Political Dynamics in Large Scale online Data Sets: A Study of Content-Oriented User Behavior

Roja Bandari

Big Data, Little Insight

- Growing shift to online interaction is affecting society
 - Example: opinion formation and decision making
 - Government, Industry, Academia have taken notice
- User → Thousands of small actions (tweets, likes, comments, clicks,. ORGANIZING for ACTION

Accel Launches \$100M Big Data Fund 2 To elf.IAmA) Invest In The 'Second Wave' Of Big **Data Startups**

Il be taking your questions

320

rlottesville, and am looking with folks

> g to be they need to

Jon Kleinberg Professor of Computer Science, Cornell University

COLLEEN TAYLOR ≥

Jo

"How can we have this much data and still not understand collective human behavior?"

Background

- Examples:
 - Friendship recommendations
 - Prediction of popularity (e.g. films)

Promise for Social Sciences

- Access to highly granular, time-stamped data
- Datasets raise hopes for data-driven models in social sciences
 - Scale, complexity, and noisiness
 - Predicated on automated methods to extract <u>summative</u> <u>macroscopic observables</u>
 - Equivalents of pressure and temperature
- Current approaches:
 - Summarizing the network: e.g. graph-theoretic communities
 - Summarizing the content: e.g. Topic Modeling
 - Hidden topics derived through word co-occurrence across documents
 - Computationally intensive
 - Mathematical regularization rather than social regularization

Focus of Talk

- Content oriented collective behavior
- Macroscopic observables to extract:
 - Collective behavior: different meanings across many traditions.
 - Here we use it in a general sense: attitudes and actions of groups of users
 - Collective behavior in social news
- Content-oriented: involving users' creation, sharing, and promotion of content and their attitudes toward content (text or other material)

Social News

- Social news aggregation sites have article submission, voting, and commenting capabilities
 - Examples: Reddit, Digg, Slashdot, Balatarin

Motivating Questions

- How would one begin to understand the user population?
- Theory of structuration (Anthony Giddens)
 - Emphasizes both agency and structure

- If these structures exist they must manifest themselves in aggregated data.
- Once we can detect macro structures (collective behavior), we can answer other questions:
 - Do users form polarized and insular groups?
 - Does one group dominate or drive out other groups?
 - How do external events affect these dynamics?

Dataset and Methodology

- Balatarin: popular Persian-language social news site
 - 4 years of data: users, articles, and user votes to articles
 - Politics Category: 26,000 users 350,000 articles, 9.2M votes
- Votes: user actions
 - Explicit indicators of user preference for content
 - Other examples: Like (Facebook), up-vote (Reddit), +1 (G+), Digg
- Detect communities of users with similar voting patterns and track these communities' temporal evolution.
- Characterize evolving communities through their preferred content

Methodology

Divide data into consecutive overlapping time periods (30 days, 14 day overlap).

Communities

- Higher density of edges within communities than between them
- Modularity* = fraction of edges that belong to the same community in the graph minus the null model

$$Q = \frac{1}{2m} \sum_{x,y} (A_{xy} - \underbrace{\frac{k_x k_y}{2m}}) \delta(C^x, C^y)$$
 Communities that vertices x and y belong to

Number of edges in the graph

$$P(A_{xy}=1)$$

- Null model:
 - Graph with same degree sequence
- $k_y = 6$
- Connect pairs of edge stubs (2m) at random
- Optimize by iteratively joining communities, starting with single-node communities.

¹⁰

Bipartite Projection

- In each time period votes create a bipartite graph of articles and users
- Project to a weighted unipartite network

$$W_{jaccard} = \frac{n(X \cap Y)}{n(X \cup Y)}$$

Weight between users x and y

X: set of articles voted for by user x

Y: set of articles voted for by user y

n: set cardinality

Detect and Map Communities

- For a weighted graph
 - Replace A_{xy} with W_{xy} and m with total weight in the graph, W.
 - Replace vertex degree k_x with vertex strength s_x

$$Q = \frac{1}{2W} \sum_{x,y} (W_{xy} - \frac{s_x s_y}{2W}) \delta(C^x, C^y) \qquad s_x = \sum_y W_{xy}$$

- Communities reflect users with similar content preference
- Map consecutive communities based on user overlaps.

Time =
$$t_1$$

$$0.04$$

$$\frac{n(C_i \cap C_j)}{n(C_i)} \cdot \frac{n(C_i \cap C_j)}{n(C_j)}$$
Time = t_2

Define an Evolution Path

- Define a path as consecutive mapping of communities with no merges or splits lasting a minimum duration (at least 3 months long)
- Size of each oval represents size of community

Representative Content

- In each time window, find articles that are highly preferred by each community
- Assuming each community votes for articles at random with probability:
 Votes cast by

 $p_i = \frac{N_i}{N}$ Votes cast by community i Votes cast by all communities

• Then probability that o_{ij} of an article's N_j votes come from community i:

$$p(o_{ij}) = \binom{N_j}{o_{ij}} p_i^{o_{ij}} (1 - p_i)^{(N_j - o_{ij})}$$

$$\text{Total votes received community } i \text{ to article } j$$

$$\text{by article } j$$

• For $o_{ij} > p_i N_j$, the lower this probability, the higher the preference of community i for article j

Representative Terms and Domains

Representative terms (in articles preferred by a community)

 Aggregate these terms as well as the websites of preferred articles over each path

Representative domains and terms for one path

www.bbc.co.uk Minister, Nuclear, Spokes	
www.dw-world.de son, Russia, Council, Con www.roozonline.com uation, Israel, Security, I aradiozamaaneh.com www.radiofarda.com Arrangement, Agency, Eur America, Declare	ntin- Iraq,

Principal Component Analysis Corroborates Path Meanings

- PCA plot of core-user overlaps
- A temporal and a political dimension emerge as a result of PCA analysis on user overlaps in paths.
- First two components explain
 43% of variance
- Contents of paths agree with path positions in the PCA political dimension.

Domain Recurrence

- Are some domains repeatedly preferred in a path?
 - Aggregate domains over whole path and count their recurrence
 - Compare with count of domains if the votes were drawn at random
 - Draw votes at random and note their domains
- Higher relative recurrence = more uniformity in domains

$$Entropy(C) = -\sum_{i} p_{i}log_{2}(p_{i})$$

 p_i : Probability that an article from domain i is in the top n most preferred articles of a path.

Paths with high recurrence: B(conservative), G(foreign affairs), K(eyewitness)

User Retention

Retention
$$(P, \Delta \tau) = \frac{n(P(\tau_i) \cap P(\tau_i + \Delta \tau))}{n(P(\tau_i))}$$

where $P(au_i)$ is the set of users in path P at time au_i .

- Paths with high retention:G, N, K
- Paths with low retention:B, C, E, J, H

Parameter variations

- Three parameters were chosen:
 - W: Window length for each time period
 - S : Shift length determines overlap between consecutive windows
 - Th: Threshold for elimination of low-vote users
- Overlapping windows of size W shifted S days at each period

- More paths: higher granularity
- Longer path: more consistency, easier interpretation
- Prefer more and longer paths

Alternative dataset: sports

- Method is applicable to different contexts
- Found that Sports is highly event-driven with some early adopters for each event, joined by the rest some periods later:
 - Asian (soccer) cup
 - National leagues
 - European cup
 - Paralympics

Gestalt Computing

From the Merriam-Webster dictionary: Gestalt is a structure, configuration, or pattern of physical, biological, or psychological phenomena so integrated as to constitute a functional unit with properties not derivable by summation of its parts.

- A macro structure
 - The parts create the whole but the whole adds to the parts → more than the summation of its parts.
 - Constructed from elementary user actions
 - More than sum of its parts:
 - Relationship between parts of the structure.
 - What is not there as well as what is there.

Gestalt principle in Design

■ We began with elementary actions (votes) → obtained global structure → the context in the structure gives back meaning to individual actions

Structure Reveals a New Perspective

- Comparing two users: 2 of their top 20 domains are different.
 - User 1 Simpson Index: 0.41
 - Core users in paths A, F, G, N: Reformist, Foreign affairs, Human rights.
 - User 2 Simpson Index: 0.34
 - Core user in paths A, C, D, G, K, L, N: Reformist, Weakly conservative, Anti-Ahmadinejad, Foreign affairs, Eyewitness, Human rights.

User 1 is more consistent

www.youtube.com	13673	www.youtube.com	1042
www.bbc.co.uk	9012	www.bbc.co.uk	517
www.radiofarda.com	7264	www.radiofarda.com	430
www.roozonline.com	7104	www.roozonline.com	329

Simpson's index =
$$\sum_{i \in A: N} p_i^2$$

Proportion of a user's activity that is in path i

In Summary:

- Automated and unsupervised
 - Deriving the structure requires no expert knowledge of the forum under study
- Paths with <u>distinct</u> and <u>meaningful</u> preferences.
- Incorporates both users and content (vs. just one)
- Reveals a new perspective otherwise unknown
- Applicable to other contexts
 - Path width: number of unique users in the path.
 - Arrows: inter-path migrations.
 - <u>Darkness:</u> user retention.

Concluding Remarks

- Automated and unsupervised method produced political paths with <u>distinct</u> and <u>meaningful</u> preferences.
- Questions:
 - Does the approach sacrifice complexity and sophistication?
 - Is this the "single" "True" structure?
 - Can one combine user actions with different/multiple/undefined intentions?
- Ethical considerations: surveillance and privacy

Thank You