Using mathematics to structure laws

Don Saari
UCI, Institute for Math Behavioral Sciences
Using mathematics to structure laws

Provide introduction

Don Saari

UCI, Institute for Math Behavioral Sciences
Using mathematics to structure laws

Provide introduction

Don Saari

UCI, Institute for Math Behavioral Sciences
Using mathematics to structure laws

Provide introduction

Don Saari

UCI, Institute for Math Behavioral Sciences

And politics
Using mathematics to structure laws

Provide introduction

Don Saari

UCI, Institute for Math Behavioral Sciences

Good intensions,
Using mathematics to structure laws

Provide introduction

Don Saari

UCI, Institute for Math Behavioral Sciences

Good intentions,
Unintended consequences:
Using mathematics to structure laws

Provide introduction

Don Saari
UCI, Institute for Math Behavioral Sciences

Good intentions,

Unintended consequences:
Planning on writing the
Great American Novel

And politics
Using mathematics to structure laws

Provide introduction

Don Saari

UCI, Institute for Math Behavioral Sciences

Good intentions,

Unintended consequences:

Planning on writing the

Great American Novel
Using mathematics to structure laws

Provide introduction

Good intensions,

Unintended consequences:

Planning on writing the

Great American Novel

Don Saari
UCI, Institute for Math Behavioral Sciences

Borrow $$

And politics

Tuesday, April 29, 14
Using mathematics to structure laws

Provide introduction
Don Saari
UCI, Institute for Math Behavioral Sciences

Good intentions,
Borrow $$
Ann

Unintended consequences:
Planning on writing the
Great American Novel

And politics
Using mathematics to structure laws

Provide introduction

Don Saari
UCI, Institute for Math Behavioral Sciences

Good intensions,

Unintended consequences:
Planning on writing the
Great American Novel

And politics
Borrow $$
Ann
go broke, Ann gets
computer
Using mathematics to structure laws

Provide introduction
UCI, Institute for Math Behavioral Sciences

Don Saari

Good intensions,

Unintended consequences:
Planning on writing the
Great American Novel
Writing not going well

And politics

Borrow $$
Ann
go broke, Ann gets
computer

Tuesday, April 29, 14
Using mathematics to structure laws

Provide introduction

Don Saari

UCI, Institute for Math Behavioral Sciences

Good intentions,

Unintended consequences:

Planning on writing the

Great American Novel

Writing not going well

Borrow more $$

And politics

Borrow $$

Ann

go broke, Ann gets

computer

Tuesday, April 29, 14
Using mathematics to structure laws

Don Saari
UCI, Institute for Math Behavioral Sciences

Good intentions,

Unintended consequences:
Planning on writing the
Great American Novel
Writing not going well
Borrow more $$
Barb

Borrow $$
Ann
go broke, Ann gets
computer

And politics
Using mathematics to structure laws

Provide introduction

UCI, Institute for Math Behavioral Sciences

Don Saari

Good intentions,

Unintended consequences:

Planning on writing the

Great American Novel

Writing not going well

Borrow more $$

Barb

But Barb registers loan

And politics

Borrow $$

Ann

go broke, Ann gets

computer
Using mathematics to structure laws

Provide introduction

Don Saari
UCI, Institute for Math Behavioral Sciences

Good intentions,

Unintended consequences:

Planning on writing the Great American Novel

Writing not going well

Borrow more $\$

Barb

But Barb registers loan

Rule: go broke, priority of who gets my computer determined by order of registering

Borrow $$

Ann

go broke, Ann gets computer

And politics
Using mathematics to structure laws

Provide introduction

Good intensions,

Unintended consequences:

Planning on writing the

Great American Novel

Writing not going well

Borrow more $$

But Barb registers loan

Rule: go broke, priority

of who gets my computer
determined by order of

registering

BUT

Don Saari

UCI, Institute for Math Behavioral Sciences

Borrow $$

Ann
go broke, Ann gets computer

And politics

IPAM
April 22, 2014

Tuesday, April 29, 14
Using mathematics to structure laws

Provide introduction

UCI, Institute for Math Behavioral Sciences

Don Saari

Good intensions,

Unintended consequences:

Planning on writing the
Great American Novel

Writing not going well

Borrow more $$

Barb

But Barb registers loan

Rule: go broke, priority

of who gets my computer
determined by order of
registering

BUT

only if you did not know

someone else loaned who
did not register.
Using mathematics to structure laws

Good intentions,
Unintended consequences:
Planning on writing the Great American Novel
Writing not going well
Borrow more $$
Barb
But Barb registers loan
Rule: go broke, priority of who gets my computer determined by order of registering
BUT
only if you did not know someone else loaned who did not register.

And politics

Provide introduction
Don Saari
UCI, Institute for Math Behavioral Sciences

Borrow $$
Ann
go broke, Ann gets computer

So, if I go broke,
Using mathematics to structure laws

Don Saari

UCI, Institute for Math Behavioral Sciences

Provide introduction

Good intensions,

Unintended consequences:

Planning on writing the

Great American Novel

Writing not going well

Borrow more $$

Barb

But Barb registers loan

Rule: go broke, priority

of who gets my computer
determined by order of

registering

BUT

only if you did not know

someone else loaned who
did not register.

Borrow $$

Ann

go broke, Ann gets

computer

So, if I go broke,

Ann > Barb
Using mathematics to structure laws

Provide introduction

Good intensions,
Unintended consequences:
Planning on writing the
Great American Novel
Writing not going well
Borrow more $$
Barb
But Barb registers loan
Rule: go broke, priority
of who gets my computer
determined by order of
registering
BUT
only if you did not know
someone else loaned who
did not register.

Don Saari
UCI, Institute for Math Behavioral Sciences

Borrow $$
Ann
go broke, Ann gets
computer
Writing not going well

So, if I go broke,
Ann > Barb

And politics
Using mathematics to structure laws

Provide introduction

Don Saari
UCI, Institute for Math Behavioral Sciences

Good intensions,

Unintended consequences:
Planning on writing the Great American Novel
Writing not going well
Borrow more $$
Barb
But Barb registers loan
Rule: go broke, priority of who gets my computer determined by order of registering
BUT
only if you did not know someone else loaned who did not register.

Borrow $$
Ann
go broke, Ann gets computer
Writing not going well
Borrow even more $$

So, if I go broke, Ann > Barb

And politics

Tuesday, April 29, 14
Using mathematics to structure laws

Provide introduction

Don Saari

UCI, Institute for Math Behavioral Sciences

Good intentions,

Unintended consequences:

Planning on writing the

Great American Novel

Writing not going well

Borrow more $$

Barb

But Barb registers loan

Rule: go broke, priority

of who gets my computer
determined by order of

registering

BUT

only if you did not know

someone else loaned who
did not register.

Borrow $$

Ann
go broke, Ann gets

computer

Writing not going well

Borrow even more $$

Carol

So, if I go broke,

Ann > Barb

And politics
Using mathematics to structure laws

Good intentions,

Planning on writing the
Great American Novel

Writing not going well

Borrow more $$

But Barb registers loan

Rule: go broke, priority of who gets my computer determined by order of registering

BUT

only if you did not know someone else loaned who did not register.

Provide introduction

UCI, Institute for Math Behavioral Sciences

Don Saari

Borrow $$

Ann

go broke, Ann gets computer

Writing not going well

Borrow even more $$

Carol

Carol does not know about any previous loans

And politics

So, if I go broke, Ann > Barb
Using mathematics to structure laws

Good intensions,

Unintended consequences:
Planning on writing the Great American Novel
Writing not going well
Borrow more $$
Barb
But Barb registers loan

Rule: go broke, priority of who gets my computer determined by order of registering
BUT
only if you did not know someone else loaned who did not register.

Borrow $$
Ann
go broke, Ann gets computer
Writing not going well
Borrow even more $$
Carol
Carol does not know about any previous loans
She registers.

So, if I go broke, Ann > Barb

Provide introduction
Don Saari
UCI, Institute for Math Behavioral Sciences

And politics
IPAM
April 22, 2014

Tuesday, April 29, 14
Using mathematics to structure laws

Provide introduction

Don Saari
UCI, Institute for Math Behavioral Sciences

Good intentions,

Unintended consequences:
Planning on writing the Great American Novel
Writing not going well
Borrow more $$
Barb
But Barb registers loan
Rule: go broke, priority of who gets my computer determined by order of registering
BUT only if you did not know someone else loaned who did not register.

Borrow $$
Ann
go broke, Ann gets computer

Writing not going well
Borrow even more $$
Carol
Carol does not know about any previous loans
She registers.

So, if I go broke, Ann > Barb
I go broke!

And politics
Using mathematics to structure laws

Provide introduction

Don Saari
UCI, Institute for Math Behavioral Sciences

Good intensions,

Unintended consequences:

Planning on writing the Great American Novel

Writing not going well

Borrow more $$

Barb

But Barb registers loan

Rule: go broke, priority of who gets my computer determined by order of registering

BUT

only if you did not know someone else loaned who did not register.

So, if I go broke, Ann > Barb

I go broke!

As Barb registered first
Using mathematics to structure laws

Good intentions,
Unintended consequences:
Planning on writing the Great American Novel
Writing not going well
Borrow more $$
But Barb registers loan
Rule: go broke, priority of who gets my computer determined by order of registering
BUT
only if you did not know someone else loaned who did not register.

Don Saari
UCI, Institute for Math Behavioral Sciences

Borrow $$
Ann
go broke, Ann gets computer
Writing not going well
Borrow even more $$
Carol
Carol does not know about any previous loans
She registers.

So, if I go broke, Ann > Barb
I go broke!
As Barb registered first
Barb > Carol

Provide introduction

And politics

Tuesday, April 29, 14
Using mathematics to structure laws

Good intentions,

Unintended consequences:
Planning on writing the Great American Novel
Writing not going well
Borrow more $$
Barb
But Barb registers loan
Rule: go broke, priority of who gets my computer determined by order of registering
BUT
only if you did not know someone else loaned who did not register.

Borrow $$
Ann
go broke, Ann gets computer
Writing not going well
Borrow even more $$
Carol
Carol does not know about any previous loans
She registers.

So, if I go broke, Ann > Barb
I go broke!
As Barb registered first
Barb > Carol
But, Carol registered without knowing about Ann, so

And politics
Using mathematics to structure laws

Provide introduction

Don Saari
UCI, Institute for Math Behavioral Sciences

Good intensions,

Unintended consequences:
Planning on writing the
Great American Novel
Writing not going well
Borrow more $$
Barb
But Barb registers loan
Rule: go broke, priority
of who gets my computer
determined by order of
registering
BUT
only if you did not know
someone else loaned who
did not register.

Borrow $$
Ann
go broke, Ann gets
computer
Writing not going well
Borrow even more $$
Carol
Carol does not know
about any previous loans
She registers.

Borrow $$
Ann
go broke, Ann gets
computer
Writing not going well
Borrow even more $$
Carol
Carol does not know
about any previous loans
She registers.

So, if I go broke,
Ann > Barb
I go broke!
As Barb registered
first
Barb > Carol
But, Carol registered
without knowing
about Ann, so
Carol > Ann

And politics

Tuesday, April 29, 14
Using mathematics to structure laws

Provide introduction
UCI, Institute for Math Behavioral Sciences

Good intentions,
Unintended consequences:

Planning on writing the Great American Novel
Writing not going well
Borrow more $$
Barb

But Barb registers loan
Rule: go broke, priority of who gets my computer determined by order of registering
BUT

only if you did not know someone else loaned who did not register.

Borrow $$
Ann
go broke, Ann gets computer

Writing not going well
Borrow even more $$
Carol

Carol does not know about any previous loans
She registers.
Cycle! Who gets the computer???

So, if I go broke,
Ann > Barb

I go broke!
As Barb registered first

Barb > Carol
But, Carol registered without knowing about Ann, so
Carol > Ann
Using mathematics to structure laws

Provide introduction

Don Saari
UCI, Institute for Math Behavioral Sciences

Good intensions,

Unintended consequences:
Planning on writing the Great American Novel
Writing not going well
Borrow more $$
Barb
But Barb registers loan
Rule: go broke, priority of who gets my computer determined by order of registering
BUT
only if you did not know someone else loaned who did not register.

Borrow $$
Ann

go broke, Ann gets computer
Writing not going well
Borrow even more $$
Carol
Carol does not know about any previous loans
She registers.
Cycle! Who gets the computer???

So, if I go broke,
Ann > Barb
I go broke!
As Barb registered first
Barb > Carol
But, Carol registered without knowing about Ann, so
Carol > Ann

Recent conference at IMBS,
Using mathematics to structure laws

Provide introduction

Good intensions,

Unintended consequences:

Planning on writing the Great American Novel

Writing not going well

Borrow more $$

Barb

But Barb registers loan

Rule: go broke, priority of who gets my computer determined by order of registering

BUT only if you did not know someone else loaned who did not register.

Borrow $$

Ann
go broke, Ann gets computer

Writing not going well

Borrow even more $$

Carol

Carol does not know about any previous loans

She registers.

Cycle! Who gets the computer???

Recent conference at IMBS, discovered this problem is surprisingly common

So, if I go broke, Ann > Barb

I go broke!

As Barb registered first

Barb > Carol

But, Carol registered without knowing about Ann, so Carol > Ann

And politics
Dimensionality of issues
Dimensionality of issues

Priority: registering
Dimensionality of issues

Good intensions
Protection against exploitation

Priority: registering
Dimensionality of issues

- Good intentions
- Protection against exploitation

Priority: registering

Avoiding cycles:
Dimensionality of issues

Good intensions
Protection against exploitation

Priority: registering

Avoiding cycles:
Core:
Dimensionality of issues

Good intensions
Protection against exploitation

Priority: registering

Avoiding cycles:
Core:
Paired comparisons:
Dimensionality of issues

Good intentions
Protection against exploitation

Avoiding cycles:
Core:
Paired comparisons:
A core point is a point that

Priority: registering
Dimensionality of issues

Good intensions
Protection against exploitation

Priority: registering

Avoiding cycles:
Core:
Paired comparisons:
A core point is a point that with the specified rule,
Dimensionality of issues

- Good intensions
- Protection against exploitation

Priority: registering

Avoiding cycles:

Core:
Paired comparisons:
A core point is a point that with the specified rule, cannot be beaten
Dimensionality of issues

Good intentions
Protection against exploitation

Priority: registering

Avoiding cycles:

Core:
Paired comparisons:
A core point is a point that with the specified rule, cannot be beaten so, no cycles
Dimensionality of issues

Good intentions
Protection against exploitation

Priority: registering

Avoiding cycles:
Core:
Paired comparisons:
A core point is a point that with the specified rule, cannot be beaten so, no cycles
Example:
Dimensionality of issues

Good intensions
Protection against exploitation

Priority: registering

Avoiding cycles:
Core:
Paired comparisons:
A core point is a point that cannot be beaten so, no cycles
Example:
Computer -- core is empty
Dimensionality of issues

Good intensions
Protection against exploitation

Avoiding cycles:
Core:
Paired comparisons:
A core point is a point that cannot be beaten, so, no cycles
Example:
Computer -- core is empty
Would like structure of laws to have core
Dimensionality of issues

Good intensions
Protection against exploitation

Priority: registering

Avoiding cycles:

Core:

Paired comparisons:
A core point is a point that with the specified rule, cannot be beaten so, no cycles

Example:
Computer -- core is empty

Would like structure of laws to have core

Majority vote -- a point that can be all others with a majority vote.
Dimensionality of issues

Good intentions
Protection against exploitation

Priority: registering

Avoiding cycles:
Core:
Paired comparisons:
A core point is a point that cannot be beaten, so, no cycles
Example:
Computer -- core is empty
Would like structure of laws to have core
Majority vote -- a point that can be all others with a majority vote.
Dimensionality of issues

Good intensions
Protection against exploitation

Priority: registering

Avoiding cycles:
Core:

Paired comparisons:
A core point is a point that with the specified rule, cannot be beaten so, no cycles

Example:
Computer -- core is empty
Would like structure of laws to have core

Majority vote -- a point that can be all others with a majority vote.
Dimensionality of issues

Good intensions
Protection against exploitation

Priority: registering

Avoiding cycles:
Core:
Paired comparisons:
A core point is a point that with the specified rule, cannot be beaten so, no cycles
Example:
Computer -- core is empty
Would like structure of laws to have core
Majority vote -- a point that can be all others with a majority vote.
Avoiding cycles:

Core:
Paired comparisons:
A core point is a point that with the specified rule, cannot be beaten, so, no cycles.
Example:
Computer -- core is empty
Would like structure of laws to have core
Majority vote -- a point that can be all others with a majority vote.
Dimensionality of issues

Good intensions
Protection against exploitation

Priority: registering

Avoiding cycles:
Core:
Paired comparisons:
A core point is a point that with the specified rule, cannot be beaten so, no cycles
Example:
Computer -- core is empty
Would like structure of laws to have core
Majority vote -- a point that can be all others with a majority vote.
Dimensionality of issues

Good intensions
Protection against exploitation

Priority: registering

Median voter theorem

Avoiding cycles:
Core:
Paired comparisons:
A core point is a point that with the specified rule, cannot be beaten so, no cycles
Example:
Computer -- core is empty
Would like structure of laws to have core
Majority vote -- a point that can be all others with a majority vote.
Dimensionality of issues

Good intentions
Protection against exploitation

Avoiding cycles:
Core:

Paired comparisons:
A core point is a point that with the specified rule, cannot be beaten so, no cycles

Example:
Computer -- core is empty

Would like structure of laws to have core

Majority vote -- a point that can be all others with a majority vote.
Dimensionality of issues

Good intentions
Protection against exploitation

Priority: registering

Median voter theorem
One issue, core always exists

Avoiding cycles:
Core:
Paired comparisons:
A core point is a point that with the specified rule, cannot be beaten so, no cycles
Example:
Computer -- core is empty
Would like structure of laws to have core
Majority vote -- a point that can be all others with a majority vote.
Dimensionality of issues

Good intentions
Protection against exploitation

Priority: registering

Median voter theorem
One issue, core always exists

Avoiding cycles:
Core:
Paired comparisons:
A core point is a point that with the specified rule, cannot be beaten so, no cycles
Example:
Computer -- core is empty
Would like structure of laws to have core
Majority vote -- a point that can be all others with a majority vote.
Dimensionality of issues

- Good intensions
- Protection against exploitation

Avoiding cycles:
- Core:

Paired comparisons:
A core point is a point that cannot be beaten, so, no cycles

Example:
Computer -- core is empty

Would like structure of laws to have core

Majority vote -- a point that can be all others with a majority vote.
Dimensionality of issues

Good intentions
Protection against exploitation

Avoiding cycles:
Core:
Paired comparisons:
A core point is a point that with the specified rule, cannot be beaten so, no cycles
Example:
Computer -- core is empty
Would like structure of laws to have core
Majority vote -- a point that can be all others with a majority vote.

Median voter theorem
One issue, core always exists

Priority: registering

Plott diagram
Core?

Hours

Stipend
Core?

Hours

Stipend
Core?

Hours

Stipend
Core?

Hours

Stipend
Core?

Here the core is empty

Hours

Stipend
Core?

Here the core is empty

McKelvey:
McKelvey:
For majority rule, any number of voters, empty core, select a starting and ending point. There exists an agenda going from one to the other.
For majority rule, any number of voters, empty core, select a starting and ending point. There exists an agenda going from one to the other.

Idea for proof: Differential topology
McKelvey:
For majority rule, any number of voters, empty core, select a starting and ending point. There exists an agenda going from one to the other.
Idea for proof: Differential topology
Examples:
McKelvey:
For majority rule, any number of voters, empty core, select a starting and ending point. There exists an agenda going from one to the other.

Idea for proof: Differential topology

Examples:
Iraq
McKelvey:
For majority rule, any number of voters, empty core, select a starting and ending point. There exists an agenda going from one to the other.
Idea for proof: Differential topology
Examples:
Iraq
Shifting coalitions
McKelvey:
For majority rule, any number of voters, empty core, select a starting and ending point. There exists an agenda going from one to the other.

Idea for proof: Differential topology

Examples:
Iraq

Shifting coalitions

Good intentions:
McKelvey:
For majority rule, any number of voters, empty core, select a starting and ending point. There exists an agenda going from one to the other.

Idea for proof: Differential topology

Examples:
- Iraq
- Shifting coalitions
- Good intensions:
 NSF, engineering, with “continued improvement”
Core? Here the core is empty

McKelvey:
For majority rule, any number of voters, empty core, select a starting and ending point. There exists an agenda going from one to the other.

Idea for proof: Differential topology

Examples:
Iraq
Shifting coalitions

Good intensions:
NSF, engineering, with “continued improvement”

q-rule (supermajority vote)
Core? Here the core is empty

McKelvey:
For majority rule, any number of voters, empty core, select a starting and ending point. There exists an agenda going from one to the other.

Idea for proof: Differential topology
Examples:
Iraq
Shifting coalitions
Good intensions:
NSF, engineering, with “continued improvement”

q-rule (supermajority vote)
to win, need at least q (quota) votes.
For majority rule, any number of voters, empty core, select a starting and ending point. There exists an agenda going from one to the other. Idea for proof: Differential topology

Examples:
Iraq
Shifting coalitions
Good intentions:
NSF, engineering, with “continued improvement”

q-rule (supermajority vote) to win, need at least q (quota) votes.
Example: US Senate where q=60
Core? Here the core is empty

McKelvey:
For majority rule, any number of voters, empty core, select a starting and ending point. There exists an agenda going from one to the other.
Idea for proof: Differential topology
Examples:
Iraq
Shifting coalitions
Good intensions:
NSF, engineering, with “continued improvement”

q-rule (supermajority vote) to win, need at least q (quota) votes.
Example: US Senate where q=60

Tataru: For q-rule, empty core, same result as for McKelvey
For majority rule, any number of voters, empty core, select a starting and ending point. There exists an agenda going from one to the other.

Idea for proof: Differential topology

Examples:
- Iraq
- Shifting coalitions
- Good intensions: NSF, engineering, with "continued improvement"

For q-rule, empty core, same result as for McKelvey

Tataru: For q-rule, empty core, same result as for McKelvey

Example: US Senate where q=60
Core? Here the core is empty

McKelvey:
For majority rule, any number of voters, empty core, select a starting and ending point. There exists an agenda going from one to the other.
Idea for proof: Differential topology
Examples:
Iraq
Shifting coalitions
Good intensions:
NSF, engineering, with “continued improvement”

Tataru: For q-rule, empty core, same result as for McKelvey
Idea of proof:
symmetry group orbits of sets

q-rule (supermajority vote) to win, need at least q (quota) votes.
Example: US Senate where q=60

Tuesday, April 29, 14
Tools and a question
Tools and a question
Tools and a question

Pareto set for coalition

Sen. Jeffords, VT
Tools and a question

Sen. Jeffords, VT
Core is the intersection of Pareto sets
Tools and a question

Sen. Jeffords, VT
Core is the intersection of Pareto sets
Tools and a question

Sen. Jeffords, VT
Core is the intersection of Pareto sets

Pareto set for coalition

Core is empty!
Tools and a question

Pareto set for coalition

Core is empty!

Sen. Jeffords, VT
Core is the intersection of Pareto sets

Tuesday, April 29, 14
Tools and a question

Sen. Jeffords, VT
Core is the intersection of Pareto sets

Pareto set for coalition

Core is empty!
Tools and a question

Sen. Jeffords, VT
Core is the intersection of Pareto sets

Pareto set for coalition
Core is empty!

Pareto sets:
Tools and a question

Core is the intersection of Pareto sets

Sen. Jeffords, VT

Core is empty!

Pareto sets: winning coalition has three voters
Tools and a question

Sen. Jeffords, VT
Core is the intersection of Pareto sets

Core is empty!

Pareto set for coalition

Pareto sets:
winning coalition has three voters triangles
Tools and a question

Sen. Jeffords, VT
Core is the intersection of Pareto sets

Core is empty!

Pareto set for coalition

Pareto sets: winning coalition has three voters triangles
All intersect at midpoint
Tools and a question

Sen. Jeffords, VT
Core is the intersection of Pareto sets

Pareto set for coalition
Core is empty!

Pareto sets:
winning coalition has three voters triangles
All intersect at midpoint core exists
Tools and a question

Sen. Jeffords, VT
Core is the intersection of Pareto sets

Core is empty!

Pareto set for coalition

Pareto sets:
winning coalition has three voters triangles
All intersect at midpoint core exists
Tools and a question

Sen. Jeffords, VT
Core is the intersection of Pareto sets

Core is empty!

Pareto sets:
winning coalition has three voters triangles
All intersect at midpoint core exists

Pareto set for coalition
Tools and a question

Sen. Jeffords, VT
Core is the intersection of Pareto sets

Pareto set for coalition
Core is empty!

Now, triangles do not intersect

Pareto sets: winning coalition has three voters triangles
All intersect at midpoint core exists
Tools and a question

Sen. Jeffords, VT
Core is the intersection of Pareto sets

Pareto set for coalition

Core is empty!

Now, triangles do not intersect
Core is empty

Pareto sets:
winning coalition has three voters
triangles
All intersect at midpoint
core exists
Tools and a question

Sen. Jeffords, VT
Core is the intersection of Pareto sets

Pareto set for coalition

Core is empty!

Now, triangles do not intersect
Core is empty
For core to be meaningful must be

Pareto sets:
winning coalition has three voters
triangles
All intersect at midpoint core exists
Tools and a question

Sen. Jeffords, VT
Core is the intersection of Pareto sets

Pareto sets:
winning coalition has three voters
triangles
All intersect at midpoint core exists

Core is empty!
Now, triangles do not intersect
Core is empty
For core to be meaningful must be **structurally stable**
Tools and a question

Sen. Jeffords, VT
Core is the intersection of Pareto sets

Pareto set for coalition

Core is empty!
Now, triangles do not intersect
Core is empty
For core to be meaningful must be **structurally stable**

Pareto sets: winning coalition has three voters triangles
All intersect at midpoint core exists

This is a mathematical topic in dynamical systems, and singularity theory
Tools and a question

Sen. Jeffords, VT
Core is the intersection of Pareto sets

Pareto set for coalition

Core is empty!

Now, triangles do not intersect
Core is empty
For core to be meaningful must be **structurally stable**

Pareto sets: winning coalition has three voters triangles
All intersect at midpoint core exists

This is a mathematical topic in dynamical systems, and singularity theory
Must expect tools from these areas will provide insights
Tools and a question

Sen. Jeffords, VT
Core is the intersection of Pareto sets

Core is empty!

Pareto sets: winning coalition has three voters triangles
All intersect at midpoint core exists

Now, triangles do not intersect
Core is empty
For core to be meaningful must be structurally stable

This is a mathematical topic in dynamical systems, and singularity theory
Must expect tools from these areas will provide insights
Early attempts by McKelvey and Scholfield
Answer:
Answer:

Preferences: replace distances with smooth utility functions
Answer:

Preferences: replace distances with smooth utility functions
Proof by use of singularity theory, Thom’s results about transverse intersections in Jet space, etc.
Preferences: replace distances with smooth utility functions
Proof by use of singularity theory, Thom’s results about transverse intersections in Jet space, etc.
Statement of actual theorem is complicated reflecting geometry of higher dimensional spaces -- particularly for $\frac{3}{4}$ and higher rules
Preferences: replace distances with smooth utility functions
Proof by use of singularity theory, Thom’s results about transverse intersections in Jet space, etc.
Statement of actual theorem is complicated reflecting geometry of higher dimensional spaces -- particularly for $\frac{3}{4}$ and higher rules
Flavor given by
Answer:

Preferences: replace distances with smooth utility functions
Proof by use of singularity theory, Thom’s results about transverse intersections in Jet space, etc.
Statement of actual theorem is complicated reflecting geometry of higher dimensional spaces -- particularly for \(\frac{3}{4} \) and higher rules
Flavor given by

Theorem: For a q-rule with n-voters core point to be structurally stable, the number of issues, k, must be less than or equal to
Preferences: replace distances with smooth utility functions
Proof by use of singularity theory, Thom’s results about transverse intersections in Jet space, etc.
Statement of actual theorem is complicated reflecting geometry of higher dimensional spaces -- particularly for \(\frac{3}{4} \) and higher rules
Flavor given by

Theorem: For a q-rule with n-voters core point to be structurally stable, the number of issues, k, must be less than or equal to \(2q-n \).
Preferences: replace distances with smooth utility functions
Proof by use of singularity theory, Thom’s results about transverse intersections in Jet space, etc.
Statement of actual theorem is complicated reflecting geometry of higher dimensional spaces -- particularly for $\frac{3}{4}$ and higher rules
Flavor given by

Theorem: For a q-rule with n-voters core point to be structurally stable, the number of issues, k, must be less than or equal to $2q-n$.

Preferences: replace distances with smooth utility functions
Proof by use of singularity theory, Thom’s results about transverse intersections in Jet space, etc.
Statement of actual theorem is complicated reflecting geometry of higher dimensional spaces -- particularly for \(\frac{3}{4} \) and higher rules
Flavor given by

Theorem: For a q-rule with n-voters core point to be structurally stable, the number of issues, k, must be less than or equal to \(2q-n \).

Majority rule; odd number of voters so \(q = \frac{n+1}{2} \)
Answer:

Preferences: replace distances with smooth utility functions
Proof by use of singularity theory, Thom’s results about transverse intersections in Jet space, etc.
Statement of actual theorem is complicated reflecting geometry of higher dimensional spaces -- particularly for \(\frac{3}{4} \) and higher rules
Flavor given by

Theorem: For a q-rule with n-voters core point to be structurally stable, the number of issues, \(k \), must be less than or equal to \(2q-n \).

Majority rule; odd number of voters so \(q = \frac{(n+1)}{2} \)
Core point stable ONLY for \(k=(n+1)-n = 1 \) issue
Answer:

Preferences: replace distances with smooth utility functions
Proof by use of singularity theory, Thom’s results about transverse intersections in Jet space, etc.
Statement of actual theorem is complicated reflecting geometry of higher dimensional spaces -- particularly for $\frac{3}{4}$ and higher rules
Flavor given by

Theorem: For a q-rule with n-voters core point to be structurally stable, the number of issues, k, must be less than or equal to $2q-n$.

Majority rule; odd number of voters so $q = \frac{(n+1)}{2}$
Core point stable ONLY for $k=(n+1)-n = 1$ issue
Even number of voters: $q = \frac{(n+2)}{2}$
Preferences: replace distances with smooth utility functions
Proof by use of singularity theory, Thom’s results about transverse intersections in Jet space, etc.
Statement of actual theorem is complicated reflecting geometry of higher dimensional spaces -- particularly for \(\frac{3}{4} \) and higher rules
Flavor given by

Theorem: For a q-rule with n-voters core point to be structurally stable, the number of issues, k, must be less than or equal to \(2q-n \).

Majority rule; odd number of voters so \(q = \frac{(n+1)}{2} \)
Core point stable ONLY for \(k=\frac{(n+1)-n}{2} = 1 \) issue
Even number of voters: \(q = \frac{(n+2)}{2} \)
Core point stable for up to \(k=2 \) issues
Preferences: replace distances with smooth utility functions
Proof by use of singularity theory, Thom’s results about transverse intersections in Jet space, etc.
Statement of actual theorem is complicated reflecting geometry of higher dimensional spaces -- particularly for \(\frac{3}{4} \) and higher rules
Flavor given by

Theorem: For a q-rule with n-voters core point to be structurally stable, the number of issues, k, must be less than or equal to 2q-n.

Majority rule; odd number of voters so q = \((n+1)/2\)
Core point stable ONLY for k=(n+1)-n = 1 issue
Even number of voters: q = \((n+2)/2\)
Core point stable for up to k=2 issues
Catholic Church and election of pope
Preferences: replace distances with smooth utility functions
Proof by use of singularity theory, Thom’s results about transverse intersections in Jet space, etc.
Statement of actual theorem is complicated reflecting geometry of higher dimensional spaces -- particularly for \(\frac{3}{4} \) and higher rules
Flavor given by

Theorem: For a q-rule with n-voters core point to be structurally stable, the number of issues, k, must be less than or equal to \(2q-n \).

Majority rule; odd number of voters so \(q = \frac{(n+1)}{2} \)
Core point stable ONLY for \(k = (n+1)-n = 1 \) issue

Even number of voters: \(q = \frac{(n+2)}{2} \)
Core point stable for up to \(k=2 \) issues

Catholic Church and election of pope
\(\frac{2}{3} \) rule So, if 120 voters, need 80 to win, 40 on losing side.
Preferences: replace distances with smooth utility functions
Proof by use of singularity theory, Thom’s results about transverse intersections in Jet space, etc.
Statement of actual theorem is complicated reflecting geometry of higher dimensional spaces -- particularly for \(\frac{3}{4} \) and higher rules

Flavor given by

Theorem: For a q-rule with n-voters core point to be structurally stable, the number of issues, k, must be less than or equal to \(2q-n \).

Majority rule; odd number of voters so \(q = \frac{(n+1)}{2} \)
Core point stable ONLY for \(k=(n+1)-n = 1 \) issue
Even number of voters: \(q = \frac{(n+2)}{2} \)
Core point stable for up to \(k=2 \) issues
Catholic Church and election of pope

\(\frac{3}{4} \) rule So, if 120 voters, need 80 to win, 40 on losing side.
\(k= 2q-n = 2(80) - 120 = 40 \), or the number needed to change outcome.
For a price
For a price

I will come to your group before your next election.
For a price

I will come to your group before your next election. You tell me who you want to win.
I will come to your group before your next election. You tell me who you want to win. After talking to everyone in your group, I will design a “fair” election rule, which includes all candidates.
For a price

I will come to your group before your next election.
You tell me who you want to win.
After talking to everyone in your group, I will design a
“fair” election rule, which includes all candidates.
Your candidate will win!
For a price

10 A>B>C>D>E>F

I will come to your group before your next election.
You tell me who you want to win.
After talking to everyone in your group, I will design a “fair” election rule, which includes all candidates.
Your candidate will win!
For a price

10 A>B>C>D>E>F
10 B>C>D>E>F>A

I will come to your group before your next election. You tell me who you want to win. After talking to everyone in your group, I will design a “fair” election rule, which includes all candidates. Your candidate will win!
For a price

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

I will come to your group before your next election. You tell me who you want to win. After talking to everyone in your group, I will design a “fair” election rule, which includes all candidates. Your candidate will win!
For a price

Everyone prefers C to D to E to F

I will come to your group before your next election. You tell me who you want to win. After talking to everyone in your group, I will design a “fair” election rule, which includes all candidates. Your candidate will win!
For a price

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

Everyone prefers C to D to E to F
For a price

10 A>B>C>D>E>F Everyone prefers C to D to E to F
10 B>C>D>E>F>A
10 C>D>E>F>A>B
For a price

10 A>B>C>D>E>F Everyone prefers C to D to E to F
10 B>C>D>E>F>A
10 C>D>E>F>A>B
For a price

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

Everyone prefers C to D to E to F
For a price

10 A>B>C>D>E>F Everyone prefers C to D to E to F
10 B>C>D>E>F>A
10 C>D>E>F>A>B
For a price.....

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

Everyone prefers C to D to E to F
For a price

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

Everyone prefers C to D to E to F
For a price

10 A>B>C>D>E>F Everyone prefers C to D to E to F
10 B>C>D>E>F>A
10 C>D>E>F>A>B
For a price

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

Everyone prefers C to D to E to F
For a price

Everyone prefers C to D to E to F

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B
For a price

10 A>B>C>D>E>F Everyone prefers C to D to E to F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

D
 E
 C
 B
 A
 F
For a price

10 A>B>C>D>E>F Everyone prefers C to D to E to F
10 B>C>D>E>F>A
10 C>D>E>F>A>B
For a price

10 A>B>C>D>E>F Everyone prefers C to D to E to F
10 B>C>D>E>F>A
10 C>D>E>F>A>B
For a price

$10 \ A>B>C>D>E>F \quad \text{Everyone prefers C to D to E to F}$

$10 \ B>C>D>E>F>A \quad \text{Fred wins by a landslide!!}$
For a price

10 A>B>C>D>E>F Everyone prefers C to D to E to F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

Fred wins by a landslide!!
For a price

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

Fred wins by a landslide!!
For a price

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B
For a price *Mathematics?*

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B
For a price

Mathematics?

Ranking Wheel

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B
For a price

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

Mathematics? Ranking Wheel
For a price

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

Mathematics?

Ranking Wheel
For a price *Mathematics?*

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B
For a price
For a price.....

A > B > C > D > E > F
B > C > D > E > F > A
C > D > E > F > A > B

Mathematics? Ranking Wheel

A > B > C > D > E > F
For a price mathematics? Ranking Wheel

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

A>B>C>D>E>F
For a price *Mathematics?*

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

Ranking Wheel

A>B>C>D>E>F

Rotate -60 degrees
For a price Mathematics? Ranking Wheel

A>B>C>D>E>F

B>C>D>E>F>A

C>D>E>F>A>B

A>B>C>D>E>F

Rotate -60 degrees
For a price Mathematics? Ranking Wheel

A>B>C>D>E>F
B>C>D>E>F>A
C>D>E>F>A>B

A
B
C
D
E
F

A>B>C>D>E>F

Rotate -60 degrees
For a price

Mathematics? Ranking Wheel

A>B>C>D>E>F
B>C>D>E>F>A

Rotate -60 degrees
For a price Mathematics? Ranking Wheel

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

Rotate -60 degrees
For a price Mathematics? Ranking Wheel

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

Rotate -60 degrees

A> B> C> D> E> F
B> C> D> E> F> A
For a price Mathematics? Ranking Wheel

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

A>B>C>D>E>F
B>C>D>E>F>A
C>D>E>F>A>B

etc.

Rotate -60 degrees
For a price Mathematics? Ranking Wheel

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

No candidate is favored: each is in first, second, ... once.

Rotate -60 degrees

A>B>C>D>E>F
B>C>D>E>F>A
C>D>E>F>A>B

etc.
For a price

Mathematics? Ranking Wheel

Ranking Wheel

Rotate -60 degrees

No candidate is favored: each is in first, second, ... once.

Yet, pairwise elections are cycles!
For a price

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

Mathematics? Ranking Wheel

Rotate -60 degrees

No candidate is favored: each is in first, second, ... once.

Yet, pairwise elections are cycles!

lost information!!
For a price

Mathematics?

A>B>C>D>E>F

B>C>D>E>F>A

C>D>E>F>A>B

No candidate is favored: each is in first, second, ... once.

Yet, pairwise elections are cycles!

lost information!!
For a price Mathematics? Ranking Wheel

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

No candidate is favored: each is in first, second, ... once.

Yet, pairwise elections are cycles!

lost information!!
For a price

Mathematics?

Ranking Wheel

Rotate -60 degrees

No candidate is favored: each is in first, second, ... once.

Yet, pairwise elections are cycles!

lost information!!
No candidate is favored: each is in first, second, ... once.

Yet, pairwise elections are cycles!

lost information!!
No candidate is favored: each is in first, second, ... once.

Yet, pairwise elections are cycles!

lost information!!
Source of all cycles; voting, statistics, engineering, etc.
For a price

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

Symmetry: Z6 orbit

No candidate is favored: each is in first, second, ... once.

Yet, pairwise elections are cycles!

lost information!!
Source of all cycles; voting, statistics, engineering, etc.
For a price

10 A>B>C>D>E>F
10 B>C>D>E>F>A
10 C>D>E>F>A>B

Mathematics?
Ranking Wheel

Symmetry: Z6 orbit

No candidate is favored: each is in first, second, ... once.

Yet, pairwise elections are cycles!

lost information!!
Everywhere!
Source of all cycles; voting, statistics, engineering, etc. For a price

Mathematics? Ranking Wheel

Symmetry: Z_6 orbit

No candidate is favored: each is in first, second, ... once.

Yet, pairwise elections are cycles!

lost information!! Everywhere! Manipulation, agenda fixing, all problems
Source of all cycles; voting, statistics, engineering, etc.
For a price Solutions must address this!

Mathematics? Ranking Wheel

Symmetry: Z6 orbit

<table>
<thead>
<tr>
<th>10</th>
<th>A>B>C>D>E>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>B>C>D>E>F>A</td>
</tr>
<tr>
<td>10</td>
<td>C>D>E>F>A>B</td>
</tr>
</tbody>
</table>

No candidate is favored: each is in first, second, ... once.

Yet, pairwise elections are cycles!

lost information!! Everywhere!
Manipulation, agenda fixing, all problems