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Black box ML

Data: {(xX1,%1),---» (Xm,Ym)}

algorithm

~

Hypothesis: f:x—y
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Features

algorithm

Hypothesis: f: ¢(x) — y

The individual coordinates (¢1(X), ..., ¢n(X)) of ¢(x) are called features.
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Regularization

Many algorithms are, in fact, linear in the feature space, i.e.,

flo(x)) = sz‘ ¢i(x)

and what we really learnis w = (wq, . .., wy,) . Regularization:
e (y-regularization: Q(f) = [|[w|3 =, Jwi|?
e (1 —regularization: Q(f) = [|[wl[1 = >_, |w]

In both cases, the choice of features is critical. In physics applications, it is also
important that the features be invariant.
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Classical invariants




Let G be a group acting on a vector space X . A function T: X — R is said
to be an invariant to the action of (7 if

T(g(x)) =T(x) forall z€X, ged.

Example:
e SO(3) actingon R? and T(x) = ||x]|.

Actually, we are more interested in the invariants of functions.



Let GG be a group acting on a vector space X and let V' be a space of
functionson X (e.g., V = La(X)).

The action of G on X extends naturally to V' by

fe fl=g(f) fx) = flg~"(x)).

Afunction Y: V — R is said to be an invariant w.r.t. the action of GG if

Y(g(f)) = YT(f) forall feV, geG.

Examples for the case of translations acting on R:

* To=[|f(z)dz
e T, = ]f(w)|2 for any frequency w.
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1. Autocorrelation (for translations)

The autocorrelation of f is

a(z) = / f(@ + 1) F@)dy.

Tells us how much f changes when we translate it by an amount 3. Clearly
invariant to translation (assuming f’(z) = f(x — g)):

/ £ + 9)f (@)dy = / f(@ +9)F)dy.



2. Power spectrum (for translations)

The power spectrum of f is
(w) = fw)" - flw) = [Fw)

Literally measures the amount of energy in each Fourier mode. Clearly
invariant to translation:

g (w) = (¥ f(w))" - (™9 f(w)) = f(w)* - f(w) = Bp(w)-

® The power spectrum is just the Fourier transform of the autocorrelation.
Limitation of both: they lose all the “phase information” in f .
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3: Triple correlation & bispectrum

The triple correlation of f is

(a1, 22) = / Fy— 1) Fy— 22) F(y) dy

The bispectrum of f is

~ ~ ~ ~

bk, k2) = f(k1)" f(k2)" (k1 + k2).

e Again, these are both invariants, and the bispectrum is the Fourier transform
of the triple correlation. Obviously, they are highly redundant (overcomplete).



Reconstructing f from b

~ ~ ~ ~

b(k1,k2) = f(k1)" f(k2)™ f(k1 + k2).
Use the following algorithm to recover f from 6:
1. f(0) = b(0,0)"/

2. f(1) = €®1/b(0,1)/f(0) — indeterminacy in ¢ inevitable

<)

- b(1, k)
k 1) = #k - 2,3, e
TE+D =20 Ry

Conclusion: If f(kz) # 0 forany k, then b uniquely determines f up to
translation, i.e., the bispectrum is complete.



Is there a general theory behind all this? In particular, is there a natural
generalization of Fourier analysis to groups other than R?7
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Groups




Groups

A set G with a binary operations -: G X G — G is called a group if
1. forany g1,92 € G, g2g1 € G (closure)

2. forany g1, 92,93 € G, 93(9291) = (9392)91 (associativity)

3. de€ G suchthat eg = ge = g forany g € G (identity)

4. Forany g € G thereisa g~ € G suchthat g~g = e (inverse).

Groups play a fundamental role in Physics because they are the natural
algebraic structure to describe invariances. | G is said to be commutative or
Abelian if g1g2 = g2g1 forall g1,92 € G |.

d



Examples of countable groups

e The cyclic groups Z, = 0,1,...,n— 1 (addition modulo n ).
e Klein's Viergruppe V' = {1,4, j, k}.

e Quaternion group Q = {1,4,5,k, —1, —i,—j, —k}.

e |cosahedron group I, = As.

e Symmetric groups S,, (group of permutations).

e The integers Z.
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Examples of continuous groups

e Thereals R and the Euclidean spaces RY.

e The rotation groups SO(n).

e The Euclidean group ISO(n) and the rigid body motions ISO™ (n).
e The special unitary groups SU(n).

e The Lorentz group SO(3,1).

e The general linear group GL(n).
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Types of continuous groups

® non-Lie groups
® |ie groups
o Compact Lie groups (e.g., SO(n),SU(n))
o Non-compact Lie groups (e.g., R, SO(3,1), GL(n)etc.)

Many of these groups can be thought of as subsets of GL(n) .

Compact groups are nice for many reasons, including the fact that they have
a uniquely defined invariant measure 1, called the Haar measure.



Group actions
The action of a group G on aset X is a collection of mappings
g: X=X gedG

such that
(9201)(z) = g2(91(z))  VYag1,92 €G.

The action is said to be transitive if for any x, 2’ € X

dge€ G suchthat g(x) =2’

Erlagen program: Geometry is the study of properties invariant under a group
(Felix Klein, 1872).
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We are particularly interested in the actions of groups on vector spaces.

e If G actson X and V is an (invariant) vector space of functions on X,
then we have the natural induced actionon V'

Ty f=f f@)=flg~ ().

Key question: How does V fall apart into a direct sum of subspaces that are
invariant (fixed) under all the T, ’s?
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Representations




Representations

{91, 92} - g2 g1

l !

{r(91), p(g2)} — p(g2) - p(g1)

Given a group GG and a vector space V' (over C), a collection of invertible
operators {p(g)},cc on V' is a representation of G if

p(g2) - p(g1) = p(g291)
forall g1, € G.

This is just an action of G on V' realized via the p(g) operators. (Butis it
transitive?) Equivalently, p: G — GL(V') is a homomorphism.

d



Example: representations of ()

Recall that the quarterion group Q = {1,4, 5, k, —1, —i, —j, —k} is defined

by
iP=j2=k’=-1, (-la=-a ij=k.

One represention of () :



SO { 0w e are representations of IR.
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Unitary representations

Typically, V' is a Hilbert space, and we can talk about unitary representations.

A representation p: G — V is unitary if each of the p(g) operators are
unitary, i.e.,

(p(9)(x), p(9)(v)) = (z,9)

forall g€ G andall x, € X . Equivalently, (p(g))™" = (p(g))'.

In the following we will deal almost exclusively with unitary representations.
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How many representations does a given group have? What are they?



Equivalence

V1L—>V1

pooal

Vo —25 W,

Let p1: G — V1 and pa: G — V5 be two representations of G. The two
representations are said to be equivalent, denoted p; = p2, if there is some
fixed bijection T": V7 — V5 such that

T 'opa(g)oT =pi(g) VgeG.

Equivalent representations are often considered the same.
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Reducible representations

If W has a non-trivial subspace of V' such that
plx)eW  NVzeW,

then p is said to be reducible. Otherwise it is irreducible. (The irreducible
representations of commutative groups are always one dimensional)

Obviously, in this case ply;- is also a representation. Butis ply-1 also a
representation?

ﬂ



Complete reducibility

Theorem. Let p be a representation of a compact group GG on a Hilbert
space V over C. Thenif W is an invariant subspace of V', then its
orthogonal complement, W is also an invariant subspace.

Corollary. p decomposes into the direct sum of representations

p=pw D pyL.
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Complete reducibility

Corollary. Let R be a complete set of inequivalent irreducible
representations (“irreps”) of a compact group GG . Then any representation 1
of G can be uniquely expressed in the form

Ku(p)
=@ B =D
pER i=1 PER

The irreps are the “primes” in the world of representations of compact groups.
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Ireps of compact groups

Theorem. Let R be a complete set of irreps of a compact group GG. Then
1. Each p € R is finite dimensional (the dimensionality is denoted dp ).

2. Each p € R can be chosen to be unitary.

3. R is countable — we can talk about p1, p2, . . ..

4. If R/ is an alternative complete set of irreps of (G, then there is a bijection
v: R — R’ suchthat p = ~(p).

The irreps of a compact group are essentially uniquely defined.
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Example: The rotation group SO(3)

The irreps are given by the Wigner D matrices

47
20+ 1

H

Dﬁl,m’ = (_1)m Yvém(qb? Q)Gim/wv m, m, € {_67 000 7€} .



The regular representation

Any group acts on itself by g: x — gz and the corresponding representation

Preg = f > f! f,(SU) = f(g_lx) f € La(G)

called the regular representation of (7.

Theorem. If (G is compact, then

Hreg = @ P@dp'

PER
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Invariants




General sefting

1. We have a symmetry group GG acting on aset X .
2. The action extends to the space of functions, V' .

3. We want to find invariants T: V' — R to the action of (5.

We assume that GG is compact and V' is a Hilbert space.

ﬂ



General sefting

1. Consider the “translation operators”

Ty f f )= flg' (@),

These form a representation . of G.

2. By complete reducibility,
Sk (pi)
n=n

and we have a corresponding orthogonal decomposition of V'
V=VieVo...

Vi=Wii®Wi2®...0 W, )

into subspaces that are invariant under the Tg action of G.

ﬂ



General sefting
1. In any given Wi,j subspace the action of G is

h = pi(g)h.

2. Because p; is unitary, setting h = fiWij

Tilf] = loig)W)I* = 1),

so Y; is an invariant!

— We have as many invariants now as irreps in the decomposition. Actually,
can also consider products of the form fi’{/wh g f‘l/Wi,jQ (same 7). Is this
enough? How do we find out how V' decomposes without all the abstract
representation theory?

ﬂ



Example: R actingon R

1. The action is
T,:fe f f@)=fle—g) geR.
2. The invariant subspaces are the 1D spaces
W, = span {e_zmm} )
3. The projection of f to W, is the scalar

o= /e%iwf(:r) dx.

4. The corresponding invariantis Yo, = ||hw||?.

This looks suspiciously like the power spectrum.

ﬂ



SO(3) acting on S°
1. Set V = L(S5?) and
Tr:fwf  fz)=f(R'2)  ReSO@).
2. The invariant subspaces are
Wy = span{Y,"}.
3. The projection of f to W, is h € C**1 with components

b= [ [ V6.0 16.0)d06.0).

4. The corresponding invariantis Y, = h£h4 = ||he|®.

This is just the spherical power spectrum.
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Fourier transforms




Fourier transform on R

The Fourier transformof f: R — C is

flw) = [ o) da.

—2Tiwx

We have seen that {e } are exactly the irreps of R, and f(w) is the
projection onto the W, invariant subspace.

How does this generalize?

ﬂ



ﬁ;? Cos®Q =7

do-?  [e-?

{03 - o™=
M9 normal opproach

is useless here.
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Fourier transform on GG

Given a compact group G, and f € La(G), purely heuristically, define

Fip) = / @ @) per.

This is weird because the Fourier components are now matrices.

ﬂ



Translation theorem

Theorem. Let f € Ly(G) and for some g € G

fl(@) = flg~'z) = (Tyf) ().

Then forany p € R



Translation theorem

~ ~

Corollary. f(p;) is the projection of f to V;, andits j'th column, [f(p;)]; is
the projection of f to W ;.

Corollary. The Fourier transform decomposes L () into irreducible 7T
invariant subspaces.
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Convolution theorem

Theorem. Given f, h € Ly(G), define their convolution as

(f = h)() = / F ey hly) duy).

Thenforany p € R

— ~

Fxh(p) = f(p) - h(p)-

ﬂ



Correlation theorem

Theorem. Given f, h € Ly(G), define their correlation as

(F*0)@) = [ Fap)h

Thenforany p € R

~

Fxh(p) = F(p) - h(p)'.

ﬂ



Back fo invariants




Noncommutative power spectrum

The power spectrum of f € Lo(G) is

-~ ~

alp) = f(p)' flp).

Clearly invariant because

~

Fo) - F(0) = (o) - F(0)) (0p(1) - F(0)) = F(p)T - F(p).

The power spectrum is the FT of the (flipped) autocorrelation function

a(h) =" flgh™")f(9).

geG

Exactly the same as invariants formed from the f¢Wi ; on slide 36.

ﬂ



The noncommutative bispectrum

Recall the Clebsch-Gordan decomposition

c(p1,p2,p)

p1(0) @ p2(o 91792[ @ @ ] pLp2

pERpypy =1

The bispectrum:

/I;f(PL p2) = C/-i;l,PQ [A(pl) ® J/c\(m)r Coipa @ @

PENpypy =1

The bispectrum is the FT of the triple correlation

b(hi,h2) = Zf 9h1 gh2 )f( B

geG

ﬂ



Completeness result

Theorem [Kakarala, 1992]. Let f and f’ be a pair of complex valued
integrable functions on a compact group G . Assume that f(p) is invertible for
each p € R. Then f' = f? forsome z € G if and only if

by(p1,p2) = by(p1,p2) forall p1,p2 € R.

® Generalizes to any Tatsuuma duality group (e.g., ISO(n))

ﬂ



The skew spectrum

The skew spectrum of f: S, — C is the collection of matrices
an(p) =7h(p)- f(p),  pERG, EG,

with 71, (g9) = f(gh) f(g)-

Unitarily equivalent to the bispectrum, but sometimes easier to compute [K.,
2007]



Conclusions




Conclusions

Noncommutative harmonic analysis provides a canonical way to construct
invariants to the action of compact groups on their homogeneous spaces.

Outstanding issues:

e \What are the algebraic relationships between the components of the
bispectrum?

e Can we prove completeness on homogeneous spaces?
e Can we extend the theory to noncompact groups?
e \What are the smoothness properties of the bispectrum?

® How do we construct wavelets on groups?

A two-year postdoc position in available in my group at UChicago starting
immediately.
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