MULTISCALE OPTIMIZATION

Achi Brandt

Department of Computer Science and Applied Mathematics
Weizmann Institute of Science
Rehovot, Israel

Collaboration with

Dorit Ron
Oren Livne
Minimize $E(x_1, x_2, \ldots, x_n)$

- x_j. real / integer / ±1 /

- Large n

- Sparse:

\[E \sum_k \varphi_k \text{ (small number of } x_j\text{'s)} \]

- Mostly local: $\varphi_k \text{ (neighboring } x_j\text{'s)}$
 or asymptotically smooth $\varphi_k(x_i, x_j)$
Relaxation:

Steps of small-scale improvements
e.g., point-by-point minimization

- Slow convergence of large-scale features
 (e.g., smooth components)

- Local-minimum traps

Simulated annealing: $P(x) \sim e^{-\frac{E(x)}{T}}$

- Slow equilibration of large-scale features

- Nested multiscale attraction basins

Required: Multiscale steps
Two-atom Lennard-Jones potential

0 \quad r_0

distance

small step

r_0
fine grid
Local Equation

e.g., \[u_* = \text{average of } u_* \text{'}s + f_* \] (known)

approximating Poisson eq. \[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = F \]
Influence of (pointwise) Gauss-Seidel relaxation on the error

Poisson equation, uniform grid

Error of initial guess

Error after 5 relaxations

Error after 10 relaxations

Error after 15 relaxations
Linear System

\[Ax = b, \]

Minimize \[\frac{1}{2} x^T A x - b^T x \]

Relaxation: Fast convergence of most eigenmodes.

Slows when \(\| A e \| \ll \| A \| \| e \| \), \(e = x - x_{\text{current}} \)

\[r = b - A x_{\text{current}} \]

Remaining Problem: \(A e = r \), \(e \approx \uparrow x^c \)

typically \(m < n/2 \)

Interpolation: Coarse
Collective motions unknowns

\[\Rightarrow \text{Minimize} \quad \frac{1}{2} (\uparrow x^c)^T A (\uparrow x^c) - r^T (\uparrow x^c) \]

\[A^c x^c = b^c, \quad A^c = A , \quad b^c = r \]

Required: Good \(\uparrow \)
Ax = b, "M matrix"

\[a_{ii} x_i = \sum_{j \neq i} a_{ij} x_j + b_i, \quad a_{ij} = a_{ji} \geq 0 \quad (i = 1, \ldots, n) \]

- Relaxation \(\Rightarrow \) approximation \(\tilde{x} \)
$Ax = b, \text{ "M matrix"}$

$$a_{ii} x_i = \sum_{j \neq i} a_{ij} x_j + b_i, \quad a_{ij} = a_{ji} \geq 0 \ (i = 1, \ldots, n)$$

Coarse variables - a subset

$$\left(\uparrow x^c \right)_3 = \frac{a_{23} x_2 + a_{34} x_4}{(a_{23} + a_{34})}$$

AMG

- Relaxation \Rightarrow approximation \tilde{x}

Cycle

- Solve $A^c x^c = \uparrow^T (b - A \tilde{x})$ (recursion)
 - $\tilde{x} \leftarrow \tilde{x} + \uparrow x^c$
Graph problems

Partition: min cut
Clustering
Image segmentation
Routing
Linear arrangement: bandwidth, cutwidth
Graph drawing

Coarsening: weighted aggregation

Recursion: inherited couplings (like AMG)
Modified by properties of coarse aggregates

General principle: Multilevel objectives
Required interpolation \(\uparrow \):

For every \(y \) such that \(\|Ay\| \ll \|A\| \|y\| \)
there exists \(y^c \) such that \(\|y - \uparrow y^c\| \leq \frac{\|Ay\|}{\|A\|} \)

Create \(\uparrow \) by best fit to a set
of "test vectors" \(x^{(1)}, x^{(2)}, \ldots, x^{(m)} \)
with small \(\|A x^{(k)}\| / \|x^{(k)}\| \)

\[\forall t \minimize \sum_{k=1}^{m} \|A x^{(k)}\|^2 \cdot \|x^{(k)} - \sum_j x_j^{(k)c}\|^2 \]
Obtaining $x^{(k)}$ with small $\frac{\|A \cdot x^{(k)}\|}{\|x^{(k)}\|}$ by applying the evolving AMG solver itself to the equation $A x = 0$

First relaxation only…

Then multilevel cycling…

Ever decreasing $A x^{(k)}$

- Fast-self-correcting coarsening system
- Enables minimizing # interpolation points \Rightarrow maximizing sparseness of coarse levels.
- Generality, fast solution
Multilevel Monte Carlo

\[P(x) \sim e^{-E(x)/T} \]

Coarse movements \(x^c \):

\[P(x^c) \sim e^{-E(x^c)/T} \]

Designing \(\uparrow \) \(\{ \text{i.e., shapes of coarse moves,} \)

\(\text{(probability-weighted) aggregates, etc.} \)

through the simulation itself:

First simple MC…

Then multilevel cycling…

Ever decreasing \(\downarrow \)

- \(E(\uparrow x^c) \) modified by aggregate properties
Multilevel

RE-SHAPING

of moves

A large-scale move is decided
only after "reshaping":

Optimizing around it at all finer scales

- Starting at finest
- Recursion
- Brief annealing at each scale
- Top parallel-processing efficiency

Fast search over large-scale basins

Even with "stupid" moves: Spin glasses, L-J solids
Very large system
at $T > 0 \Rightarrow$

High probability for some small-scale moves away from optimum

↓

Recombinations
with stored low-energy configurations
 • In reshaping processes, too

Population algorithms

Multiple aggregation rules
 (cf. indefinite BAMG)
Multiscale Optimization Strategies

- Relaxation

- Hierarchical (weighted) aggregation

- Multiscale objectives: properties of intermediate aggregates determine further aggregations

- Bootstrap: (weighted) aggregates formed by the experience of the hierarchical solver itself

- Annealing: Monte-Carlo with decreasing T, identifying increasingly lower moves

- Reshaping of large-scale moves at all finer scales

- Recombinations and population algorithms