

Developing and Fitting Reactive Empirical Potentials to Enable Atomic-Scale Simulations

Susan B. Sinnott

Department of Materials Science and Engineering Penn State University

September 15, 2016

Understanding Many-Particle Systems with Machine Learning Tutorials IPAM, UCLA

Computational Materials Science

- Calculate energies and forces on atoms
 - Quantum mechanics first principles approach with minimal approximations
 - Empirical approach mathematical equations with parameters fit to quantum mechanical and experimental data to describe materials; called potentials
- Predict future dynamical or thermodynamic states with simulations
 - Explicit dynamical information molecular dynamics
 - Evolution of the system to thermodynamic minimum Monte Carlo

Molecular Dynamics Simulations

The Idea: Integrate

 $F_i(t) = ma_i(t)$ $F_i(t) = md^2r_i(t)/dt^2 = -dU(r^N)/dr_i$

numerically to predict the responses of atoms to external forces with time. Several different numerical integrators are available.

The good news:

Can predict the motion of atoms under practically any conditions The bad news:

Can only follow the motion for a few ps using traditional approach More good news:

Accelerated methods allow one to overcome this limitation More bad news:

Accelerated methods are not very broadly applicable

Monte Carlo Simulations

The Idea:

Calculate the energy for two configurations of interest

If the 2nd configuration is lower in energy accept it and consider the next variation in configuration. If not then check with a random number generator (roll the dice). Depending on the outcome, the 2nd configuration may or may not be accepted.

30+ Years of Potential Evolution

Reactive Materials Modeling at the Atomic Scale

- Electronic-structure level
 - High fidelity methods available:
 - Quantum chemical approaches
 - Density functional theory (DFT)
 - Off-the-shelf codes widely available
 - Wide-spread understanding of strengths and limitations
- Atomic-scale level
 - Many-body, realistic potentials have been available for over 30 years
 - Ideal for examining systems under extreme environments
 - Necessary to investigate chemistry + microstructure + mechanics + mechanisms +
 - Physics-based model development
- Inform microscale and mesoscale models
- Explain experimental observations

33 Years of Many-Body Atomic-Scale Potentials (Reactive Force Fields)

May 2012 issue

Historically developed for materials with specific types of chemical bonds

- Tersoff potentials for Si
 - Brenner or REBO potential for C,H + 0, F, S,....
 - AIREBO
- EAM potentials for metals
 - MEAM for metals and oxides
 - EAM+ES for metals and oxides
- Rigid ion (Buckingham) potentials for ionically bound materials

Used to examine phenomena at the atomic and nanometer scale and develop a qualitative, mechanistic understanding PennState

Multicomponent Systems

- Inherent to many applications
- Challenging for:
 - First-principles electronic structure methods (large systems, lacking usual symmetry)
 - Atomic-scale methods because of their heterogeneous nature
- This need spurred the development of *next* generation potentials:
 Charge Optimized
 Many-Body (COMB), Covalent ReaxFF, EAM+ES, and a few others

lonic

Selective Applications of COMB3

Functional Form of the COMB3 Potential

$$E_{T} = \sum_{i} \left\{ E_{i}^{Self}(q_{i}) + \frac{1}{2} \sum_{j \neq i} \left[V_{ij}^{short}(r_{ij}, q_{i}, q_{j}) + V_{ij}^{Coul}(r_{ij}, q_{i}, q_{j}) \right] + B_{i}(q_{i}) + C_{i}(r_{ij}, \theta_{ijk}) + E^{polar}(q_{i}, r_{ij}) + E^{vdW}(r_{ij}) \right\}$$

- Self energy: ionization energies and electron affinities; includes penalty function to capture change in self-energy due to the field from the ionic lattice
- Short-range interactions: reactive bond-order potential
- **Coulomb interactions**: Coulomb integral over the charge densities
- Charge and angular correction terms
- Polarization: Atomic polarizabililty for organic systems
- van der Waals energy

S.R. Phillpot and S.B. Sinnott, Science (2009) T. Liang et al., Materials Science and Engineering R (2013)

Functional Form of COMB3 Potential

General formalism:

$$E_{T} = \sum_{i} \left[E_{i}^{S}(q_{i}) + \frac{1}{2} \sum_{j \neq i} V_{ij}(r_{ij}, q_{i}, q_{j}) + B_{i}(q_{i}) + C_{i}(r_{ij}, \theta_{jik}) \right]$$

Self energy: fit to atomic ionization energies and electron affinities

$$E_{i}^{S}(q_{i}) = \chi_{i}q_{i} + J_{i}q_{i}^{2} + K_{i}q_{i}^{3} + L_{i}q_{i}^{4}$$

Penalty function to capture change in self energy due to field of ionic lattice

$$E_{i}^{field}(r,q_{j}) = \sum_{j \neq i}^{NN} \left(\frac{\rho_{1}q_{j}}{r_{ij}^{5}} + \frac{\rho_{2}q_{j}^{2}}{r_{ij}^{5}} \right)$$

$$V_{ij}(r_{ij}, q_i, q_j) = f_c(r_{ij}) \cdot A_{ij}(q_i, q_j) \cdot e^{-\lambda_{ij} \cdot r_{ij}} - f_c(r_{ij}) \cdot b_{ij} \cdot B_{ij}(q_i, q_j) \cdot e^{-\alpha_{ij} \cdot r_{ij}} + q_i \cdot J_{ij}(r_{ij}) \cdot q_j$$

Short range interactions: Bond-order type potential that was made charge dependent

A change in the partial charge on an atom affects the effective ionic radius, which influences the short-range repulsion and attraction

$$A_{ij}(q_i, q_j) = A_{ij} \cdot \exp\left[\lambda_i D_i(q_i) + \lambda_j D_j(q_j)\right] \qquad \rightarrow \text{repulsive}$$

$$B_{ij}(q_i, q_j) = B_{ij} \cdot B_{ij}^*(q_i, q_j) \cdot \exp\left[\alpha_i D_i(q_i) + \alpha_j D_j(q_j)\right] \qquad \rightarrow \text{attractive}$$

Bond order term, b_{ii} , includes many-body effects

$$b_{ij} = \left[1 + \left(\beta_i \sum_{k \neq i,j} \xi_{ijk} g(\theta_{jik}) \right)^{n_i} \right]^{-1/(2n_i)}$$

$$\zeta_{ijk} = f_{S_k} e^{\left[\alpha_{ij}^{m_i} (r_{ij} - r_{ik})^{m_i} \right]} \qquad \rightarrow \text{symmetry function}$$

$$g(\theta_{jik}) = 1 + c_i^2 / d_i^2 - c_i^2 / \left[d_i^2 + (h_i - \cos \theta_{jik})^2 \right] \qquad \rightarrow \text{angular function}$$

$$V_{ij}(r_{ij}, q_i, q_j) = f_c(r_{ij}) \cdot A_{ij}(q_i, q_j) \cdot e^{-\lambda_{ij} \cdot r_{ij}} - f_c(r_{ij}) \cdot b_{ij} \cdot B_{ij}(q_i, q_j) \cdot e^{-\alpha_{ij} \cdot r_{ij}} + q_i \cdot J_{ij}(r_{ij}) \cdot q_j$$

Long range interactions: Coulomb electrostatics Spherical charge distribution: 1*s*-type Slater orbital

$$J_{ij}(r_{ij}) = n_{ij} \int d^3 r_i \int d^3 r_j \,\rho_i(r_i, q_i) \rho_j(r_j, q_j) / r_{ij}$$

Treats long range interactions with Wolf summation

$$\rho_i(r_i, q_i) = q_i \frac{\xi_i^3}{\pi} \exp\left(-2\xi_i |r - r_i|\right)$$

Polarization term:

$$E^{Polar}[q_i, r_{ij}] = \sum_i \frac{\vec{\mu}_i^2}{2\alpha_i} + \sum_i \vec{\mu}_i \cdot \vec{E}_i^q + \frac{1}{2} \sum_i \sum_{j \neq i} \vec{\mu}_i T_{ij} \vec{\mu}_j$$

Wolf et al. J. Chem. Phys. 110 (1999)

Fitting COMB3 Potentials

- POSMat program automates parameterization process
- Much human involvement in decision making process, which is still a "black art"
 Database from
- Fitting database typically includes
 - lattice constants
 - cohesive energies
 - energy versus volume for multiple phases
 - bulk modulus
 - elastic constants
 - surface energies
 - point defect formation energies
 - stacking faults
 - others

Database from DFT and/or experiment; we use the numbers we "trust the most"; fit according to the **Rules** of Finnis and Tersoff. Database depends on: Database depends on: material type (metallic, ionic, molecular)

 application (structural versus catalysis)

Martinez et al., Current Opinion in Solid State & Materials Science 17 (2013)

Automating the Fit

Cost of Potentials in LAMMPS

DFT calculations for systems 2 orders of magnitude smaller in size are 5 orders of magnitude more computationally expensive

Plimpton and Thompson, MRS Bulletin 37 (5) 513 (2012)

COMB and ReaxFF

COMB3:

- Charge density function, p
- Core charge, Z
- Coulomb integrator, J^{qq}, J^{qz}
- DirectSum

$$f(|\mathbf{r} - \mathbf{r}_{i}|) = \xi_{i}^{3} \pi^{-1} \exp(-2\xi_{i}|\mathbf{r} - \mathbf{r}_{i}|)$$

$$\rho_{i}(\mathbf{r};q_{i}) = Z_{i}\delta(|\mathbf{r} - \mathbf{r}_{i}|) + (q_{i} - Z_{i})f_{i}(|\mathbf{r} - \mathbf{r}_{i}|)$$

$$J_{ij}^{qq} = \left[\rho_{i}|\rho_{j}\right] = \int d^{3}r_{1}\int d^{3}r_{2} \frac{\rho_{i}(\mathbf{r}_{1})\rho_{j}(\mathbf{r}_{2})}{r_{12}}$$

$$E^{qZ}[\{q\},\{r\}] = \sum_{i}\sum_{j>i}\left(q_{i}J_{ij}^{qz}q_{j} + q_{j}J_{ji}^{qz}q_{i}\right)$$

ReaxFF:

- Point charge
- No core charge
- Shielded Coulomb
- Tap function

- Tap · C
$$\sum_{j \neq i}^{N} \frac{q_j}{\left[r_{ij}^3 + (1/\gamma_{ij})^3\right]^{1/3}}$$

~1/r -> Coulomb catastrophe when r is infinitely small

- Both 1/r at long distance
- To avoid Coulomb catastrophe at short distance
 - Coulomb integrator over charge density in COMB3
 - \succ Shielding parameter γ in ReaxFF

COMB and ReaxFF

~ 1/r -> does not converge at infinitely long distances; the Ewald Summation method is costly

COMB3 uses Direct Sum

- Coulomb cutoff
- Design for crystals
- Underestimate the Coulomb in molecules

ReaxFF uses the Taper Function

- Tap · C
$$\sum_{j \neq i}^{N} \frac{q_j}{\left[r_{ij}^3 + (1/\gamma_{ij})^3\right]^{1/3}}$$

- Coulomb cutoff
- The Taper function can adjust the strength of Coulomb interactions

- Energy minima at infinitely short distances
 - No charge transfer

COMB and ReaxFF

Coulomb + Ionization -> underestimates charge transfer

COMB3 adds field effects

ReaxFF modifies the ionization energy curve

- COMB3 still underestimates charge transfer
- Original version of ReaxFF may have large residual charge in the case of bond dissociation; being resolved via integration with ACKS2 method

Short Range Bond Order Differences

COMB3:

- Abell-Tersoff-Brenner
- Bond order evaluated based on CN, bond angle, torsion ...
- Bond order scales the pairwise ۲ attraction

ReaxFF:

- The bond order is first evaluated from bond length
- All other energy terms can be scaled by a bond order
- No cutoff function is used

- Bond order in COMB3 is not directly related to distance
- CN increase -> increased electron-electron repulsion -> increased bond length

COMB3 and ReaxFF

Cutoff Function

Unrealistic energy and forces inside cutoff region for COMB3

Parameterization

- COMB3 is more focused on crystals than molecules since DirectSum works better.
- ReaxFF can do a better job for transition states since there is no cutoff on short-range interaction.

T. Liang et al., Annual Rev. Mater. Res. **43** (2013) Y. K. Shin et al., MRS Bulletin **37** (2012)

Example: Si Nanocrystals Embedded in a-SiO₂

- Si nanocrystals (NCs) emit visible light and the extent of the emission depends on the
 - Size of the Si-NC
 - Structure of the Si-NC/a-SiO₂ interface
 - Silanone bonds (Si=O double bond)

In collaboration with Flyura Djurabekova and Kai Nordlund at the University of Helsinki

F. Djurabekova, M. Backholm, M. Backman, O. H. Pakarinen, J. Keinonen, K. Nordlund, T.-R. Shan, B. D. Devine, and S. B. Sinnott, Nucl. Instr. Meth. Phys. Res. B 268 19 3095 (2010). PennState

10 nm in diameter

Variable Charge Equilibration

Ti-C Parameterization

- Parameterize a COMB3 potential for TiC
- Exhibits satisfactory bulk, surface and point defect properties for the ground state structure of bulk TiC
- Also optimize for molecular Ti-C-O-H interactions such as occur in molecular systems such as Ti-(OC₃H₇)₄ or TTIP

a. J.L. Murray, *OH: ASM International* (1987)
b. L.F.S. Dumitrescu LFS, *Z. Metallkd* (1999)
c. G. Simmons, *Cambridge: MIT Press* (1971)
d. T. Liang et al. (under revision)
e. A. Arya, *J. Chem. Phys.* (2003)

JAK RIDGE

National Laboratory

ALABAMA

WISCONSIN

Georgia Institutie

	TARGET	COMB3
a (Å)	4.33 ^a	4.34
ΔH_{f} (eV)	-1.56 ^b	-1.52
B (GPa)	241 ^c	262
C ₁₁ (GPa)	500 ^c	504
C ₁₂ (GPa)	113 ^c	144
C ₄₄ (GPa)	175 ^c	204
	TARGET	COMB3
V _{Ti} (eV)	14.38 ^d	5.39
V _C (eV)	5.91 ^d	18.45
Ti _i (eV)	12.47 ^d	22.35
C _i (eV)	8.89 ^d	16.16
$\gamma_{(001)}$ (J/m ²)	2.3 ^e	3.6

Genetic algorithm to investigate predicted phases

Ti/TiC Interfaces

Challenges and Solutions for Materials Modeling

• Big-picture challenges:

- What is the role of theory/computational modeling in the design, processing, and application of materials?
- How do we integrate the latest computational approaches with experimental data to improve predictability?
- To what extent are computational methodologies available that are applicable to the *physics of interest* in actual systems (materials, length and time scales)?
- How do we ensure the next generation of scientists and engineers can work in this new paradigm?
- What is needed:
 - Natural workflow from discovery codes to predictive software
 - Tight integration between processing, characterization, and computational approaches
 - Accurate error bars for the results of theoretical/computational method results
 - Widespread dissemination of software with robust documentation