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Optimal statistical tests
Drift-Diffusion Model (DDM): based on likelihood ratio test
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BEHAVIOR

How Honeybees Break
a Decision-Making Deadlock

Jeremy E. Niven

or a honeybee swarm of potentially
Fthousands of individuals, choosing a

home is a momentous decision. Fail-
ing to choose a single location may cause
the swarm to split and the queen to be lost
(1); choosing poorly may limit the swarm’s
growth or expose it to freezing temperatures
during the winter (2). Studies over the past
60 years have shown that honeybee swarms
use quorum sensing, a form of decentral-
ized decision-making, to choose a suit-
able nest site, but many gaps remain in our
understanding of this process. On page 108
in this issue, Seeley et al. (3) show that an
inhibitory signal between bees advocating
different locations allows them to make a
decision even when potential nest sites are
equally favorable.

Honeybee colonies reproduce through
budding, whereby the queen and some
workers leave the nest and bivouac on a
branch. Some of the most experienced
workers leave to locate suitable nest sites
(4). Upon their return, these scouts adver-
tise potential locations and their qualities
by performing a waggle dance. During
the dance, the scout walks straight across
the bivouacking bees, making side-to-side
waggles of her body. She then stops, turns
left or right, and walks a semicircular return
path to her starting point. The waggle run’s
duration and orientation encode the length
and the angle of the outward flight, respec-
tively, whereas the number of dance circuits

encodes the quality of the potential nest site
(5). Waggle dances recruit additional scouts
to a site until a quorum number is reached
and the swarm prepares to move to its new
home (2).

Scouts advocating less attractive sites
produce fewer dance circuits and make
fewer trips to the site (6). Along with the
recruitment of uncommitted scouts to more
attractive sites, this was assumed to be suf-
ficient to enable the bees to reach a quorum,
thereby deciding which site to choose (2).
However, foraging workers use an additional
type of signal to communicate with other
bees. Upon returning from a feeder that is
crowded or where a predator is present, for-
ager bees produce a brief vibrational signal
that discourages other bees from producing
waggle dances that advertise the location of
that feeder (7). Hypothesizing that a similar
signal may be used by house-hunting bees,
Seeley et al. set out to observe scout behav-
ior. They found that scouts received “stop”
signals—head butts mainly to their head and
thorax—from other bees during the return
run of the waggle dance (see the figure).
These stop signals occurred more frequently
just before a scout stopped dancing.

The authors next established swarms on
Appledore Island (Maine), which lacks nat-
ural nest sites, and gave them a choice of
two identical nest boxes. Scouts visiting one
box were marked with yellow paint; those
visiting the other were marked with pink
paint. Most of the bees giving “stop” signals

During the search for a new nest site, use
of an inhibitory signal enables honeybees
to reach a decision.

selection process, dancing scouts with yel-
low paint received many more stop signals
from scouts with pink paint and vice versa,
showing that scouts from one site preferen-
tially inhibit the dances of those advertis-
ing a competing site (see the figure, panel
A). Once the scouts started implementing
the decision, dancing scouts received stop
signals from scouts that had visited either
site. When swarms were given only one nest
box, scouts received few stop signals dur-
ing the decision phase but many during the
implementation phase. This general inhibi-
tion of dancing during the implementation
phase presumably ensures that all the bees
are present when the swarm takes flight.

To demonstrate a role for the observed
cross inhibition between scouts advertising
competing sites, Seeley ef al. constructed a
series of computational models of the col-
lective decision-making process, based
on the interaction rules they had observed
among the scouts. Models that incorporated
no or indiscriminate stop signaling pre-
dicted that the scouts would reach a stable
deadlock, failing to choose between two

Cease and desist. (A) Seeley et al. have found
that during house hunting, scouts advertising one
nest site preferentially inhibit scouts advertising
another site during the decision-making process.
Inhibition is conveyed by a “stop” signal, given
mainly to the head and thorax of a scout during
the return phase of the waggle dance. (B) Stop sig-
nals from scout bees inhibit other scouts, discour-
aaina them from advertisina a potential site. These
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But how do we know this strategy is
optimal?



Stochastic dynamic programming

A classic optimisation tool applied in behavioural ecology
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Negative feedback

In previous work, negative feedback signals have been identified as a
mechanism to indicate that forage sources are not ideal.

For example:
« Unrewarded (time-varying environment) [Robinson et al. Nature 2005; Bidari et al. R.Soc.0S 2019]
- Crowded (low nutritional intake efficiency) [Lau & Nieh Apidologie 2010]
- Dangerous (predator located at foodsource) [Nieh Curr. Biol. 2010, Tan et al. PLoS Biol. 2016]

We propose an alternative function for negative feedback signals,
variance reduction
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Honeybee foraging
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Our analysis

Mean-field model of collective foraging

Model without negative feedback
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Sensitivity analysis
Varying the recruitment strength and system size
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Sensitivity analysis
Varying the recruitment strength and food patch quality
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Speed of convergence
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Speed of convergence

The model without negative feedback looks quicker
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Speed of convergence

The model without negative feedback looks quicker
symmetric initial conditions

1.0
== population x; population x,
x 0.8¢ population x3 == population x
S
. g 0.6l Deterministic ODEs
Model without ™
negative feedback 5., V
c_;
Q
g 0.2/
0.0 k

0.0 0.2 0.4 0.6 0.8 1.0
Time

= population x4 population x;  o0s

population x3 == population x,; 06

Deterministic ODEs o e
0.
00

Model with
negative feedback

Population proportion x;
|
|
|
|
|
|
|
|
|
l




Speed of convergence

The model without negative feedback looks quicker
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Speed of convergence

The model without negative feedback looks quicker
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Speed of convergence

The model without negative feedback looks quicker but it is actually slower
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Speed-robustness trade-off

Negative feedback strength regulates the trade-off
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We know negative feedback is an efficient mechanism to allow social insects:

* break symmetry in collective decisions [Seeley et al. Science 2012, Reina et al. PhyRev. E 2015]
* adapt to time-varying environments [Nieh Curr. Biol. 2010, Robinson et al. Nature 2005,...]



Negative feedback

as a variance reduction mechanism

We know negative feedback is an efficient mechanism to allow social insects:

* break symmetry in collective decisions [Seeley et al. Science 2012, Reina et al. PhyRev. E 2015]
* adapt to time-varying environments [Nieh Curr. Biol. 2010, Robinson et al. Nature 2005,...]

We find an additional important role of negative feedback: variance reduction
* similar strategy found in gene networks or electronics

* it could explain why, even in static conditions, honeybees always deliver a small
quantity of stop signals to foragers visiting the same forage patch [Lau & Nieh Apidologie 2010]
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Negative feedback

Progression in the evolution of collective foraging

Individual foragers Recruitment Inhibition

low efficiency efficient but noisy low variance + adaptive
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