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What is clustering? Problem and Notation

I Informal definition Clustering = Finding groups in data

I Notation D = {x1, x2, . . . xn} a data set
n = number of data points
K = number of clusters (K << n)
∆ = {C1,C2, . . . ,CK} a partition of D into disjoint subsets

k(i) = the label of point i
L(∆) = cost (loss) of ∆ (to be minimized)

I Second informal definition Clustering = given n data points, separate them into
K clusters

I Hard vs. soft clusterings
I Hard clustering ∆: an item belongs to only 1 cluster
I Soft clustering γ = {γki}i=1:n

k=1:K
γki = the degree of membership of point i to cluster k∑

k

γki = 1 for all i

(usually associated with a probabilistic model)
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Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and
constraints (about K , shape of clusters)

I Data = vectors {xi} in Rd

Parametric Cost based [hard]
(K known) Model based [soft]

Non-parametric Dirichlet process mixtures [soft]
(K determined Information bottleneck [soft]
by algorithm) Modes of distribution [hard]

Gaussian blurring mean shift [hard]

I Data = similarities between pairs of points [Sij ]i,j=1:n, Sij = Sji ≥ 0 (called
Similarity based clustering)

Graph partitioning spectral clustering [hard, K fixed, cost based]
typical cuts [hard non-parametric, cost based]

Affinity propagation [hard/soft non-parametric]



Classification vs Clustering
Classification Clustering

Performance criterion Expected error a wide variety

Supervised Unsupervised

Generalization Performance on new Performance on current
data is what matters data is what matters

K Known Unknown

“Goal” Prediction Exploration, etc

Stage of field Mature Young: new paradigms and theoretical results are emerging
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K-means clustering

Algorithm K-Means

Input Data D = {xi}i=1:n, number clusters K
Initialize centers µ1, µ2, . . . µK ∈ Rd at random

Iterate until convergence
1. for i = 1 : n (assign points to clusters ⇒ new clustering)

k(i) = argmin
k
||xi − µk ||

2. for k = 1 : K (recalculate centers)

µk =
1

|Ck |
∑
i∈Ck

xi (1)

I Convergence
I if ∆ doesn’t change at iteration m it will never change after that
I convergence in finite number of steps to local optimum of cost L (defined next)
I therefore, initialization will matter
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The K-means cost

L(∆) =
K∑

k=1

∑
i∈Ck

||xi − µk ||2

I K-means solves a least-squares problem

I the cost L is called quadratic distortion

Proposition The K-means algorithm decreases L(∆) at every step.

Sketch of proof

I step 1: reassigning the labels can only decrease L
I step 2: reassigning the centers µk can only decrease L

because µk as given by (1) is the solution to

µk = min
µ∈Rd

∑
i∈Ck

||xi − µ||2 (2)



Initialization of the centroids µ1:K

I Idea 1: start with K points at random

I Idea 2: start with K data points at random
What’s wrong with chosing K data points at random?

The probability of hitting all K clusters with K samples approaches 0 when K > 5

I Idea 3: start with K data points using Fastest First Traversal (greedy simple
approach to spread out centers)

I Idea 4: k-means++ (randomized, theoretically backed approach to spread out
centers)

I Idea 5: “K-logK” Initialization (start with enough centers to hit all clusters, then
prune down to K)
For EM Algorithm , for K-means
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The “K-logK” initialization

The K-logK Initialization (see also )
1. pick µ0

1:K ′ at random from data set, where K ′ = O(K log K)
(this assures that each cluster has at least 1 center w.h.p)

2. run 1 step of K-means
3. remove all centers µ0

k that have few points, e.g |Ck | < n
eK ′

4. from the remaining centers select K centers by Fastest First Traversal
4.1 pick µ1 at random from the remaining {µ0

1:K′}
4.2 for k = 2 : K , µk ← argmax

µ0
k′

minj=1:k−1 ||µ0
k′ − µj ||, i.e next µk is furthest away

from the already chosen centers

5. continue with the standard K-means algorithm



K-means clustering with K-logK Initialization

Example using a mixture of 7 Normal distributions with 100 outliers sampled uniformly

K-logK K = 7, T = 100, n = 1100, c = 1
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Naive K = 7 T = 100, n = 1100
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Model based clustering: Mixture models

−5 0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

I The mixture density

f (x) =
K∑

k=1

πk fk (x)

I fk (x) = the components of the mixture
I each is a density
I f called mixture of Gaussians if

fk = Normalµk ,Σk

I πk = the mixing proportions,∑
k = 1Kπk = 1, πk ≥ 0.

I model parameters θ = (π1:K , µ1:K , Σ1:K )

I The degree of membership of point i to cluster
k

γki
def
= P[xi ∈ Ck ] =

πk fk (x)

f (x)
for i = 1 : n, k = 1 : K

(5)

I depends on xi and on the model parameters
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The Expectation-Maximization (EM) Algorithm

Algorithm Expectation-Maximization (EM)
Input Data D = {xi}i=1:n, number clusters K

Initialize parameters π1:K ∈ R, µ1:K ∈ Rd , Σ1:K ∈ Rd×d

Iterate until convergence
E step (Optimize clustering) for i = 1 : n, k = 1 : K

compute γki =
πk fk (x)

f (x)

M step (Optimize parameters)
I Compute “number of points” in cluster k

Γk =
m∑
i=1

γki , k = 1 : K (note:
∑
k

Γk = n) (6)

I Estimate parameters

πk =
Γk

n
, k = 1 : K

µk =
n∑

i=1

γki

Γk
xi

Σk =

∑n
i=1 γki (xi − µk )(xi − µk )T

Γk



EM versus K-means

I Alternates between cluster assignments and parameter estimation

I Cluster assignments γki are probabilistic

I Cluster parametrization more flexible

I Converges to local optimum of log-likelihood

Initialization recommended by K-logK method

I Modern algorithms with guarantees (for e.g. mixtures of Gaussians)
I Random projections
I Projection on principal subspace
I Two step EM (=K-logK initialization + one more EM iteration)
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Similarity based clustering

I Paradigm: the features we observe are measures of similarity/dissimilarity
between pairs of data points, e.g

points features
Image segmentation pixels distance in color space, location, separated

by a contour, belong to same texture

Social network people friendship, coauthorship, hyperlinks, email
Text analysis words appear in same context

I The features are summarized by a single similarity measure Sij
I e.g Sij = e

∑
k αk featurek (i,j) for all points i, j

I symmetric Sij = Sji
I non-negative Sij ≥ 0

I Mathematically, we can see the data as
I a n × n matrix S = [Sij ]
I a (weighted) graph

points = graph nodes, similarity Sij = weight of edge ij
meaningful because very few similarities are large
Then, clustering is cutting the graph
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Artificial matrix UW Statistics co-authorship data

Sij =#
tech-reports
co-authored

Similarity based useful for Rd data as well

Sij = e
−
||xi−xj ||

2

σ2



Criteria for clustering

I Graph cuts

remove some edges =⇒ disconnected graph

the groups are the connected components

I By similar behavior

nodes i , j in the same group iff i , j have the same pattern of transitions at group
level

I By Embedding

I map graph nodes {1, 2, . . . , n} to RK then use “standard” clustering methods
(e.g K-means)

I By diffusion distance

I All are equivalent (approximately) when the data is clusterable



Spectral clustering in a nutshell
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Similarity S Preprocess Top K e-vectors v1:K Data embedded by v
Cluster with K-means

P = D−1S point i
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Properties of spectral clustering

I Arbitrary cluster shapes (main advantage)

I Elegant mathematically
I Practical up to medium sized problems

I Running time (by Lanczos algorithm) O(nk)/iteration.

I Works well when K known, not too large

estimating K

I Depend heavily on the similarity function (main problem)

learning the similarities ,,,

I Outliers become separate clusters (user must adjust K accordingly!)

I Very popular, many variants which aim to improve on the above

Diffusion maps : normalize the eigenvectors λtkv
k

I Practical fix, when K large: only compute a fixed number of eigenvectors d < K .
This avoids the effects of noise in lower ranked eigenvectors



Understanding spectral clustering I

I Graph cuts Spectral clustering minimizes MNCut(∆) =
∑K

k=1

∑
k′ 6=k

Cut(Ck ,Ck′ )
DCk

(not the smallest

K -way cut!)

I By similar behavior in the random walk on the graph

I By Spectal Embedding
The principal e-vectors v1:K ⇔ Z orthogonal matrix with n rows and K columns,
which maximizes

traceZTLZ with L = D−1/2SD−1/2

Compare with K-means cost
L(∆) = traceZTAZ + constant with Aij = ||xi − xj ||2



Understanding spectral clustering II

item All are equivalent (approximately) when the data is clusterable.
Clusterability characterized by
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Further issues and current trends (an incomplete list) I

I Selecting K
I many ad-hoc methods
I BIC (statistical model selection method) for mixture models

theoretically unsupported in clustering
I stability-based selection (a boostrap like method)

I Idea: if a clustering ∆ is supported by the data then it is stable to perturbations
I theoretical results only prelimnary, but empirical evidence promising

I Non-parametric clustering
I mixture models with unbounded K (known as Dirichlet Process Mixtures, or Bayesian

Nonparametric clustering)
I methods based on a kernel density estimator

I find the peaks of the density Mean-Shift, Gaussian Blurring Mean-Shift
I level-set methods (find the high density regions)

I for similarity data Affinity Propagation

I Clusterability

I Algorithms with guarantees for clusterable data

I Scalable algorithms
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Statistical decisions

Or learning to act in uncertainty (closer to supervised, since objective known)

I Influence diagrams
I extend graphical models with decision nodes

I Active learning
I Variant of supervised learning
I Learner can choose next samples Xi to query, oracle returns the Yi values

I Semi-supervised learning
I Variant of supervised learning
I In addition to labeled pairs DL = {(Xi ,Yi ), i = 1 : m} there are also unlabeled data
DU = {Xj , j = 1 : m}.

I transductive learning: infer the labels for DU
I OR, use DU ∪ DL to learn a predictor for Y

I Reinforcement learning
I Sequential (Markov) decisions in uncertainty (aka Markov Decision Process (MDP)



Reinforcement learning

The problem an agent learns how to act in an unknown environment

I Examples: learning to balance a beam, to drive a car, to play backgammon,
navigate a maze

Time t = 1, 2, 3, . . .
State xt ∈ Ω
Action at ∈ A set of available actions (may depend on x)
Transition probability Pr [xt+1|xt , at ] (Markov transitions with T a transition matrix, a ∈ A)
Reward rt stochastic, depends on at , xt , xt+1

I Goal of agent: maximize E

[ ∞∑
t=1

γt rt

]
︸ ︷︷ ︸
R(x1,a1,a2,...)

where γ ∈ (0, 1) is a discount factor

I Basic concepts
I policy π : Ω→ A prescribes an action for every state
I value function of policy π Vπ : Ω→ R

Vπ(x) = R(x, follow π)

I Note that for each π, Vπ is a linear function of expected r(x, a) (rπ + γTπVπ = Vπ)

I Classic result Bellman equation
the optimal policy π∗ satisfies

V ∗(x), π ∗ (x) = max, argmaxa∈A ET a
[
r(a, x , x ′) + γV ∗(x ′)

]



Reinforcement learning

Approaches to learning

I Finite time horizon, small Ω: dynamic programming

I Ω tractable: stochastic optimization for V ∗, e.g Q-learning

I Large Ω, possibly continuous: functional approximations of V ∗ (may not
converge!), e.g neuro-dynamic programming, deep Q-learning

I Better yet, functional approximation of the policy; i.e. let π(x) = f (x , θ) and
optimize θ by gradient descent

A harder problem Partially observed MDP (POMDP)

I xt not observed directly

I instead, partial information yt

I problem becomes non-Markov, sufficient statistics are all at , yt history

Connection with on-line learning, game theory, . . .



What I whish I could have included

I Sparse estimation (born @UCLA)

I Model selection

I Other non-parametric models (e.g shape constrained estimation)



Thank you
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