Repr. theory, Fourier analysis, invariants
Risi Kondor, The University of Chicago

Black box ML

Data: $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ \downarrow

Hypothesis: $\widehat{f}: \mathbf{x} \mapsto y$

Features

$$
\left.\begin{array}{c}
\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\} \\
\downarrow \\
\left\{\left(\phi\left(\mathbf{x}_{1}\right), y_{1}\right), \ldots,\left(\phi\left(\mathbf{x}_{m}\right), y_{m}\right)\right\} \\
\downarrow \\
\text { Hypothesis: } \widehat{f}: \phi(\mathbf{x}) \mapsto y
\end{array}\right\} \text { algorithm }
$$

The individual coordinates $\left(\phi_{1}(\mathbf{x}), \ldots, \phi_{n}(\mathbf{x})\right)$ of $\phi(\mathbf{x})$ are called features.

Regularization

Many algorithms are, in fact, linear in the feature space, i.e.,

$$
f(\phi(\mathbf{x}))=\sum_{i} w_{i} \phi_{i}(\mathbf{x})
$$

and what we really learn is $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$. Regularization:

- ℓ_{2}-regularization: $\Omega(f)=\|\mathbf{w}\|_{2}^{2}=\sum_{i}\left|w_{i}\right|^{2}$
- ℓ_{1}-regularization: $\Omega(f)=\|\mathbf{w}\|_{1}=\sum_{i}\left|w_{i}\right|$

In both cases, the choice of features is critical. In physics applications, it is also important that the features be invariant.

Classical invariants

Let G be a group acting on a vector space \mathcal{X}. A function $\Upsilon: \mathcal{X} \rightarrow \mathbb{R}$ is said to be an invariant to the action of G if

$$
\Upsilon(g(\mathbf{x}))=\Upsilon(\mathbf{x}) \quad \text { for all } \quad x \in \mathcal{X}, \quad g \in G
$$

Example:

- $S O(3)$ acting on \mathbb{R}^{3} and $\Upsilon(\mathbf{x})=\|\mathbf{x}\|$.

Actually, we are more interested in the invariants of functions.

Let G be a group acting on a vector space \mathcal{X} and let V be a space of functions on \mathcal{X} (e.g., $V=L_{2}(\mathcal{X})$).

The action of G on \mathcal{X} extends naturally to V by

$$
f \mapsto f^{\prime}=g(f) \quad f^{\prime}(x)=f\left(g^{-1}(x)\right)
$$

A function $\Upsilon: V \rightarrow \mathbb{R}$ is said to be an invariant w.r.t. the action of G if

$$
\Upsilon(g(f))=\Upsilon(f) \quad \text { for all } \quad f \in V, g \in G
$$

Examples for the case of translations acting on \mathbb{R} :

- $\Upsilon_{0}=\int|f(x)|^{2} d x$
- $\Upsilon_{\omega}=|\widehat{f}(\omega)|^{2}$ for any frequency ω.

1: Autocorrelation (for translations)

The autocorrelation of f is

$$
a(x)=\int f(x+y) f(y) d y .
$$

Tells us how much f changes when we translate it by an amount y. Clearly invariant to translation (assuming $f^{\prime}(x)=f(x-g)$):

$$
\int f^{\prime}(x+y) f^{\prime}(y) d y=\int f(x+y) f(y) d y
$$

2: Power spectrum (for translations)

The power spectrum of f is

$$
\widehat{a}(\omega)=\widehat{f}(\omega)^{*} \cdot \widehat{f}(\omega)=|\widehat{f}(\omega)|^{2}
$$

Literally measures the amount of energy in each Fourier mode. Clearly invariant to translation:

$$
\widehat{a}_{f^{\prime}}(\omega)=\left(e^{2 \pi i \omega g} \widehat{f}(\omega)\right)^{*} \cdot\left(e^{2 \pi i \omega g} \widehat{f}(\omega)\right)=\widehat{f}(\omega)^{*} \cdot \widehat{f}(\omega)=\widehat{a}_{f}(\omega)
$$

- The power spectrum is just the Fourier transform of the autocorrelation. Limitation of both: they lose all the "phase information" in f.

3: Triple correlation \& bispectrum

The triple correlation of f is

$$
b\left(x_{1}, x_{2}\right)=\int f\left(y-x_{1}\right) f\left(y-x_{2}\right) f(y) d y
$$

The bispectrum of f is

$$
\widehat{b}\left(k_{1}, k_{2}\right)=\widehat{f}\left(k_{1}\right)^{*} \widehat{f}\left(k_{2}\right)^{*} \widehat{f}\left(k_{1}+k_{2}\right)
$$

- Again, these are both invariants, and the bispectrum is the Fourier transform of the triple correlation. Obviously, they are highly redundant (overcomplete).

Reconstructing f from b

$$
\widehat{b}\left(k_{1}, k_{2}\right)=\widehat{f}\left(k_{1}\right)^{*} \widehat{f}\left(k_{2}\right)^{*} \widehat{f}\left(k_{1}+k_{2}\right)
$$

Use the following algorithm to recover f from \widehat{b} :

1. $\widehat{f}(0)=\widehat{b}(0,0)^{1 / 3}$
2. $\widehat{f}(1)=e^{i \phi} \sqrt{\widehat{b}(0,1) / \widehat{f}(0)} \rightarrow$ indeterminacy in ϕ inevitable 3.

$$
\widehat{f}(k+1)=\frac{\widehat{b}(1, k)}{\widehat{f}(1)^{*} \widehat{f}(k)^{*}} k=2,3, \ldots
$$

Conclusion: If $\widehat{f}(k) \neq 0$ for any k, then \widehat{b} uniquely determines \widehat{f} up to translation, i.e., the bispectrum is complete.

Is there a general theory behind all this? In particular, is there a natural generalization of Fourier analysis to groups other than \mathbb{R}^{d} ?

Groups

Groups

A set G with a binary operations : $G \times G \rightarrow G$ is called a group if

1. for any $g_{1}, g_{2} \in G, g_{2} g_{1} \in G$ (closure)
2. for any $g_{1}, g_{2}, g_{3} \in G, g_{3}\left(g_{2} g_{1}\right)=\left(g_{3} g_{2}\right) g_{1}$ (associativity)
3. $\exists e \in G$ such that $e g=g e=g$ for any $g \in G$ (identity)
4. For any $g \in G$ there is a $g^{-1} \in G$ such that $g^{-1} g=e$ (inverse).

Groups play a fundamental role in Physics because they are the natural algebraic structure to describe invariances. [G is said to be commutative or Abelian if $g_{1} g_{2}=g_{2} g_{1}$ for all $\left.g_{1}, g_{2} \in G\right]$.

Examples of countable groups

- The cyclic groups $\mathbb{Z}_{n}=0,1, \ldots, n-1$ (addition modulo n).
- Klein's Viergruppe $V=\{1, i, j, k\}$.
- Quaternion group $Q=\{1, i, j, k,-1,-i,-j,-k\}$.
- Icosahedron group $I_{h} \equiv A_{5}$.
- Symmetric groups \mathbb{S}_{n} (group of permutations).
- The integers \mathbb{Z}.

Examples of continuous groups

- The reals \mathbb{R} and the Euclidean spaces \mathbb{R}^{d}.
- The rotation groups $\mathrm{SO}(n)$.
- The Euclidean group $\operatorname{ISO}(n)$ and the rigid body motions $\mathrm{ISO}^{+}(n)$.
- The special unitary groups $\mathrm{SU}(n)$.
- The Lorentz group $\mathrm{SO}(3,1)$.
- The general linear group GL (n).

Types of continuous groups

- non-Lie groups
- Lie groups
- Compact Lie groups (e.g., $\mathrm{SO}(n), \mathrm{SU}(n)$)
- Non-compact Lie groups (e.g., $\mathbb{R}, \mathrm{SO}(3,1)$, $\mathrm{GL}(n)$ etc.)

Many of these groups can be thought of as subsets of $\mathrm{GL}(n)$.
Compact groups are nice for many reasons, including the fact that they have a uniquely defined invariant measure μ, called the Haar measure.

Group actions

The action of a group G on a set \mathcal{X} is a collection of mappings

$$
g: \mathcal{X} \rightarrow \mathcal{X} \quad g \in G
$$

such that

$$
\left(g_{2} g_{1}\right)(x)=g_{2}\left(g_{1}(x)\right) \quad \forall g_{1}, g_{2} \in G
$$

The action is said to be transitive if for any $x, x^{\prime} \in \mathcal{X}$

$$
\exists g \in G \quad \text { such that } \quad g(x)=x^{\prime} .
$$

Erlagen program: Geometry is the study of properties invariant under a group (Felix Klein, 1872).

We are particularly interested in the actions of groups on vector spaces.

- If G acts on \mathcal{X} and V is an (invariant) vector space of functions on \mathcal{X}, then we have the natural induced action on V

$$
T_{g}: f \rightarrow f^{\prime} \quad f^{\prime}(x)=f\left(g^{-1}(x)\right)
$$

Key question: How does V fall apart into a direct sum of subspaces that are invariant (fixed) under all the T_{g} 's?

Representations

Representations

Given a group G and a vector space V (over \mathbb{C}), a collection of invertible operators $\{\rho(g)\}_{g \in G}$ on V is a representation of G if

$$
\rho\left(g_{2}\right) \cdot \rho\left(g_{1}\right)=\rho\left(g_{2} g_{1}\right)
$$

for all $g_{1}, g_{2} \in G$.
This is just an action of G on V realized via the $\rho(g)$ operators. (But is it transitive?) Equivalently, $\rho: G \rightarrow \mathrm{GL}(V)$ is a homomorphism.

Example: representations of Q

Recall that the quarterion group $Q=\{1, i, j, k,-1,-i,-j,-k\}$ is defined by

$$
i^{2}=j^{2}=k^{2}=-1, \quad(-1) a=-a \quad i j=k
$$

One represention of Q :

$$
\begin{array}{ll}
\rho(1)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \rho(i)=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \\
\rho(j)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) & \rho(k)=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
\end{array}
$$

so $\left\{\rho_{\omega}\right\}_{\omega \in \mathbb{R}}$ are representations of \mathbb{R}.

Unitary representations

Typically, V is a Hilbert space, and we can talk about unitary representations.

A representation $\rho: G \rightarrow V$ is unitary if each of the $\rho(g)$ operators are unitary, i.e.,

$$
\langle\rho(g)(x), \rho(g)(y)\rangle=\langle x, y\rangle
$$

for all $g \in G$ and all $x, y \in \mathcal{X}$. Equivalently, $(\rho(g))^{-1}=(\rho(g))^{\dagger}$.

In the following we will deal almost exclusively with unitary representations.

How many representations does a given group have? What are they?

Equivalence

$$
\begin{array}{cr}
V_{1} & \xrightarrow{\rho_{1}} V_{1} \\
T \downarrow & T \downarrow \\
\\
V_{2} & \xrightarrow{\rho_{2}} \\
\hline
\end{array}
$$

Let $\rho_{1}: G \rightarrow V_{1}$ and $\rho_{2}: G \rightarrow V_{2}$ be two representations of G. The two representations are said to be equivalent, denoted $\rho_{1} \cong \rho_{2}$, if there is some fixed bijection $T: V_{1} \rightarrow V_{2}$ such that

$$
T^{-1} \circ \rho_{2}(g) \circ T=\rho_{1}(g) \quad \forall g \in G
$$

Equivalent representations are often considered the same.

Reducible representations

If W has a non-trivial subspace of V such that

$$
\rho(x) \in W \quad \forall x \in W
$$

then ρ is said to be reducible. Otherwise it is irreducible. (The irreducible representations of commutative groups are always one dimensional)

Obviously, in this case $\rho \downarrow_{W}$ is also a representation. But is $\rho \downarrow_{W^{\perp}}$ also a representation?

Complete reducibility

Theorem. Let ρ be a representation of a compact group G on a Hilbert space V over \mathbb{C}. Then if W is an invariant subspace of V, then its orthogonal complement, W^{\top} is also an invariant subspace.

Corollary. ρ decomposes into the direct sum of representations

$$
\rho=\rho_{W} \oplus \rho_{W^{\perp}} .
$$

Complete reducibility

Corollary. Let \mathcal{R} be a complete set of inequivalent irreducible representations ("irreps") of a compact group G. Then any representation μ of G can be uniquely expressed in the form

$$
\mu=\bigoplus_{\rho \in \mathcal{R}} \bigoplus_{i=1}^{\kappa_{\mu}(\rho)} \rho=\bigoplus_{\rho \in \mathcal{R}} \rho^{\oplus \kappa_{\mu}(\rho)}
$$

The irreps are the "primes" in the world of representations of compact groups.

Irreps of compact groups

Theorem. Let \mathcal{R} be a complete set of irreps of a compact group G. Then

1. Each $\rho \in \mathcal{R}$ is finite dimensional (the dimensionality is denoted d_{ρ}).
2. Each $\rho \in \mathcal{R}$ can be chosen to be unitary.
3. \mathcal{R} is countable \rightarrow we can talk about $\rho_{1}, \rho_{2}, \ldots$
4. If \mathcal{R}^{\prime} is an alternative complete set of irreps of G, then there is a bijection $\gamma: \mathcal{R} \rightarrow \mathcal{R}^{\prime}$ such that $\rho \cong \gamma(\rho)$.

The irreps of a compact group are essentially uniquely defined.

Example: The rotation group $S O(3)$

The irreps are given by the Wigner D matrices

$$
D_{m, m^{\prime}}^{\ell}=(-1)^{m} \sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell}^{m}(\phi, \theta) e^{i m^{\prime} \psi}, \quad m, m^{\prime} \in\{-\ell, \ldots, \ell\}
$$

The regular representation

Any group acts on itself by $g: x \mapsto g x$ and the corresponding representation

$$
\mu_{\mathrm{reg}}: f \mapsto f^{\prime} \quad f^{\prime}(x)=f\left(g^{-1} x\right) \quad f \in L_{2}(G)
$$

called the regular representation of G.

Theorem. If G is compact, then

$$
\mu_{\mathrm{reg}}=\bigoplus_{\rho \in \mathcal{R}} \rho^{\oplus d_{\rho}} .
$$

Invariants

General setting

1. We have a symmetry group G acting on a set \mathcal{X}.
2. The action extends to the space of functions, V.
3. We want to find invariants $\Upsilon: V \rightarrow \mathbb{R}$ to the action of G.

We assume that G is compact and V is a Hilbert space.

General setting

1. Consider the "translation operators"

$$
T_{g}: f \mapsto f^{\prime} \quad f^{\prime}(x)=f\left(g^{-1}(x)\right)
$$

These form a representation μ of G.
2. By complete reducibility,

$$
\mu=\bigoplus_{i} \rho_{i}^{\oplus \kappa_{\mu}\left(\rho_{i}\right)}
$$

and we have a corresponding orthogonal decomposition of V

$$
\begin{gathered}
V=V_{1} \oplus V_{2} \oplus \ldots \\
V_{i}=W_{i, 1} \oplus W_{i, 2} \oplus \ldots \oplus W_{i, \kappa_{\mu}\left(\rho_{i}\right)}
\end{gathered}
$$

into subspaces that are invariant under the T_{g} action of G.

General setting

1. In any given $W_{i, j}$ subspace the action of G is

$$
h \mapsto \rho_{i}(g) h
$$

2. Because ρ_{i} is unitary, setting $h=f \downarrow_{W_{i, j}}$

$$
\Upsilon_{i}[f]:=\left\|\rho_{i}(g)(h)\right\|^{2}=\|h\|^{2}
$$

so Υ_{i} is an invariant!
\rightarrow We have as many invariants now as irreps in the decomposition. Actually, can also consider products of the form $f \downarrow_{W_{i, j_{1}}}^{*} \cdot f \downarrow_{W_{i, j_{2}}}$ (same i). Is this enough? How do we find out how V decomposes without all the abstract representation theory?

Example: \mathbb{R} acting on \mathbb{R}

1. The action is

$$
T_{g}: f \mapsto f^{\prime} \quad f^{\prime}(x)=f(x-g) \quad g \in \mathbb{R}
$$

2. The invariant subspaces are the 1D spaces

$$
W_{\omega}=\operatorname{span}\left\{e^{-2 \pi i \omega x}\right\}
$$

3. The projection of f to W_{ω} is the scalar

$$
h_{\omega}=\int e^{2 \pi i \omega x} f(x) d x
$$

4. The corresponding invariant is $\Upsilon_{\omega}=\left\|h_{\omega}\right\|^{2}$.

This looks suspiciously like the power spectrum.

$\mathrm{SO}(3)$ acting on S^{2}

1. Set $V=L_{2}\left(S^{2}\right)$ and

$$
T_{R}: f \mapsto f^{\prime} \quad f^{\prime}(x)=f\left(R^{-1} x\right) \quad R \in \mathrm{SO}(3)
$$

2. The invariant subspaces are

$$
W_{\ell}=\operatorname{span}\left\{Y_{\ell}^{m}\right\}
$$

3. The projection of f to W_{ℓ} is $h \in \mathbb{C}^{2 \ell+1}$ with components

$$
\left.h_{\ell}=\iint Y_{\ell}^{m}(\theta, \varphi)\right)^{*} f(\theta, \varphi) d \Omega(\theta, \varphi)
$$

4. The corresponding invariant is $\Upsilon_{\omega}=h_{\ell}^{\dagger} h_{\ell}=\left\|h_{\ell}\right\|^{2}$.

This is just the spherical power spectrum.

Fourier transforms

Fourier transform on \mathbb{R}

The Fourier transform of $f: \mathbb{R} \rightarrow \mathbb{C}$ is

$$
\widehat{f}(\omega)=\int e^{-2 \pi i \omega x} f(x) d x
$$

We have seen that $\left\{e^{-2 \pi i \omega x}\right\}$ are exactly the irreps of \mathbb{R}, and $\widehat{f}(\omega)$ is the projection onto the W_{ω} invariant subspace.

How does this generalize?

$$
\begin{gathered}
\sqrt{\nabla}=? \quad \cos \varnothing=? \\
\frac{d}{d x} \varnothing=? \quad\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \otimes=? \\
F\{\varnothing\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{i t \theta} d t=? \\
M y \text { normal approach } \\
\text { is useless here. }
\end{gathered}
$$

Fourier transform on G

Given a compact group G, and $f \in L_{2}(G)$, purely heuristically, define

$$
\widehat{f}(\rho)=\int_{x \in G} \rho(x) f(x) d \mu(x) \quad \rho \in \mathcal{R}
$$

This is weird because the Fourier components are now matrices.

Translation theorem

Theorem. Let $f \in L_{2}(G)$ and for some $g \in G$

$$
f^{\prime}(x)=f\left(g^{-1} x\right)=\left(T_{g} f\right)(x)
$$

Then for any $\rho \in \mathcal{R}$

$$
\widehat{f}^{\prime}(\rho)=\int_{x \in G} \rho(g) \rho(x) f(x) d \mu(x)=\rho(g) \cdot \widehat{f}(\rho) .
$$

Translation theorem

Corollary. $\widehat{f}\left(\rho_{i}\right)$ is the projection of f to V_{i}, and its j 'th column, $\left[\widehat{f}\left(\rho_{i}\right)\right]_{j}$ is the projection of f to $W_{i, j}$.

Corollary. The Fourier transform decomposes $L_{2}(G)$ into irreducible T_{g} invariant subspaces.

Convolution theorem

Theorem. Given $f, h \in L_{2}(G)$, define their convolution as

$$
(f * h)(x)=\int f\left(x y^{-1}\right) h(y) d \mu(y)
$$

Then for any $\rho \in \mathcal{R}$

$$
\widehat{f * h}(\rho)=\widehat{f}(\rho) \cdot \widehat{h}(\rho)
$$

Correlation theorem

Theorem. Given $f, h \in L_{2}(G)$, define their correlation as

$$
(f \star h)(x)=\int f(x y) h(y)^{*} d \mu(y)
$$

Then for any $\rho \in \mathcal{R}$

$$
\widehat{f \star h}(\rho)=\widehat{f}(\rho) \cdot \widehat{h}(\rho)^{\dagger}
$$

Back to invariants

Noncommutative power spectrum

The power spectrum of $f \in L_{2}(G)$ is

$$
\widehat{a}(\rho)=\widehat{f}(\rho)^{\dagger} \cdot \widehat{f}(\rho) .
$$

Clearly invariant because

$$
\widehat{f}^{\tau}(\rho)^{\dagger} \cdot \widehat{f}^{\tau}(\rho)=\left(\rho_{\rho}(t) \cdot \widehat{f}(\rho)\right)^{\dagger}\left(\rho_{\rho}(t) \cdot \widehat{f}(\rho)\right)=\widehat{f}(\rho)^{\dagger} \cdot \widehat{f}(\rho)
$$

The power spectrum is the FT of the (flipped) autocorrelation function

$$
a(h)=\sum_{g \in G} f\left(g h^{-1}\right) f(g) .
$$

Exactly the same as invariants formed from the $f \downarrow_{W_{i, j}}$ on slide 36 .

The noncommutative bispectrum

Recall the Clebsch-Gordan decomposition

$$
\rho_{1}(\sigma) \otimes \rho_{2}(\sigma)=C_{\rho_{1}, \rho_{2}}\left[\bigoplus_{\rho \in R_{\rho_{1}, \rho_{2}}} \bigoplus_{i=1}^{c\left(\rho_{1}, \rho_{2}, \rho\right)} \rho(\sigma)\right] C_{\rho_{1}, \rho_{2}}^{\dagger}
$$

The bispectrum:

$$
\widehat{b}_{f}\left(\rho_{1}, \rho_{2}\right)=C_{\rho_{1}, \rho_{2}}^{\dagger}\left[\widehat{f}\left(\rho_{1}\right) \otimes \widehat{f}\left(\rho_{2}\right)\right]^{\dagger} C_{\rho_{1}, \rho_{2}} \bigoplus_{\rho \in \Lambda_{\rho_{1}, \rho_{2}}} \bigoplus_{i=1}^{c\left(\rho_{1}, \rho_{2}, \rho\right)} \widehat{f}(\rho)
$$

The bispectrum is the FT of the triple correlation

$$
b\left(h_{1}, h_{2}\right)=\sum_{g \in G} f\left(g h_{1}^{-1}\right) f\left(g h_{2}^{-1}\right) f(g)
$$

Completeness result

Theorem [Kakarala, 1992]. Let f and f^{\prime} be a pair of complex valued integrable functions on a compact group G. Assume that $\widehat{f}(\rho)$ is invertible for each $\rho \in \mathcal{R}$. Then $f^{\prime}=f^{z}$ for some $z \in G$ if and only if $b_{f}\left(\rho_{1}, \rho_{2}\right)=b_{f^{\prime}}\left(\rho_{1}, \rho_{2}\right)$ for all $\rho_{1}, \rho_{2} \in \mathcal{R}$.

- Generalizes to any Tatsuuma duality group (e.g., $\operatorname{ISO}(n)$)

The skew spectrum

The skew spectrum of $f: \mathbb{S}_{n} \rightarrow \mathbb{C}$ is the collection of matrices

$$
\widehat{q}_{h}(\rho)=\widehat{r}_{h}^{\dagger}(\rho) \cdot \widehat{f}(\rho), \quad \rho \in \mathcal{R}_{G}, \quad \widehat{\in} G,
$$

with $r_{h}(g)=f(g h) f(g)$.
Unitarily equivalent to the bispectrum, but sometimes easier to compute [K ., 2007]

Conclusions

Conclusions

Noncommutative harmonic analysis provides a canonical way to construct invariants to the action of compact groups on their homogeneous spaces.

Outstanding issues:

- What are the algebraic relationships between the components of the bispectrum?
- Can we prove completeness on homogeneous spaces?
- Can we extend the theory to noncompact groups?
- What are the smoothness properties of the bispectrum?
- How do we construct wavelets on groups?

A two-year postdoc position in available in my group at UChicago starting immediately.

