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Machine Learning in a nutshell

Typical scenario: learning from data

* given data set X and labels Y (generated by some joint probabilty distribution p(X,y))
* LEARN/INFER underlying unknown mapping

Y = f(X)
Example: left and right imagery...

BUT: how to do this optimally with good performance on unseen data?
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Kernel-based Learning



Basic ideas in learning theory

Three scenarios: regression, classification & density estimation.
Learn f from examples

(X1, 1) -+ (Xpsyn) € R" X R™ or {1},  generated from P(x, y).

such that expected number of errors on test set (drawn from P(x, y)),

1
RIAL = [ 51700 = )P dP(x. )
is minimal (Risk Minimization (RM)).
Problem: P is unknown. — need an induction principle.

Empirical risk minimization (ERM): replace the average over P(x,y) by
an average over the training sample, i.e. minimize the training error

1 o 1 ,
Remp[f] — NZEH(XI) _yf|

i=1



Basic ideas in learning theory Il

e Law of large numbers: R.,,,[f] — R[f] as N — oc.
“consistency” of ERM: for N — oo, ERM should lead to the
same result as RM?

e No: uniform convergence needed (Vapnik) — VC theory.
Thm. [classification] (Vapnik 95): with a probability of at least

I —m,

d (log 2% + 1) —log(n/4)
N '

R[f] < Remplf] +

e Structural risk minimization (SRM): introduce structure on set
of functions { f,} & minimize RHS to get low risk! (Vapnik 95)
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Structural Risk Minimization: the picture
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error

R(f (1”)

bound on test error

confidence term

training error
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Learning f requires small training error and small complexity of the

set {f,}.




VC Dimensions: an examples

Half-spaces in RZ:

f(xz,y) =sgn(a + bx + cy), with parameters a,b,c € R

e Clearly, we can shatter three

non-collinear points.

e But we can never shatter four

points.

e Hence the VC dimension is

d=3

e in n dimensions: VC dimen-

sionisd=n+1
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Linear Hyperplane Classifier

y
Ix|(w-x)+ b= Note:

(Wex;)+b=+l

* | (WeXy) +b=~1

E-E. =  (W:(x;=xy))= 2

E o )_L

= (uwn X1=%2)) = liwll

1; IX|(w-x)+b=0}

k' \
' \
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e hyperplane y = sgn (w - x + b) in canonical form if

miny cx | (W-x;) 4+ b| = 1., i.e. scaling freedom removed.

e larger margin ~ 1/||w|| is giving better generalization — LMC!




VC Theory applied to hyperplane classifiers

e Theorem (Vapnik 95): For hyperplanes in canonical form
VC—dimension satisfyving

d < min{[R*||w|*] + 1,n + 1}.

Here, R is the radius of the smallest sphere containing data.

Use d in SRM bound

R[ﬂ < Remp[f] + \/d (LDE % —l_*ir) - 10%(??/4) .

e maximal margin = minimum |w||* — good generalization, i.e.
low risk, i.e. optimize

min ||w|?

¢ independent of the dimensionality of the space!
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Feature Spaces & curse of dimensionality

The Support Vector (SV) approach: preprocess the data with
&:RY — F
x +— D(x)
where N < dim(F).
to get data (®(xq),y1)....,(®(xx).yy) € F x RM or {£1}.
Learn f to construct f = fo ®
e classical statistics: harder, as the data are high-dimensional

e SV-Learning: (in some cases) simpler:

If & is chosen such that { f} allows small training error and has low
complexity, then we can guarantee good generalization.

The complexrity matters, not the dimensionality of the space.
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Margin Distributions — large margin hyperplanes
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Nonlinear Algorithms in Feature Space

Example: all second order monomials
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The kernel trick: an example

(ct. Boser, Guyon & Vapnik 1992)

(B(x)-(y) = (2] V2uw100,23) (15, V2 y192.43)
= (x-y)°
= k(xy)

e Scalar product in (high dimensional) feature space can be
computed in R?!

e works only for Mercer Kernels k(x,y)




Kernology

Mercer] If k is a continuous kernel of a positive integral operator on

L2(D) (where D is some compact space),

[f(x)k(xzy)f(y) dx dy >0, for f#0

it can be expanded as

satisfies (P(x) - O(y)) = k(x.y).
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Kernology Il

Examples of common kernels:

Polynomial k(x,y) = (x-y+¢)

RBF k(x.y) = exp(=|x-y[?*/(20%)
1
N

inverse multiquadric  k(x,y) =

Note: kernels correspond to regularization operators (a la
Tichonov) with regularization properties that can be conveniently
expressed 1n Fourier space, e.g. (Gaussian kernel corresponds to

general smoothness assumption (Smola et al 98 )!



A RKHS representation of F

o:RY —H,  x—kix.)

Need a dot product (...) for 'H such that

(D(x), D(y)) = k(x,y), ie.require (k(x..),k(y..)) =k(x.y).

For a Mercer kernel k(x.y) = Zj A\t (x);(y), with A; > 0 for all
i, and (9; - V) L,(c) = 0ij, this can be achieved by choosing (., .)
such that
(i, ¥5) = 0ij [ Ai.
H, the closure of the space of all functions
f(x) = Z a; k(x, X;).

with dot product (...), is called reproducing kernel Hilbert space
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Hyperplane y = sgn (w - ®(x) +b) in F

min [w||?

subject to yi - [(W-P(x;))+b]>1 fori=1...N
(i.e. training data separated correctly, otherwise introduce slack
variables).

L(w,m):_nwu Za« (w-®(xi))+b)—1).

obtain unique a; by QP (no local minimal): dual problem

s, d

N N
i.e. Z a;y; =0 and L— Z oy P(x;).
i—1 i=1

Substitute both into L to get the dual problem
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Hyperplane in F with slack variables: SVM

N
min |wl[*+C Z &:F
i—1
subject to yi - [(w-P(xi))+b>1—-&and & >0 fori=1...

(introduce slack variables if training data not separated correctly)

L(w,b, ) = —||w|| Zaa (W P(xi)) +b)—1).

obtain unique «; by QP (no local minimal): dual problem

N N
i.e. Z a;y; =0 and W = Z oy P(x;).
i=1 i=1

Substitute both into L to get the dual problem
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Dual Problem

N N

. T |
maximize Wi(a) = Z o; — 5 Z ooy k(X X))
=1 1,7=1
h."
subject to C'>a; >0, 1=1,....N, and Z a;1y; = 0.
i=1

Note: solution determined by training examples (SVs) on /in the

margin. Remark: duality gap.

Y - [(w-P(x;))+0] > 1 — ; = 0 —  x; irrelevant or

yi - [(w-P(x;))+ 0] =1 (on /in margin) —  x; Support Vector

N 5




A Toy Example: k(x,y) = exp(—|x —yl?)

linear SV with slack variables
nonlinear SVM, Domain: [—1,1]?




Kernel Trick

e Saddle Point: w = Z;’:l a;1; P(x; ).

e Hyperplane in F: y =sgn(w - ®(z) + b)

e putting things together “kernel trick”

f(x) = sgn(w-®(x)+b)
N
= sgn (Z a;y; P(x;) - P(x) + b)
i=1
— sgn Z a;yik(x,x;) + b sparse!
ic#oVs
o trick: k(x,y) = ®(x) - ®(y), i.e. never use ®: only k!!!
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Support Vector Machines in a nutshell

itﬁput o o o
space _

O rsp. K(x,y) = O(x)s D(y)

@
'o feature o o

L
L]
L
L ]
X
L
L

_____ x —_
good theory Koo,

non-linear decision by
implicitely mapping the data x x

into feature space by SV kernel function K
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Digestion: Use of kernels

e Question: What makes kernel methods (e.g. SVM) perform well?

e Answer:
— In the first place: a good idea/theory.

— But also: The kernel

e Using kernels, we work explicitly in extremely high dimensional spaces (RKHS)
with interesting features for themselves (depending on the kernel) [SSM et al. 98]

e Common choices: Gaussian kernel expé||z—y]|?/c) or polynomial kernel (z-y)?.
e Almost any linear algorithm can be transformed to feature space. [SSM et al. 98]
e With suitable regularization it outperforms its linear counterpart. [Mika et al. 02]

[Zien et al. 00, Tsuda et al. 02, Sonnenburg et al. 05]

e The kernel can be adopted to specific gasks, e.g. using prior knowledge

Kernels for graphs,
trees, strings etc.




Remark: Kernelizing linear algorithms

linear PCA | k(X,y) = (Xy)
WpCA Ly
iy
kernel PCA k(x,y) = (x-y)
e o
R ﬁ lllllllllllllllll '—- o F_Rzﬂ
P

(cf. Scholkopf, Smola and Miiller 1996, 1998, Scholkopf et al 1999,
Mika et al, 1999, 2000, 2001, Muller et al 2001, Harmeling et al
2003, ...)
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Digestion

d(1 ~f‘*+1 —log(n/4)
\/(og ) = K(x.y)=®(x)-P(y

SRM (VC theory) feature spaces & RKHS

me

R

) - L
mathematical SV classification & regression
programs - feature extraction —— Kernelize it!
|
APPLICATIONS
Large margins OCR, Bioinformatics (DNA, drug discovery)
Bounds, sparsity categorization, biomedical data (BCI, EEG),
benchmarks, time-series analysis, power,
quarks, object recognition, textmining




Neural Networks



What is a deep network?

deep neural network

e @) e

x € R?

» Complex nonlinear function between input and output.



What is a deep network?

deep neural network

) output
yeR

» Realized by a composition of many simple processing units
called neurons.



What is a deep network?

deep neural network

input ) output
x € R? X ) yeR
:
un
wWa
w3

neuron

» Neuron applies a nonlinear function to its input.
» Examples of functions: hyperbolic tangent, rectification.



Training a (deep) Neural Network

stream of images

m deep neural network
o
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stream of labels
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» Deep networks are trained one example at a time.

If the output differs from the label, the error signal is
backpropagated in the network to adapt the parameters.

» Over time, parameters evolve to form a model that fits the

data well.



Training a (deep) Neural Network

» ldea: Follow the gradient of error E w.r.t. parameters w;;.

» For a neural network with neuron equation

Xj = 0(aj) where ajzg X; Wij.
i

the update direction of the whole network can be computed
using only two rules:

Awjj = xi0; (update rule)
or = d'(ay) Z Wi 0; (backpropagation rule)
J

applied uniformly to all neurons in the neural network, in a
backward pass.

» Deep networks can be trained on GPUs (10-100x
performance boost!)
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ML4Physics @IPAM 2011: Part |

Klaus-Robert Muller, Matthias Rupp

Anatole von Lilienfeld and Alexandre Tkachenko
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Machine Learning for chemical compound space

Ansatz: { ZI, RI} & E

iInstead of

H({Z,Ri}) +— E

HY =EV

[from von Lilienfeld]




The data

GDB-13 database of all organic molecules (within stability & synthetic constraints) of 13 heavy
atoms or less: 0.9B compounds

Table 1. Structure Generation Statistics for GDB-13

nodes?/graphs?|  GDB¢ Cl/sd  [CPU time (h)®

1 1 1 0 0.00

2 1 3 0 0.00 10° - Y GDB size

3 2 12 0 0.00 10% | £

4 4 43 0 0.00 10" |8

5 8 155 3 0.01 10% 1 &3

6 20 934 19 0.02 105 1 &

7 57 5726 315 0.05 10° <

8 194  [37151 2438 0.33 10° -

9 706 (255542 17056 2.68 102

10  [2831 [1784626  |130465  [25.26

11 12011 12961686 (938704  [223.49 10’ No. Heavy Atoms
12 [53789 (99821343 (7240108 [3023.79 10° x ‘ !
13 250268 (795244451 (59027533 |36606.45 1 2 3 4 5 6 7 8 9 10 11 12 13
Total (319892/910111673|67356641(39882.08

Blum & Reymond, JACS (2009)

[from von Lilienfeld]



Coulomb representation of molecules

M. = 724
L7
Mi': o
" [R-R)| \/
M€2&23
I E

+ phantom atoms
OR,| [0Ry] [0R,)

Coulomb Matrix (Rupp, Muller et al 2012, PRL)

dM,M') = />, [M1;— M,




Kernel ridge regression

Distances between M define Gaussian kernel matrix K

d(M,M’)2>

202

KM, M) = exp (—

Predict energy as sum over weighted Gaussians

using weights that minimize error in training set

min Z(EeSt(M@') o E:'ef)Q i )\Zag

a = (K+ M) 'E™

Exact solution

As many parameters as molecules + 2 global parameters, characteristic length-
scale or kT of system (o), and noise-level (A)
[from von Lilienfeld]



Remarks on Generalization and Model Selection in ML

— Training Data
== Test Data ‘

. Underfitting Overfitting . . . . .

test
N
training ~ validation

| — with regularization u

Prediction Error

Model Complexity Input x

Kernel Ridge Regression Model [F¢5¢ (M) = Z a;k(M,M;) + b

min Eest(M,) — ET¢/ ° o’
> (B (ML) - EjT) :

) )



Results

March 2012

multilayer neural network Rupp et al., PRL
. e cigenspectrum ' cal/mo
3 235 V| e sorted Coulomb (kernels + eigenspectrum)
—30 | &« | ® stochastic Coulomb
December 2012

Montavon et al., NIPS
3.51 kcal/mol
(Neural nets + Coulomb sets)

2015 Tkatchenko 1.3kcal/mol

mean absolute error
}—k
o

: . . ' Prediction considered chemically
0 2000 4000 6000 8000 accurate when MAE is below 1
kcal/mol

# samples

' Dataset available at http://quantum-machine.org



Perspectives



Explaining Predictions Pixel-wise

input image Forward Propagation Relevance Propagation heatmap
(Bach et al. 2015)

A ;‘,. " ' :.'
A ,!:I A B X ]
" I.t '] A~ o~ ~ M~ "._\,
S a TN i;”_ f‘_\'\r X A K
. OGO C ,u*',.t_a
h X I
W =

rooster o

> The total relevance ) R, (number of red pixels in the heatmap)
corresponds to the amount of evidence f(x) for the predicted class.
(= Relevance does not get lost or created out of nothing.)

» This equivalence is ensured by the layer-wise conservation property
of the relevance propagation formula.



Explaining Predictions Pixel-wise

Neural networks Kernel methods



Application: Comparing Classifiers

Test error for various classes:

[Bach et al. CVPR 2016]

aeroplane bicycle bird boat bottle bus car

Fisher 79.08% 66.44% 45.90% 70.88% 27.64% 69.67% 80.96%

DeepNet 88.08% 79.69% 80.77% 77.20% 3548% | 121%_ 86.30%
cat chair cow | diningtable dog |/ horse \| motorbike

Fisher 59.92% 51.92% 47.60% 58.06% 42.28% ( 80.45% 69.34%

DeepNet 81.10% 51.04% 61.10% 64.62% 76.17% N\_81.60% / 79.33%

person pottedplant | sheep sofa train | tVmonitor mAP

Fisher 85.10% 28.62% 49.58% 49.31% 82.71% 54.33% 59.99%

DeepNet 92.43% 49.99% 74.04% 49.48% 87.07% 67.08% 72.12%
Image FV DNN




Understanding Models is only possible if we explain

Fisher Neural networks



Neural Networks for
Molecules revisted



Quantum Chemical Insights

Energy predictlon:

E=2"% iE
Learned potential:

Eprobe Qf{'(r) = Eprobe

[Schiitt et al. under review]



Conclusion

Machine Learning & modern data analysis is of central importance in daily life

input to ML algorithms can be vectors, matrices, graphs, strings, tensors etc.

Representation is essential ! Modelselection, Optimization.

ML 4 XC, ML for reaction transitions, ML for formation energy prediction etc.

ML challenges from Physics: no noise, high dimensional systems, functionals ...

challenge: learn for Physics from ML representation: towards better understanding

-
“ﬁ See also: www.quantum-machine.org
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