A Tour of Unsupervised Learning – Part II
Clustering. Semi-supervised, active and reinforcement learning

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

MPS2016
Outline

Clustering – finding groups in data

Clustering: Finding groups in data

Basic algorithms
- K-means clustering and the quadratic distortion
- Model based / soft clustering, the EM algorithm and maximizing likelihood

Similarity based / graph clustering and the Spectral clustering algorithm

Further issues and current trends

Reinforcement, semi-supervised, and active learning
Outline

Clustering – finding groups in data

Clustering: Finding groups in data

Basic algorithms
 K-means clustering and the quadratic distortion
 Model based / soft clustering, the EM algorithm and maximizing likelihood

Similarity based / graph clustering and the Spectral clustering algorithm

Further issues and current trends

Reinforcement, semi-supervised, and active learning
What is clustering? Problem and Notation

- **Informal definition** Clustering = Finding groups in data

- **Notation**
 - \(\mathcal{D} = \{ x_1, x_2, \ldots, x_n \} \) a data set
 - \(n \) = number of data points
 - \(K \) = number of clusters (\(K \ll n \))
 - \(\Delta = \{ C_1, C_2, \ldots, C_K \} \) a partition of \(\mathcal{D} \) into disjoint subsets
 - \(k(i) \) = the label of point \(i \)
 - \(\mathcal{L}(\Delta) \) = cost (loss) of \(\Delta \) (to be minimized)

- **Second informal definition** Clustering = given \(n \) data points, separate them into \(K \) clusters

- **Hard vs. soft clusterings**
 - **Hard** clustering \(\Delta \): an item belongs to only 1 cluster
 - **Soft** clustering \(\gamma = \{ \gamma_{ki} \}_{i=1:n}^{k=1:K} \)
 - \(\gamma_{ki} \) = the degree of membership of point \(i \) to cluster \(k \)
 - \(\sum_k \gamma_{ki} = 1 \) for all \(i \)

(usually associated with a probabilistic model)
(from)
Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints (about K, shape of clusters)

- **Data = vectors** $\{x_i\}$ in \mathbb{R}^d
 - **Parametric** Cost based [hard]
 - (K known) Model based [soft]

- **Non-parametric**
 - Dirichlet process mixtures [soft]
 - (K determined by algorithm) Information bottleneck [soft]
 - Modes of distribution [hard]
 - Gaussian blurring mean shift [hard]

- **Data = similarities** between pairs of points $[S_{ij}]_{i,j=1:n}$,
 - $S_{ij} = S_{ji} \geq 0$ (called Similarity based clustering)
 - Graph partitioning spectral clustering [hard, K fixed, cost based]
 - typical cuts [hard non-parametric, cost based]
 - Affinity propagation [hard/soft non-parametric]
Classification vs Clustering

<table>
<thead>
<tr>
<th></th>
<th>Classification</th>
<th>Clustering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance criterion</td>
<td>Expected error</td>
<td>a wide variety</td>
</tr>
<tr>
<td></td>
<td>Supervised</td>
<td>Unsupervised</td>
</tr>
<tr>
<td>Generalization</td>
<td>Performance on new</td>
<td>Performance on current</td>
</tr>
<tr>
<td></td>
<td>data is what matters</td>
<td>data is what matters</td>
</tr>
<tr>
<td>K</td>
<td>Known</td>
<td>Unknown</td>
</tr>
<tr>
<td>“Goal”</td>
<td>Prediction</td>
<td>Exploration, etc</td>
</tr>
<tr>
<td>Stage of field</td>
<td>Mature</td>
<td>Young: new paradigms and theoretical results are emerging</td>
</tr>
</tbody>
</table>
Outline

Clustering – finding groups in data

Clustering: Finding groups in data

Basic algorithms
 K-means clustering and the quadratic distortion
 Model based / soft clustering, the EM algorithm and maximizing likelihood

Similarity based / graph clustering and the Spectral clustering algorithm

Further issues and current trends

Reinforcement, semi-supervised, and active learning
K-means clustering

Algorithm K-Means

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters K

Initialize centers $\mu_1, \mu_2, \ldots \mu_K \in \mathbb{R}^d$ at random

Iterate until convergence

1. for $i = 1 : n$ (assign points to clusters \Rightarrow new clustering)

 $$k(i) = \arg\min_k ||x_i - \mu_k||$$

2. for $k = 1 : K$ (recalculate centers)

 $$\mu_k = \frac{1}{|C_k|} \sum_{i \in C_k} x_i \quad (1)$$

▶ Convergence
▶ if Δ doesn’t change at iteration m it will never change after that
▶ convergence in finite number of steps to local optimum of cost L (defined next)

▶ therefore, initialization will matter
K-means clustering

Algorithm K-Means

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters K

Initialize centers $\mu_1, \mu_2, \ldots \mu_K \in \mathbb{R}^d$ at random

Iterate until convergence

1. for $i = 1 : n$ (assign points to clusters \Rightarrow new clustering)

 $$k(i) = \arg\min_k ||x_i - \mu_k||$$

2. for $k = 1 : K$ (recalculate centers)

 $$\mu_k = \frac{1}{|C_k|} \sum_{i \in C_k} x_i$$ \hspace{1cm} (1)

Convergence

- if Δ doesn’t change at iteration m it will never change after that
- convergence in finite number of steps

L (defined next)
K-means clustering

Algorithm K-Means

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters K

Initialize centers $\mu_1, \mu_2, \ldots \mu_K \in \mathbb{R}^d$ at random

Iterate until convergence

1. for $i = 1 : n$ (assign points to clusters \Rightarrow new clustering)

 $k(i) = \arg\min_k ||x_i - \mu_k||$

2. for $k = 1 : K$ (recalculate centers)

 $\mu_k = \frac{1}{|C_k|} \sum_{i \in C_k} x_i \quad (1)$

Convergence

- if Δ doesn’t change at iteration m it will never change after that
- convergence in finite number of steps to local optimum of cost \mathcal{L} (defined next)
K-means clustering

Algorithm K-Means

Input
Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters K

Initialize
centers $\mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^d$ at random

Iterate
until convergence

1. for $i = 1 : n$ (assign points to clusters ⇒ new clustering)

 $$k(i) = \arg\min_k ||x_i - \mu_k||$$

2. for $k = 1 : K$ (recalculate centers)

 $$\mu_k = \frac{1}{|C_k|} \sum_{i \in C_k} x_i$$ (1)

Convergence

- if Δ doesn’t change at iteration m it will never change after that
- convergence in finite number of steps to local optimum of cost \mathcal{L} (defined next)
- therefore, initialization will matter
The K-means cost

\[\mathcal{L}(\Delta) = \sum_{k=1}^{K} \sum_{i \in C_k} ||x_i - \mu_k||^2 \]

- K-means solves a least-squares problem
- the cost \(\mathcal{L} \) is called quadratic distortion

Proposition The K-means algorithm decreases \(\mathcal{L}(\Delta) \) at every step.

Sketch of proof
- step 1: reassigning the labels can only decrease \(\mathcal{L} \)
- step 2: reassigning the centers \(\mu_k \) can only decrease \(\mathcal{L} \) because \(\mu_k \) as given by (1) is the solution to

\[\mu_k = \min_{\mu \in \mathbb{R}^d} \sum_{i \in C_k} ||x_i - \mu||^2 \] (2)
Initialization of the centroids $\mu_1:K$

- Idea 1: start with K points at random

- Idea 2: start with K data points at random

What's wrong with choosing K data points at random?

The probability of hitting all K clusters with K samples approaches 0 when $K > 5$

- Idea 3: start with K data points using Fastest First Traversal (greedy simple approach to spread out centers)

- Idea 4: k-means++ (randomized, theoretically backed approach to spread out centers)

- Idea 5: “K-logK” Initialization (start with enough centers to hit all clusters, then prune down to K)

For EM Algorithm, for K-means
Initialization of the centroids $\mu_1:K$

- Idea 1: start with K points at random
- Idea 2: start with K data points at random

What's wrong with choosing K data points at random?

The probability of hitting all K clusters with K samples approaches 0 when $K > 5$.

- Idea 3: start with K data points using Fastest First Traversal (greedy simple approach to spread out centers)
- Idea 4: k-means++ (randomized, theoretically backed approach to spread out centers)
- Idea 5: "K-logK" Initialization (start with enough centers to hit all clusters, then prune down to K)
Initialization of the centroids $\mu_1:K$

- Idea 1: start with K points at random
- Idea 2: start with K data points at random
 What’s wrong with choosing K data points at random?

The probability of hitting all K clusters with K samples approaches 0 when $K > 5$
Initialization of the centroids $\mu_{1:K}$

- Idea 1: start with K points at random
- Idea 2: start with K data points at random

What’s wrong with choosing K data points at random?

The probability of hitting all K clusters with K samples approaches 0 when $K > 5$

- Idea 3: start with K data points using Fastest First Traversal (greedy simple approach to spread out centers)
Initialization of the centroids $\mu_{1:K}$

- **Idea 1**: start with K points at random
- **Idea 2**: start with K data points at random
 What’s wrong with choosing K data points at random?

The probability of hitting all K clusters with K samples approaches 0 when $K > 5$

- **Idea 3**: start with K data points using Fastest First Traversal (greedy simple approach to spread out centers)
- **Idea 4**: k-means++ (randomized, theoretically backed approach to spread out centers)
Initialization of the centroids $\mu_1:K$

- Idea 1: start with K points at random
- Idea 2: start with K data points at random

What’s wrong with choosing K data points at random?

The probability of hitting all K clusters with K samples approaches 0 when $K > 5$

- Idea 3: start with K data points using Fastest First Traversal (greedy simple approach to spread out centers)
- Idea 4: k-means++ (randomized, theoretically backed approach to spread out centers)
- Idea 5: “K-logK” Initialization (start with enough centers to hit all clusters, then prune down to K)

For EM Algorithm , for K-means
The “K-logK” initialization

The K-logK Initialization (see also)
1. pick $\mu_{1:K'}^0$ at random from data set, where $K' = O(K \log K)$
 (this assures that each cluster has at least 1 center w.h.p)
2. run 1 step of K-means
3. remove all centers μ_k^0 that have few points, e.g $|C_k| < \frac{n}{eK'}$
4. from the remaining centers select K centers by Fastest First Traversal
 4.1 pick μ_1 at random from the remaining $\{\mu_{1:K'}^0\}$
 4.2 for $k = 2 : K$, $\mu_k \leftarrow \text{argmax}_{\mu_{k'}^0} \min_{j=1:k-1} ||\mu_{k'}^0 - \mu_j||$, i.e next μ_k is furthest away
 from the already chosen centers
5. continue with the standard K-means algorithm
K-means clustering with K-logK Initialization

Example using a mixture of 7 Normal distributions with 100 outliers sampled uniformly

K-\text{LOG}K \ K = 7, \ T = 100, \ n = 1100, \ c = 1

\text{Naive} \ K = 7 \ T = 100, \ n = 1100
Model based clustering: Mixture models

- The mixture density

\[f(x) = \sum_{k=1}^{K} \pi_k f_k(x) \]

- \(f_k(x) \) = the components of the mixture
 - each is a density
 - \(f \) called mixture of Gaussians if \(f_k = \text{Normal}_{\mu_k, \Sigma_k} \)

- \(\pi_k \) = the mixing proportions,
 \[\sum_{k=1}^{K} \pi_k = 1, \quad \pi_k \geq 0. \]

- model parameters \(\theta = (\pi_1:K, \mu_1:K, \Sigma_1:K) \)
Model based clustering: Mixture models

- The mixture density

\[f(x) = \sum_{k=1}^{K} \pi_k f_k(x) \]

- \(f_k(x) \) = the components of the mixture
 - each is a density
 - \(f \) called mixture of Gaussians if \(f_k = \text{Normal}_{\mu_k, \Sigma_k} \)

- \(\pi_k \) = the mixing proportions,
 \(\sum_k = 1^K \pi_k = 1, \pi_k \geq 0 \).

- model parameters \(\theta = (\pi_1:K, \mu_1:K, \Sigma_1:K) \)

- The degree of membership of point \(i \) to cluster \(k \)

\[\gamma_{ki} \overset{\text{def}}{=} P[x_i \in C_k] = \frac{\pi_k f_k(x)}{f(x)} \quad \text{for} \quad i = 1 : n, \quad k = 1 : K \]

- depends on \(x_i \) and on the model parameters
The Expectation-Maximization (EM) Algorithm

Algorithm Expectation-Maximization (EM)

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters K

Initialize parameters $\pi_{1:K} \in \mathbb{R}$, $\mu_{1:K} \in \mathbb{R}^d$, $\Sigma_{1:K} \in \mathbb{R}^{d \times d}$

Iterate until convergence

E step (Optimize clustering) for $i = 1 : n$, $k = 1 : K$

$$\text{compute } \gamma_{ki} = \frac{\pi_k f_k(x)}{f(x)}$$

M step (Optimize parameters)

- Compute “number of points” in cluster k

$$\Gamma_k = \sum_{i=1}^{m} \gamma_{ki}, \ k = 1 : K \quad \text{(note: } \sum_k \Gamma_k = n) \quad (6)$$

- Estimate parameters

$$\pi_k = \frac{\Gamma_k}{n}, \ k = 1 : K$$

$$\mu_k = \frac{\sum_{i=1}^{n} \gamma_{ki} x_i}{\Gamma_k}$$

$$\Sigma_k = \frac{\sum_{i=1}^{n} \gamma_{ki} (x_i - \mu_k)(x_i - \mu_k)^T}{\Gamma_k}$$
EM versus K-means

- Alternates between cluster assignments and parameter estimation
- Cluster assignments γ_{ki} are probabilistic
- Cluster parametrization more flexible

- Converges to local optimum of log-likelihood
 Initialization recommended by K-logK method

- Modern algorithms with guarantees (for e.g. mixtures of Gaussians)
 - Random projections
 - Projection on principal subspace
 - Two step EM (K-logK initialization + one more EM iteration)
Outline

Clustering – finding groups in data

Clustering: Finding groups in data

Basic algorithms
 - K-means clustering and the quadratic distortion
 - Model based / soft clustering, the EM algorithm and maximizing likelihood

Similarity based / graph clustering and the Spectral clustering algorithm

Further issues and current trends

Reinforcement, semi-supervised, and active learning
Similarity based clustering

- **Paradigm:** the features we observe are measures of similarity/dissimilarity between pairs of data points, e.g.

<table>
<thead>
<tr>
<th>points</th>
<th>features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image segmentation</td>
<td>pixels</td>
</tr>
<tr>
<td></td>
<td>distance in color space, location, separated by a contour, belong to same texture</td>
</tr>
<tr>
<td>Social network</td>
<td>people</td>
</tr>
<tr>
<td>Text analysis</td>
<td>words</td>
</tr>
<tr>
<td></td>
<td>appear in same context</td>
</tr>
</tbody>
</table>

- The features are summarized by a single similarity measure S_{ij}
 - e.g. $S_{ij} = e^{\sum_k \alpha_k \text{feature}_k(i,j)}$ for all points i,j
 - symmetric $S_{ij} = S_{ji}$
 - non-negative $S_{ij} \geq 0$
Similarity based clustering

Paradigm: the features we observe are measures of *similarity/dissimilarity* between pairs of data points, e.g

<table>
<thead>
<tr>
<th>points</th>
<th>features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image segmentation</td>
<td>pixels distance in color space, location, separated by a contour, belong to same texture</td>
</tr>
<tr>
<td>Social network</td>
<td>people friendship, coauthorship, hyperlinks, email</td>
</tr>
<tr>
<td>Text analysis</td>
<td>words appear in same context</td>
</tr>
</tbody>
</table>

The features are summarized by a single similarity measure S_{ij}

- e.g $S_{ij} = e^{\sum_k \alpha_k \text{feature}_k(i,j)}$ for all points i, j
- symmetric $S_{ij} = S_{ji}$
- non-negative $S_{ij} \geq 0$

Mathematically, we can see the data as

- a $n \times n$ matrix $S = [S_{ij}]$
- a (weighted) graph
 - points = graph nodes, similarity $S_{ij} =$ weight of edge ij
 - meaningful because very few similarities are large
 Then, clustering is *cutting* the graph
Artificial matrix UW Statistics co-authorship data similarity based useful for \mathbb{R}^d data as well

$S_{ij} = \# \text{tech-reports co-authored}$

$S_{ij} = e^{-\frac{||x_i - x_j||^2}{\sigma^2}}$
Criteria for clustering

- **Graph cuts**
 - remove some edges \implies disconnected graph
 - the groups are the connected components

- **By similar behavior**
 - nodes i, j in the same group iff i, j have the same pattern of transitions at group level

- **By Embedding**
 - map graph nodes $\{1, 2, \ldots, n\}$ to \mathbb{R}^K then use “standard” clustering methods (e.g. K-means)

- **By diffusion distance**

- All are equivalent (approximately) when the data is clusterable
Spectral clustering in a nutshell

weighted graph \rightarrow similarity matrix S \rightarrow transition matrix P \rightarrow first K eigenvectors of P \rightarrow K clusters

n vertices to cluster; observations are pairwise similarities

$n \times n$, symmetric $S_{ij} \geq 0$

normalize rows \rightarrow spectral mapping \rightarrow clustering in \mathbb{R}^K
Spectral clustering in a nutshell

Similarity S

Preprocess

Top K e-vectors $v^{1:K}$

Data embedded by v

Cluster with K-means

$$P = D^{-1}S$$

point i
Spectral clustering in a nutshell

Similarity S

Preprocess

Top K e-vectors $\mathbf{v}^{1:K}$

Data embedded by \mathbf{v}

Cluster with K-means

$P = D^{-1}S$
Properties of spectral clustering

- Arbitrary cluster shapes (main advantage)
- Elegant mathematically
- Practical up to medium sized problems
 - Running time (by Lanczos algorithm) $\mathcal{O}(nk)/\text{iteration}$.
- Works well when K known, not too large estimating K
- Depend heavily on the similarity function (main problem) learning the similarities ,,,
- Outliers become separate clusters (user must adjust K accordingly!)
- Very popular, many variants which aim to improve on the above
 Diffusion maps: normalize the eigenvectors $\lambda_k v_k$
- Practical fix, when K large: only compute a fixed number of eigenvectors $d < K$. This avoids the effects of noise in lower ranked eigenvectors
Understanding spectral clustering I

- **Graph cuts** Spectral clustering minimizes $\text{MNCut}(\Delta) = \sum_{k=1}^{K} \sum_{k' \neq k} \frac{\text{Cut}(C_k, C_{k'})}{D_{C_k}}$

 (not the smallest K-way cut!)

- By similar behavior in the random walk on the graph

 $P_{\text{red}} = P_{i \rightarrow \text{red} | i} = \sum_{j \in \text{red}} P_{ij}$

 $P_{\text{yellow}} = \frac{1}{5} 4/5$

 red

 yellow

 $1/5 4/5$

 $1/5 4/5$

 $1/5 4/5$

 $1/5 4/5$

 $1/5 4/5$

 $1/5 4/5$

 $1/5 4/5$

 $1/5 4/5$

 $1/5 4/5$

 $1/5 4/5$

 $1/5 4/5$

 $1/5 4/5$

 $1/5 4/5$

 $1/5 4/5$

 $1/5 4/5$

 $1/5 4/5$

 $1/5 4/5$

 $1/5 4/5$

 $1/5 4/5$

 $1/5 4/5$
item All are equivalent (approximately) when the data is clusterable. Clusterability characterized by
Outline

Clustering – finding groups in data

Clustering: Finding groups in data

Basic algorithms
 K-means clustering and the quadratic distortion
 Model based / soft clustering, the EM algorithm and maximizing likelihood

Similarity based / graph clustering and the Spectral clustering algorithm

Further issues and current trends

Reinforcement, semi-supervised, and active learning
Further issues and current trends (an incomplete list) I

- Selecting K
 - many ad-hoc methods
 - BIC (statistical model selection method) for mixture models theoretically unsupported in clustering
 - stability-based selection (a bootstrap like method)
 - Idea: if a clustering Δ is supported by the data then it is stable to perturbations
 - theoretical results only preliminary, but empirical evidence promising

- Non-parametric clustering
 - mixture models with unbounded K (known as Dirichlet Process Mixtures, or Bayesian Nonparametric clustering)
 - methods based on a kernel density estimator
 - find the peaks of the density Mean-Shift, Gaussian Blurring Mean-Shift
 - level-set methods (find the high density regions)
 - for similarity data Affinity Propagation

- Clusterability
 - Algorithms with guarantees for clusterable data
 - Scalable algorithms
Clustering – finding groups in data

Clustering: Finding groups in data

Basic algorithms
- K-means clustering and the quadratic distortion
- Model based / soft clustering, the EM algorithm and maximizing likelihood

Similarity based / graph clustering and the Spectral clustering algorithm

Further issues and current trends

Reinforcement, semi-supervised, and active learning
Statistical decisions

Or learning to act in uncertainty (closer to supervised, since objective known)

- Influence diagrams
 - extend graphical models with decision nodes

- Active learning
 - Variant of supervised learning
 - Learner can choose next samples X_i to query, oracle returns the Y_i values

- Semi-supervised learning
 - Variant of supervised learning
 - In addition to labeled pairs $\mathcal{D}_L = \{(X_i, Y_i), i = 1 : m\}$ there are also unlabeled data $\mathcal{D}_U = \{X_j, j = 1 : m\}$.
 - transductive learning: infer the labels for \mathcal{D}_U
 - OR, use $\mathcal{D}_U \cup \mathcal{D}_L$ to learn a predictor for Y

- Reinforcement learning
 - Sequential (Markov) decisions in uncertainty (aka Markov Decision Process (MDP))
Reinforcement learning

The problem an agent learns how to act in an unknown environment

- Examples: learning to balance a beam, to drive a car, to play backgammon, navigate a maze

Time \(t = 1, 2, 3, \ldots \)
State \(x_t \in \Omega \)
Action \(a_t \in A \) a set of available actions (may depend on \(x \))
Transition probability \(Pr[x_{t+1}|x_t, a_t] \) (Markov transitions with \(T^a \) transition matrix, \(a \in A \))
Reward \(r_t \) stochastic, depends on \(a_t, x_t, x_{t+1} \)

- Goal of agent: maximize \(\mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^t r_t \right] \) where \(\gamma \in (0, 1) \) is a discount factor

- Basic concepts
 - policy \(\pi : \Omega \rightarrow A \) prescribes an action for every state
 - value function of policy \(\pi \) \(V^\pi : \Omega \rightarrow \mathbb{R} \)

\[
V^\pi(x) = R(x, \text{follow } \pi)
\]

- Note that for each \(\pi \), \(V_\pi \) is a linear function of expected \(r(x, a) \) \(r^\pi + \gamma T^\pi V^\pi = V^\pi \)

- Classic result Bellman equation

the optimal policy \(\pi^* \) satisfies

\[
V^*(x), \pi^*(x) = \max, \argmax_{a \in A} E_{T^a} \left[r(a, x, x') + \gamma V^*(x') \right]
\]
Reinforcement learning

Approaches to learning

▶ Finite time horizon, small Ω: dynamic programming
▶ Ω tractable: stochastic optimization for V^*, e.g Q-learning
▶ Large Ω, possibly continuous: functional approximations of V^* (may not converge!), e.g neuro-dynamic programming, deep Q-learning
▶ Better yet, functional approximation of the policy; i.e. let $\pi(x) = f(x, \theta)$ and optimize θ by gradient descent

A harder problem Partially observed MDP (POMDP)

▶ x_t not observed directly
▶ instead, partial information y_t
▶ problem becomes non-Markov, sufficient statistics are all a_t, y_t history

Connection with on-line learning, game theory, ...
What I wish I could have included

- Sparse estimation (born @UCLA)
- Model selection
- Other non-parametric models (e.g. shape constrained estimation)
Thank you