A Tour of Unsupervised Learning – Part II Clustering. Semi-supervised, active and reinforcement learning

Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

Outline

Clustering – finding groups in data

Clustering: Finding groups in data

Basic algorithms

K-means clustering and the quadratic distortion Model based / soft clustering, the EM algorithm and maximizing likelihood

Similarity based / graph clustering and the Spectral clustering algorithm

Further issues and current trends

Reinforcement, semi-supervised, and active learning

Outline

Clustering - finding groups in data

Clustering: Finding groups in data

Basic algorithms

K-means clustering and the quadratic distortion Model based / soft clustering, the EM algorihtm and maximizing likelihood

Similarity based / graph clustering and the Spectral clustering algorithm

Further issues and current trends

Reinforcement, semi-supervised, and active learning

What is clustering? Problem and Notation

- ▶ Informal definition Clustering = Finding groups in data
- Notation $\mathcal{D}=\{\mathbf{x}_1,\,\mathbf{x}_2,\,\ldots\,\mathbf{x}_n\}$ a data set $n=\mathrm{number}$ of data points $K=\mathrm{number}$ of clusters (K<< n) $\Delta=\{C_1,C_2,\ldots,C_K\}$ a partition of \mathcal{D} into disjoint subsets $k(i)=\mathrm{the}$ label of point i $\mathcal{L}(\Delta)=\mathrm{cost}$ (loss) of Δ (to be minimized)
- Second informal definition Clustering = given n data points, separate them into K clusters
- Hard vs. soft clusterings
 - Hard clustering Δ: an item belongs to only 1 cluster
 - Soft clustering $\gamma = \{\gamma_{ki}\}_{k=1:K}^{i=1:n}$ $\gamma_{ki} = \text{the degree of membership of point } i \text{ to cluster } k$

$$\sum_{k} \gamma_{ki} = 1$$
 for all i

(usually associated with a probabilistic model)

(from)

(from)

(from)

Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints (about K, shape of clusters)

▶ Data = vectors $\{x_i\}$ in \mathbb{R}^d

Parametric Cost based [hard] (K known) Model based [soft]

Gaussian blurring mean shift [hard]

▶ Data = similarities between pairs of points $[S_{ij}]_{i,j=1:n}$, $S_{ij} = S_{ji} \ge 0$ (called Similarity based clustering)

Graph partitioning spectral clustering [hard, K fixed, cost based] typical cuts [hard non-parametric, cost based]

Affinity propagation [hard/soft non-parametric]

Classification vs Clustering

	Classification	Clustering
Performance criterion	Expected error	a wide variety
	Supervised	Unsupervised
Generalization	Performance on new data is what matters	Performance on current data is what matters
К	Known	Unknown
"Goal"	Prediction	Exploration, etc
Stage of field	Mature	Young: new paradigms and theoretical results are emerging

Outline

Clustering – finding groups in data

Clustering: Finding groups in data

Basic algorithms

K-means clustering and the quadratic distortion Model based / soft clustering, the EM algorihtm and maximizing likelihood

Similarity based / graph clustering and the Spectral clustering algorithm

Further issues and current trends

Reinforcement, semi-supervised, and active learning

Algorithm K-Means

Input Data $\mathcal{D}=\{x_i\}_{i=1:n}$, number clusters KInitialize centers $\mu_1,\mu_2,\ldots\mu_K\in\mathbb{R}^d$ at random Iterate until convergence

1. for i = 1 : n (assign points to clusters \Rightarrow new clustering)

$$k(i) = \underset{k}{\operatorname{argmin}} ||x_i - \mu_k||$$

$$\mu_k = \frac{1}{|C_k|} \sum_{i \in C_k} x_i \tag{1}$$

Algorithm K-Means

Input Data $\mathcal{D}=\{x_i\}_{i=1:n}$, number clusters KInitialize centers $\mu_1,\mu_2,\ldots\mu_K\in\mathbb{R}^d$ at random Iterate until convergence

1. for i = 1: n (assign points to clusters \Rightarrow new clustering)

$$k(i) = \underset{k}{\operatorname{argmin}} ||x_i - \mu_k||$$

$$\mu_k = \frac{1}{|C_k|} \sum_{i \in C_k} x_i \tag{1}$$

- Convergence
 - ightharpoonup if Δ doesn't change at iteration m it will never change after that
 - convergence in finite number of steps

Algorithm K-Means

Input Data $\mathcal{D}=\{x_i\}_{i=1:n}$, number clusters KInitialize centers $\mu_1,\mu_2,\ldots\mu_K\in\mathbb{R}^d$ at random Iterate until convergence

1. for i = 1 : n (assign points to clusters \Rightarrow new clustering)

$$k(i) = \underset{k}{\operatorname{argmin}} ||x_i - \mu_k||$$

$$\mu_k = \frac{1}{|C_k|} \sum_{i \in C_k} x_i \tag{1}$$

- Convergence
 - ightharpoonup if Δ doesn't change at iteration m it will never change after that
 - ightharpoonup convergence in finite number of steps to local optimum of cost \mathcal{L} (defined next)

Algorithm K-Means

Input Data $\mathcal{D}=\{x_i\}_{i=1:n}$, number clusters KInitialize centers $\mu_1,\mu_2,\ldots\mu_K\in\mathbb{R}^d$ at random Iterate until convergence

1. for i = 1: n (assign points to clusters \Rightarrow new clustering)

$$k(i) = \underset{k}{\operatorname{argmin}} ||x_i - \mu_k||$$

$$\mu_k = \frac{1}{|C_k|} \sum_{i \in C_k} x_i \tag{1}$$

- Convergence
 - ightharpoonup if Δ doesn't change at iteration m it will never change after that
 - ightharpoonup convergence in finite number of steps to local optimum of cost \mathcal{L} (defined next)
 - therefore, initialization will matter

The K-means cost

$$\mathcal{L}(\Delta) = \sum_{k=1}^K \sum_{i \in C_k} ||x_i - \mu_k||^2$$

- K-means solves a least-squares problem
- the cost L is called quadratic distortion

Proposition The K-means algorithm decreases $\mathcal{L}(\Delta)$ at every step.

Sketch of proof

- ightharpoonup step 1: reassigning the labels can only decrease ${\cal L}$
- step 2: reassigning the centers μ_k can only decrease \mathcal{L} because μ_k as given by (1) is the solution to

$$\mu_k = \min_{\mu \in \mathbb{R}^d} \sum_{i \in C_k} ||x_i - \mu||^2 \tag{2}$$

▶ Idea 1: start with K points at random

- ▶ Idea 1: start with K points at random
- ▶ Idea 2: start with K data points at random

- ▶ Idea 1: start with K points at random
- ► Idea 2: start with K data points at random What's wrong with chosing K data points at random?

The probability of hitting all $\,K\,$ clusters with $\,K\,$ samples approaches 0 when $\,K>5\,$

- ▶ Idea 1: start with K points at random
- ► Idea 2: start with K data points at random What's wrong with chosing K data points at random?

The probability of hitting all K clusters with K samples approaches 0 when K>5

▶ Idea 3: start with *K* data points using Fastest First Traversal (greedy simple approach to spread out centers)

- ▶ Idea 1: start with K points at random
- ► Idea 2: start with K data points at random What's wrong with chosing K data points at random?

The probability of hitting all K clusters with K samples approaches 0 when K>5

- ▶ Idea 3: start with *K* data points using Fastest First Traversal (greedy simple approach to spread out centers)
- Idea 4: k-means++ (randomized, theoretically backed approach to spread out centers)

- ▶ Idea 1: start with K points at random
- ► Idea 2: start with K data points at random What's wrong with chosing K data points at random?

The probability of hitting all K clusters with K samples approaches 0 when K > 5

- ▶ Idea 3: start with *K* data points using Fastest First Traversal (greedy simple approach to spread out centers)
- Idea 4: k-means++ (randomized, theoretically backed approach to spread out centers)
- Idea 5: "K-logK" Initialization (start with enough centers to hit all clusters, then prune down to K)
 For EM Algorithm , for K-means

The "K-logK" initialization

The K-logK Initialization (see also)

- 1. pick $\mu^0_{1:K'}$ at random from data set, where $K' = O(K \log K)$ (this assures that each cluster has at least 1 center w.h.p)
- 2. run 1 step of K-means
- 3. remove all centers μ_k^0 that have few points, e.g $|C_k| < \frac{n}{eK'}$
- 4. from the remaining centers select K centers by Fastest First Traversal
 - 4.1 pick μ_1 at random from the remaining $\{\mu_{1:K'}^0\}$
 - 4.2 for k=2: K, $\mu_k \leftarrow \underset{\mu_{k'}^0}{\operatorname{argmax}} \min_{j=1:k-1} ||\mu_{k'}^0 \mu_j||$, i.e next μ_k is furthest away from the already chosen centers
- 5. continue with the standard K-means algorithm

K-means clustering with K-logK Initialization

Example using a mixture of 7 Normal distributions with 100 outliers sampled uniformly K-LogK $K=7,\ T=100,\ n=1100,\ c=1$

Model based clustering: Mixture models

► The mixture density

$$f(x) = \sum_{k=1}^{K} \pi_k f_k(x)$$

- $f_k(x)$ = the components of the mixture
 - each is a density
 - f called mixture of Gaussians if $f_k = Normal_{\mu_k}, \Sigma_k$
- ▶ π_k = the mixing proportions, $\sum_k = 1^K \pi_k = 1, \ \pi_k \ge 0.$
- ▶ model parameters $\theta = (\pi_{1:K}, \mu_{1:K}, \Sigma_{1:K})$

Model based clustering: Mixture models

► The mixture density

$$f(x) = \sum_{k=1}^{K} \pi_k f_k(x)$$

- $f_k(x)$ = the components of the mixture
 - each is a density
 - f called mixture of Gaussians if $f_k = Normal_{\mu_k}, \Sigma_k$
- ▶ π_k = the mixing proportions, $\sum_k = 1^K \pi_k = 1, \ \pi_k \ge 0.$
- ▶ model parameters $\theta = (\pi_{1:K}, \mu_{1:K}, \Sigma_{1:K})$
- The degree of membership of point i to cluster k

$$\gamma_{ki} \stackrel{\text{def}}{=} P[x_i \in C_k] = \frac{\pi_k f_k(x)}{f(x)} \quad \text{for } i = 1:n, \ k = 1:n$$
(5)

 \triangleright depends on x_i and on the model parameters

The Expectation-Maximization (EM) Algorithm

Algorithm Expectation-Maximization (EM)

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters KInitialize parameters $\pi_{1:K} \in \mathbb{R}$, $\mu_{1:K} \in \mathbb{R}^d$, $\Sigma_{1:K} \in \mathbb{R}^{d \times d}$ Iterate until convergence

E step (Optimize clustering) for i = 1 : n, k = 1 : K

compute
$$\gamma_{ki} = \frac{\pi_k f_k(x)}{f(x)}$$

M step (Optimize parameters)

Compute "number of points" in cluster k

$$\Gamma_k = \sum_{i=1}^m \gamma_{ki}, \ k = 1 : K \quad \text{(note: } \sum_k \Gamma_k = n\text{)}$$
 (6)

Estimate parameters

$$\pi_k = \frac{\Gamma_k}{n}, \quad k = 1 : K$$

$$\mu_k = \sum_{i=1}^n \frac{\gamma_{ki}}{\Gamma_k} x_i$$

$$\Sigma_k = \frac{\sum_{i=1}^n \gamma_{ki} (x_i - \mu_k) (x_i - \mu_k)^T}{\Gamma_k}$$

EM versus K-means

- ▶ Alternates between cluster assignments and parameter estimation
- ightharpoonup Cluster assignments γ_{ki} are probabilistic
- ► Cluster parametrization more flexible

- Converges to local optimum of log-likelihood Initialization recommended by K-logK method
- Modern algorithms with guarantees (for e.g. mixtures of Gaussians)
 - Random projections
 - Projection on principal subspace
 - ► Two step EM (=K-logK initialization + one more EM iteration)

Outline

Clustering – finding groups in data

Clustering: Finding groups in data

Basic algorithms

K-means clustering and the quadratic distortion Model based / soft clustering, the EM algorihtm and maximizing likelihood

Similarity based / graph clustering and the Spectral clustering algorithm

Further issues and current trends

Reinforcement, semi-supervised, and active learning

Similarity based clustering

▶ Paradigm: the features we observe are measures of similarity/dissimilarity hetween pairs of data points e.g.

between pairs of data p	onits, c.g	
	points	features
Image segmentation	pixels	distance in color space, location, separated by a contour, belong to same texture
Social network Text analysis	people words	friendship, coauthorship, hyperlinks, email appear in same context

- ▶ The features are summarized by a single similarity measure S_{ij}
 - e.g $S_{ii} = e^{\sum_k \alpha_k \text{feature}_k(i,j)}$ for all points i, j

 - symmetric $S_{ij} = S_{ji}$ non-negative $S_{ij} \ge 0$

Similarity based clustering

 Paradigm: the features we observe are measures of similarity/dissimilarity between pairs of data points, e.g

between pairs of data points, e.g			
	points	features	
Image segmentation	pixels	distance in color space, location, separated by a contour, belong to same texture	
Social network Text analysis	people words	friendship, coauthorship, hyperlinks, email appear in same context	

- ▶ The features are summarized by a single similarity measure S_{ii}
 - e.g $S_{ij} = e^{\sum_k \alpha_k \text{feature}_k(i,j)}$ for all points i,j
 - ightharpoonup symmetric $S_{ij} = S_{ji}$
 - ▶ non-negative $S_{ij} \ge 0$
- ▶ Mathematically, we can see the data as
 - ightharpoonup a $n \times n$ matrix $S = [S_{ii}]$
 - ► a (weighted) graph

points = graph nodes, similarity S_{ij} = weight of edge ij meaningful because very few similarities are large Then, clustering is cutting the graph

 $S_{ij} = \#$ tech-reports co-authored

$$S_{ij} = e^{-\frac{||x_i - x_j||^2}{\sigma^2}}$$

Criteria for clustering

- ▶ Graph cuts remove some edges ⇒ disconnected graph the groups are the connected components
- ightharpoonup By similar behavior nodes i, j in the same group iff i, j have the same pattern of transitions at group level
- ► By Embedding
- ▶ map graph nodes $\{1,2,\ldots,n\}$ to \mathbb{R}^K then use "standard" clustering methods (e.g K-means)
- ► By diffusion distance
- ► All are equivalent (approximately) when the data is clusterable

Spectral clustering in a nutshell

Spectral clustering in a nutshell

Spectral clustering in a nutshell

Properties of spectral clustering

- Arbitrary cluster shapes (main advantage)
- Elegant mathematically
- Practical up to medium sized problems
 - ▶ Running time (by Lanczos algorithm) O(nk)/iteration.
- Works well when K known, not too large estimating K
- ► Depend heavily on the similarity function (main problem) learning the similarities ,,,
- Outliers become separate clusters (user must adjust K accordingly!)
- Very popular, many variants which aim to improve on the above Diffusion maps: normalize the eigenvectors \(\lambda_t^t v^k \)
- Practical fix, when K large: only compute a fixed number of eigenvectors d < K. This avoids the effects of noise in lower ranked eigenvectors

Understanding spectral clustering I

▶ Graph cuts Spectral clustering minimizes $\mathit{MNCut}(\Delta) = \sum_{k=1}^{K} \sum_{k' \neq k} \frac{\mathit{Cut}(C_k, C_{k'})}{\mathit{Dc}_k}$

(not the smallest K-way cut!)

▶ By similar behavior in the random walk on the graph

Understanding spectral clustering II

item All are equivalent (approximately) when the data is clusterable. Clusterability characterized by

Outline

Clustering – finding groups in data

Clustering: Finding groups in data

Basic algorithms

K-means clustering and the quadratic distortion Model based / soft clustering, the EM algorithm and maximizing likelihood

Similarity based / graph clustering and the Spectral clustering algorithm

Further issues and current trends

Reinforcement, semi-supervised, and active learning

Further issues and current trends (an incomplete list) I

- Selecting K
 - many ad-hoc methods
 - BIC (statistical model selection method) for mixture models theoretically unsupported in clustering
 - stability-based selection (a boostrap like method)
 - Idea: if a clustering Δ is supported by the data then it is stable to perturbations
 theoretical results only prelimnary, but empirical evidence promising
- Non-parametric clustering
 - mixture models with unbounded K (known as Dirichlet Process Mixtures, or Bayesian Nonparametric clustering)
 - methods based on a kernel density estimator
 - ► find the peaks of the density Mean-Shift, Gaussian Blurring Mean-Shift
 ► level-set methods (find the high density regions)
 - for similarity data Affinity Propagation
- Clusterability
- Algorithms with guarantees for clusterable data
- Scalable algorithms

Outline

Clustering – finding groups in data

Clustering: Finding groups in data

Basic algorithms

K-means clustering and the quadratic distortion Model based / soft clustering, the EM algorithm and maximizing likelihood

Similarity based / graph clustering and the Spectral clustering algorithm

Further issues and current trends

Reinforcement, semi-supervised, and active learning

Statistical decisions

Or learning to act in uncertainty (closer to supervised, since objective known)

- ► Influence diagrams
 - extend graphical models with decision nodes
- Active learning
 - Variant of supervised learning
 - \triangleright Learner can choose next samples X_i to query, oracle returns the Y_i values
- Semi-supervised learning
 - Variant of supervised learning
 - In addition to labeled pairs $\hat{\mathcal{D}}_L = \{(X_i, Y_i), i = 1 : m\}$ there are also unlabeled data $\mathcal{D}_U = \{X_i, j = 1 : m\}$.
 - ightharpoonup transductive learning: infer the labels for \mathcal{D}_U
 - ▶ OR, use $\mathcal{D}_U \cup \mathcal{D}_L$ to learn a predictor for Y
- Reinforcement learning
 - Sequential (Markov) decisions in uncertainty (aka Markov Decision Process (MDP)

Reinforcement learning

The problem an agent learns how to act in an unknown environment

 Examples: learning to balance a beam, to drive a car, to play backgammon, navigate a maze

Time $t=1,2,3,\ldots$ State $x_t\in\Omega$ Action $a_t\in A$ set of available actions (may depend on x) Transition probability $Pr[x_{t+1}|x_t,a_t]$ (Markov transitions with T^a transition matrix, $a\in Reward\ r_t$ stochastic, depends on a_t,x_t,x_{t+1}

- ▶ Goal of agent: maximize $E\left[\sum_{t=1}^{\infty} \gamma^t r_t\right]$ where $\gamma \in (0,1)$ is a discount factor $R(x_1, a_1, a_2, ...)$
- Basic concepts
 - **policy** $\pi: \Omega \to A$ prescribes an action for every state
 - ▶ value function of policy π V^{π} : $\Omega \to \mathbb{R}$

$$V^{\pi}(x) = R(x, \text{follow } \pi)$$

- Note that for each π , V_{π} is a linear function of expected r(x,a) $(r^{\pi} + \gamma T^{\pi} V^{\pi} = V^{\pi})$
- Classic result Bellman equation the optimal policy π^* satisfies

$$V^*(x), \pi * (x) = \max, \operatorname{argmax}_{a \in A} E_{T^a} [r(a, x, x') + \gamma V^*(x')]$$

Reinforcement learning

Approaches to learning

- Finite time horizon, small Ω: dynamic programming
- $ightharpoonup \Omega$ tractable: stochastic optimization for V^* , e.g Q-learning
- Large Ω , possibly continuous: functional approximations of V^* (may not converge!), e.g neuro-dynamic programming, deep Q-learning
- ▶ Better yet, functional approximation of the policy; i.e. let $\pi(x) = f(x, \theta)$ and optimize θ by gradient descent

A harder problem Partially observed MDP (POMDP)

- \triangleright x_t not observed directly
- instead, partial information y_t
- \triangleright problem becomes non-Markov, sufficient statistics are all a_t, y_t history

Connection with on-line learning, game theory, ...

What I whish I could have included

- Sparse estimation (born @UCLA)
- ▶ Model selection
- Other non-parametric models (e.g shape constrained estimation)

Thank you