
90	mp-613652	PbC1F	0.63	
91	mp-5811	CsPbF3	0.61	
92	mp-570355	PbC14	0.61	
93	mp-20282	CsPbF3	0.60	
94	mp-579536	CsCu2ICl2	0.60	
95	mp-22969	PbIF	0.59	
96	mp-559470	AgPbBrO	0.58	
97	mp-674359	T13PbC15	0.58	
98	mp-30519	T13PbC15	0.58	10
99	mp-23066	Pb5(SI3)2	0.56	42

Top 10 lowest LTC compounds among 54,779

Virtual screening of 54,779 compounds in MPD library

		compound			
ranking	Z-score	formula	space		
		Iormula	group		
1	1.90	PbRbl ₃	Pnma		
2	1.76	PbIBr	Pnma		
3	1.56	PbRb ₄ Br ₆	R-3c		
4	1.56	PbICI	Pnma		
5	1.56	PbClBr	Pnma		
7	1.44	Pbl ₂	R-3m		
8	1.43	Pbl ₂	P63mc		

Lattice Thermal Conductivity (LTC)

44

Thermoelectric materials

Essential for utilizing otherwise waste heat.

Top 10 lowest LTC compounds among 54,779

Virtual screening of 54,779 compounds in MPD library

ranking	Z-score	compo	und	ab initial 1	Band
		formula	space group	(W/m·K)	Gap (eV)
1	1.90	PbRbl₃	Pnma	0.10	2.46
2	1.76	PblBr	Pnma	0.13	2.56
3	1.56	PbRb ₄ Br ₆	R-3c	0.08	3.90
4	1.56	PbICI	Pnma	0.18	2.72
5	1.56	PbClBr	Pnma	0.09	3.44
7	1.44	Pbl ₂	R-3m	0.29	2.42
8	1.43	Pbl ₂	P63mc	0.29	2.45

121	0.39	K ₂ CdPb	Ama2	0.45	0.18
144	0.29	$Cs_2[PdCl_4]l_2$	I4/mmm	0.31	0.88

Newly discovered candidates for thermoelectrics

with low LTC of <0.5 W/mK (@300 K)

and narrow band gap of <1 eV.

A. Seko, A. Togo, H. Hayashi, K. Tsuda, L. Chaput, and IT PRL (2015) 115, 205901. 47

Summary

Materials discovery through first principles calculations

✓ Discovery of a new Sn(II)-based oxide for daylight-driven photocatalyst REAL SCREENING

 ✓ Discovery of new low thermal conductivity materials from Mat. Proj. database (55,000 crystals)
 VIRTUAL SCREENING

Fin