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Optimisation tools



Behavioural 
function
What quantity 
should be 
optimised?
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Optimal statistical tests
Drift-Diffusion Model (DDM): based on likelihood ratio test
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Figure 3. An illustration of the random walk and diffusion process, together with relatedness distribu-
tions that drive the diffusion process.

the relatedness value. Thus, any particular
probe-memory-set item comparison has drift
equal to the relatedness value of that com-
parison, so that, for example, the greater the
probe-memory-set item relatedness, the faster
the match boundary is reached. The second
panel of Figure 3 shows two distributions of

relatedness, one for probe-target item com-
parisons and one for probe-nontarget item
comparisons.

Parameters for the comparison process.
Figure 3 shows the six parameters of the com-
parison process. Over the five paradigms ex-
amined, variance in relatedness (if) and vari-
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PERSPECTIVES

F
or a honeybee swarm of potentially 
thousands of individuals, choosing a 
home is a momentous decision. Fail-

ing to choose a single location may cause 
the swarm to split and the queen to be lost 
( 1); choosing poorly may limit the swarm’s 
growth or expose it to freezing temperatures 
during the winter ( 2). Studies over the past 
60 years have shown that honeybee swarms 
use quorum sensing, a form of decentral-
ized decision-making, to choose a suit-
able nest site, but many gaps remain in our 
understanding of this process. On page 108 
in this issue, Seeley et al. ( 3) show that an 
inhibitory signal between bees advocating 
different locations allows them to make a 
decision even when potential nest sites are 
equally favorable.

Honeybee colonies reproduce through 
budding, whereby the queen and some 
workers leave the nest and bivouac on a 
branch. Some of the most experienced 
workers leave to locate suitable nest sites 
( 4). Upon their return, these scouts adver-
tise potential locations and their qualities 
by performing a waggle dance. During 
the dance, the scout walks straight across 
the bivouacking bees, making side-to-side 
waggles of her body. She then stops, turns 
left or right, and walks a semicircular return 
path to her starting point. The waggle run’s 
duration and orientation encode the length 
and the angle of the outward fl ight, respec-
tively, whereas the number of dance circuits 

encodes the quality of the potential nest site 
( 5). Waggle dances recruit additional scouts 
to a site until a quorum number is reached 
and the swarm prepares to move to its new 
home ( 2).

Scouts advocating less attractive sites 
produce fewer dance circuits and make 
fewer trips to the site ( 6). Along with the 
recruitment of uncommitted scouts to more 
attractive sites, this was assumed to be suf-
fi cient to enable the bees to reach a quorum, 
thereby deciding which site to choose ( 2). 
However, foraging workers use an additional 
type of signal to communicate with other 
bees. Upon returning from a feeder that is 
crowded or where a predator is present, for-
ager bees produce a brief vibrational signal 
that discourages other bees from producing 
waggle dances that advertise the location of 
that feeder ( 7). Hypothesizing that a similar 
signal may be used by house-hunting bees, 
Seeley et al. set out to observe scout behav-
ior. They found that scouts received “stop” 
signals—head butts mainly to their head and 
thorax—from other bees during the return 
run of the waggle dance (see the figure). 
These stop signals occurred more frequently 
just before a scout stopped dancing.

The authors next established swarms on 
Appledore Island (Maine), which lacks nat-
ural nest sites, and gave them a choice of 
two identical nest boxes. Scouts visiting one 
box were marked with yellow paint; those 
visiting the other were marked with pink 
paint. Most of the bees giving “stop” signals 
had paint marks, showing they were scouts. 
During the decision phase of the nest-site 

selection process, dancing scouts with yel-
low paint received many more stop signals 
from scouts with pink paint and vice versa, 
showing that scouts from one site preferen-
tially inhibit the dances of those advertis-
ing a competing site (see the fi gure, panel 
A). Once the scouts started implementing 
the decision, dancing scouts received stop 
signals from scouts that had visited either 
site. When swarms were given only one nest 
box, scouts received few stop signals dur-
ing the decision phase but many during the 
implementation phase. This general inhibi-
tion of dancing during the implementation 
phase presumably ensures that all the bees 
are present when the swarm takes fl ight.

To demonstrate a role for the observed 
cross inhibition between scouts advertising 
competing sites, Seeley et al. constructed a 
series of computational models of the col-
lective decision-making process, based 
on the interaction rules they had observed 
among the scouts. Models that incorporated 
no or indiscriminate stop signaling pre-
dicted that the scouts would reach a stable 
deadlock, failing to choose between two 
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the differences in the qualities of the the alternatives sufficiently to
precipitate a decision for the better option, on average.

Fig. 5(Middle) also shows that too high a rate of stop-signal �
can be detrimental. If the stop-signalling rate is increased then a sta-
ble attractor for the inferior alternative suddenly appears in a saddle-
node bifurcation, with an unstable saddle point between it and the
original stable attractor. This can be helpful to ensure a decision if
a quorum is not reached pre-bifurcation; however, in the case that
a quorum is reached pre-bifurcation for the superior alternative, the
bifurcation might not be helpful because post-bifurcation the supe-

rior alternative is no longer a unique solution. Further increase in
the stop-signal rate � moves the inferior attractor further toward or
beyond the quorum threshold for the inferior alternative, and moves
the saddle point closer towards equal numbers of scouts committed
to each alternative (0.5 on the y-axis of Fig. 5(Middle)). Thus in-
creasing stop-signalling too much changes the dynamics such that
there may be an increasing risk of the swarm converging on choos-
ing the inferior of the two alternatives. However, as we show below
higher levels of stop-signalling can have benefits for speed-accuracy
trade-offs.
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Fig. 5. Full bifurcation behaviour of the stop-signal model of Eq. 1. According to parameterisation of the decision problem and decision-maker, the dynamics include
(i) pitchfork bifurcation as a function of stop-signal rate � in the equal alternatives case, (ii) saddle-node bifurcation as a function of stop-signal � in the unequal
alternatives case, and (iii) hysteresis as a function of difference in qualities of alternatives �v. Fixed points are projected onto the [0, 1] line as described in the SI
Text and Fig. S4. Blue dots indicate stable attractors, and red indicate unstable saddle points. Quorum thresholds at yA = yB = 0.7 are indicated by dashed lines.

In Fig. 5(Right), there is a hysteretic effect as difference in the
quality of alternatives �v is smoothly increased and then decreased
over time; this is illustrated in an animation of stochastic simula-
tions in the SI. While �v is increasing, from an initially low level,
over the interval of �v in which three fixed points co-exist (approx-
imately -0.5 to +0.5 in the figure) the system will be in the vicinity
of the lower of the two stable attractors. At a sufficiently high value
of �v (approximately 0.5), the system will jump to the other, upper
stable attractor. If �v is then reduced over the same interval, the
system will remain in the vicinity of the upper, stable attractor until
�v is less than approximately -0.5. While for a bee swarm, values
of alternatives are unlikely to change smoothly over time in this way,
this may be the case for other decision-makers, where exploitation
of an alternative degrades its value, as in the example of intracellular
decisions on activation of metabolic pathways considered in the Dis-
cussion. For neural decision-circuits, as also mentioned in the Dis-
cussion, laboratory experiments may be able to vary stimuli over time
in this way. In both these cases the hysteretic effect of Fig. 5(Right)
could act as a diagnostic that the decision-circuit used is similar in
form to that described in Eq. 1.

Speed-Accuracy Trade-offs. As noted above, several classical mod-
els of decision-making, including the DDM and the (un)stable O-
U process, are described using equations of stochastic motion on a
line. The separation of timescales result presented above demon-
strates that the decision dynamics converge rapidly to a line, along
which they slowly diffuse. Of particular interest in decision-making
models are speed-accuracy trade-offs, and the optimal compromise
between these two quantities. We therefore undertook preliminary

numerical investigations (described in the SI Text) into the stochastic
behaviour of the decision system under different parameterisations,
once the system has converged to the stable decision-manifold, and
until it crosses a decision-threshold.
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Fig. 6. Speed-accuracy trade-off when differences between alternatives are
sufficiently large that a single attractor for the best alternative exists; the ob-
served speed-accuracy trade-off is qualitatively similar to that realised by the
statistically-optimal drift-diffusion model of decision-making (see SI Text). When
two attractors for alternatives of different values exist, however, the presence of
the unstable saddle-node can improve error rate without compromising reaction
time (see SI Text and Fig. S5).
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the saddle point closer towards equal numbers of scouts committed
to each alternative (0.5 on the y-axis of Fig. 5(Middle)). Thus in-
creasing stop-signalling too much changes the dynamics such that
there may be an increasing risk of the swarm converging on choos-
ing the inferior of the two alternatives. However, as we show below
higher levels of stop-signalling can have benefits for speed-accuracy
trade-offs.
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Fig. 5. Full bifurcation behaviour of the stop-signal model of Eq. 1. According to parameterisation of the decision problem and decision-maker, the dynamics include
(i) pitchfork bifurcation as a function of stop-signal rate � in the equal alternatives case, (ii) saddle-node bifurcation as a function of stop-signal � in the unequal
alternatives case, and (iii) hysteresis as a function of difference in qualities of alternatives �v. Fixed points are projected onto the [0, 1] line as described in the SI
Text and Fig. S4. Blue dots indicate stable attractors, and red indicate unstable saddle points. Quorum thresholds at yA = yB = 0.7 are indicated by dashed lines.

In Fig. 5(Right), there is a hysteretic effect as difference in the
quality of alternatives �v is smoothly increased and then decreased
over time; this is illustrated in an animation of stochastic simula-
tions in the SI. While �v is increasing, from an initially low level,
over the interval of �v in which three fixed points co-exist (approx-
imately -0.5 to +0.5 in the figure) the system will be in the vicinity
of the lower of the two stable attractors. At a sufficiently high value
of �v (approximately 0.5), the system will jump to the other, upper
stable attractor. If �v is then reduced over the same interval, the
system will remain in the vicinity of the upper, stable attractor until
�v is less than approximately -0.5. While for a bee swarm, values
of alternatives are unlikely to change smoothly over time in this way,
this may be the case for other decision-makers, where exploitation
of an alternative degrades its value, as in the example of intracellular
decisions on activation of metabolic pathways considered in the Dis-
cussion. For neural decision-circuits, as also mentioned in the Dis-
cussion, laboratory experiments may be able to vary stimuli over time
in this way. In both these cases the hysteretic effect of Fig. 5(Right)
could act as a diagnostic that the decision-circuit used is similar in
form to that described in Eq. 1.

Speed-Accuracy Trade-offs. As noted above, several classical mod-
els of decision-making, including the DDM and the (un)stable O-
U process, are described using equations of stochastic motion on a
line. The separation of timescales result presented above demon-
strates that the decision dynamics converge rapidly to a line, along
which they slowly diffuse. Of particular interest in decision-making
models are speed-accuracy trade-offs, and the optimal compromise
between these two quantities. We therefore undertook preliminary

numerical investigations (described in the SI Text) into the stochastic
behaviour of the decision system under different parameterisations,
once the system has converged to the stable decision-manifold, and
until it crosses a decision-threshold.
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Fig. 6. Speed-accuracy trade-off when differences between alternatives are
sufficiently large that a single attractor for the best alternative exists; the ob-
served speed-accuracy trade-off is qualitatively similar to that realised by the
statistically-optimal drift-diffusion model of decision-making (see SI Text). When
two attractors for alternatives of different values exist, however, the presence of
the unstable saddle-node can improve error rate without compromising reaction
time (see SI Text and Fig. S5).
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when alternative nest sites are of equal value (v := vA = vB), ex-
hibits a pitchfork bifurcation as a function of increasing stop-signal
rate � and value v [23]. In the pre-bifurcation case, a single attrac-
tor exists at which each scout population is of equal size, whereas
in the post-bifurcation case this attractor becomes an unstable saddle
point, and attractors corresponding to each alternative emerge. That
is, there is a critical level of stop-signalling �⇤ below which the hon-
eybee swarm remains deadlocked between the two equal alternatives,
but above which it converges to choosing one alternative at random.
This threshold, plotted in Fig. 2, was previously [23] calculated as

�⇤ =
4v3

(v2 � 1)2
. [4]
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Fig. 2. Value-dependent decision-making over equal alternatives. A critical stop-
signal level �⇤ can be calculated, below which stable decision-deadlock results
due to a single stable attractor on the yA = yB line. Increasing the strength of
stop-signalling above the critical threshold �⇤, this attractor becomes unstable
and two stable attractors, one for each alternative, emerge from it and rapidly
move apart [23]; in this situation one alternative will thus be chosen at random
by the system. As the equation and plot for �⇤ make clear, the level of stop-
signalling required to break deadlock decreases as a function of the value v of the
two alternatives. Thus decisions over equal but low value alternatives can result
in deadlock, while decisions over equal but high value alternatives can result in
a random choice. This can lead to sophisticated decision dynamics (Figs. 3 and
S3).

Fig. 2 demonstrates a further very useful decision-making prop-
erty, that of value sensitivity. To illustrate the general principle, con-
sider the particular case of a honeybee swarm that has discovered
two equally poor potential nest sites. If both of these alternatives are
of such low value to the swarm, through having insufficient volume
to allow for effective colony growth and reproduction in the future,
for example, then the swarm would be better off waiting to see if its
scouts can discover other, higher value, alternatives in the vicinity.
Fig. 2 shows that, if the value of the alternatives v is sufficiently
low given the swarm’s rate of stop-signalling � then this is precisely
what happens; the recruiter populations for the two alternatives A
and B become deadlocked at equal commitment, while leaving a pro-
portion of the swarm in the uncommitted state U and thus available
to discover alternatives through independent exploration of the en-
vironment (Fig. 2; bottom-left inset). Figure 3 presents stochastic
simulations of a scenario illustrating this behaviour (see SI Text), in
which two equal but poor quality nest sites are discovered, and sta-
ble deadlock persists between them until a third superior alternative
is discovered and subsequently chosen. This late selection of an al-

ternative differs qualitatively from earlier models [4], in which no
mechanism for adaptive deadlock was considered.
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Fig. 3. Stochastic simulation shows that for two sufficiently poor but equal al-
ternatives, deadlock between the two persists until a third, superior alternative is
discovered (at time t = 30), at which point it is selected by the swarm.

If, however, for the same rate of stop-signalling � the values of
the equal alternatives are sufficiently high, then the dynamics bifur-
cate so that the swarm’s scouts converge on choosing one of the two
alternatives at random (Fig. 2; top-right inset). This illustrates a very
sophisticated decision-making strategy: if information about only
two alternatives is available but neither is very valuable then waiting
to see if a better option is discovered could be sensible, whereas if
the two alternatives are both of sufficient quality then quickly choos-
ing one at random rather than wasting further time waiting for al-
ternatives would be appropriate. Evolution could tune the level of
stop-signalling � in the swarm to set the acceptance threshold for
the value v of alternatives to an appropriate level, given the needs of
an organism and the quality of alternatives typically available in an
environment, as Fig. 2 illustrates.

The preceding analysis assumes an evolutionarily hard-wired
level of stop-signalling, but further sophistication is possible if one
considers what might happen to our hypothetical swarm, considering
two equal but low value alternatives, if it waits too long. Like any
decision-maker, the swarm has finite time and resources available to
make decisions; in the case of a honeybee swarm members have fi-
nite energy reserves, since they load up with honey before swarming
and do not resume foraging until the swarm has found a suitable nest
site [22]. If after a long period of time the swarm still only has infor-
mation about the two low-value alternatives then it is reasonable to
assume that no better alternatives are available as they would likely
have been discovered and, in any case, the resources of the swarm
are being rapidly depleted. In this scenario it would be better for
the swarm to choose one of the low value nest sites than none at all.
This can be achieved by progressively increasing the stop-signalling
rate �; as Fig. 2 indicates, by doing so a point is reached at which
the value of the alternatives v, which previously resulted in stable
deadlock between them, is suddenly sufficient to precipitate a ran-
dom choice between the two. A stochastic simulation illustrates this
process in Fig. S3.

Minimum Relevant Differences Between Equal Alternatives. The
decision dynamics of the model are sensitive not only to the value of
the available alternatives but also to the absolute difference |�v| in
the values of the alternatives, as illustrated in Fig. 4. First, the results
of Fig. 2 generalize to nonzero |�v|: an increase in the rate of stop-
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But how do we know this strategy is 
optimal?



Stochastic dynamic programming
A classic optimisation tool applied in behavioural ecology
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Fig. 2. The critical sing/forage 
boundary for two levels of 
interruption probability: IP  = 0 
(baseline, diagonal hatching), IP  = 
0.4 (vertical hatching) (compare 
with Fig. 3 a to see how these 
convert into observed behaviour 
patterns); and also for one level of 
overnight variance in energy 
requirements; ar] = 9 (horizontal 
hatching) (compare with Fig. I a to 
see the effect on observed 
behaviour patterns) 

ing experienced the worst possible overnight loss), 
so they spend the early morning singing. The 
greater the variance the longer this dawn chorus 
will be (Fig. 1 a). Figure I a shows the proportion 
of the population that would be singing on aver- 
age; the length of the dawn chorus for a particular 
bird will depend on his own energy expenditure 
overnight and if the whole population suffered a 
particularly cold night and used more energy than 
average then the whole population's dawn chorus 
would be shorter. Garson and Hunter (1979) find 
a positive correlation between overnight tempera- 
ture and the amount  of song in the morning in 
wrens. Figure 2 shows that o-~ does not change 
the policy at dawn but does change the probability 
of singing at that time. It is the range of energy 
states that the birds are in that has changed. When 
investigating the effects of  other parameters, we 
will show that the opposite can also be true; that 
is, at times of day when the optimal policy has 
changed, observed behaviour patterns may remain 
the same (Figs. 2 and 3 a). This shows how impor- 
tant it is to run forward through the policy in order 
to interpret it in terms of the behaviour patterns 
that will emerge. 

The energetics of  singing and foraging 

If singing is less costly, in terms of energy require- 
ments, birds will sing more and if it is more costly 
they sing less. However, the effects are not the 
same at all times of day, being much greater in 
the morning. The differences in the afternoon, 

when birds are building up their energy reserves 
for the night, are far less pronounced (Fig. I b). 

Increasing the energetic cost of  singing does 
not have the same effect as decreasing the energetic 
gain from foraging. Decreasing the mean reward 
from foraging reduces the morning singing level 
but also brings forward the time that the birds 
start foraging for overnight reserves (Fig. 1 c). 

If foraging gains are made less predictable, by 
introducing a probability of being interrupted 
while feeding, then the birds keep themselves at 
much higher levels of  reserves throughout the day 
(Fig. 3 a). This means that they start building up 
reserves much earlier, and most will reach their 
target level earlier and so have more time to sing 
at dusk. Morning singing remains the same despite 
the critical boundary being at a higher reserve lev- 
el, as the bird's position with respect to that bound- 
ary remains the same. 

All the models described so far have assumed 
that parameter values remain constant throughout 
the day, which demonstrates that circadian chan- 
ges in the profitability of singing or foraging need 
not underly circadian changes in their level of  per- 
formance. 

Time o f  day changes in the profitability o f  singing 

There are several factors which might cause the 
profitability of singing to change through the day. 
Migrant birds often fly overnight and land at 
dawn. This would result in more unpaired females 
being available earlier in the day. Similarly, more 
potential mates and/or territories would be avail- 
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process responsible for the accumulation of the evidence is
assumed to be noiseless, an assumption consistent with recent
neurophysiological recordings.21

What are the costs and rewards that the decision maker
incurs during the course of her decisions? In terms of costs we
assume that the decision maker pays a cost c per second of
accumulating evidence, from onset of the choice options
until an option is chosen. This cost could, for example, be an
explicit cost for delayed choices, or represent the effort induced
by evidence accumulation. In the context of choosing between
lunch menus, this cost might arise from missing the passing
waiter yet again, or from being late for a post-lunch meeting.
Choosing option j is associated with experiencing some reward rj
that is a function of the true reward zj associated with this option,
as, for example, when experiencing reward for consuming the
lunch. For now, we assume experienced and true reward to be
equivalent, that is rj¼ zj. For a single choice, the overall aim of the
decision maker is to maximize expected reward minus expected
cost,

rj j dxjð0 : TÞ
! "

$ c Th i; ð2Þ

where the expectation is across choices j and evidence
accumulation times T, given the flow of evidence dxj (0:T) from
time 0 to T. We first derive the optimal behaviour, or ‘policy’, that
maximizes this objective function for single, isolated choices and
later generalize it to the more realistic scenario in which the total
reward in a long consecutive sequence is maximized.

Optimal decisions with DDMs with collapsing boundaries. To
find the optimal policy, we borrow tools from dynamic pro-
gramming (DP). One of these tools is the ‘value function’, which
can be defined recursively through Bellman’s equation. In what
follows, we show that the optimal policy resulting from this value
function is described by two time-dependent parallel bounds in
the two-dimensional space of current estimates of the true option
rewards. These bounds are parallel with unity slopes, approach
each other over time and together form a bound on the difference
of reward estimates. This difference is efficiently inferred by
diffusion models, such that DDMs can implement the optimal
strategy for value-based decision-making.

Bellman’s equation for optimal value-based decision-making. To
define the value function, assume that the decision maker has
accumulated some evidence about the option rewards for some
time t. Given this accumulated evidence, the value function
returns the total reward the decision maker expects to receive
when following the optimal policy. This value includes both the
cost for evidence accumulation from time t onwards and the
reward resulting from the final choice. The expected rewards,
r̂j tð Þ ¼ rj j dxð0 : tÞ

! "
, and elapsed time t are sufficient statistics

of the accumulated evidence (see Methods section), such that the
value function is defined over these quantities. At each point in
time t during evidence accumulation we can either commit to a
choice or accumulate more evidence and choose later. When
committing to a choice, it is best to choose the option associated
with the higher expected reward, such that the total expected
reward Vdðr̂1; r̂2Þ for choosing immediately is given by the value
for ‘deciding’, Vd r̂1; r̂2ð Þ ¼ maxfr̂1; r̂2g (Fig. 3a). When accumu-
lating more evidence for a small duration dt, in contrast, the
decision maker observes additional evidence on which she
updates her belief about the true rewards while paying
accumulation cost cdt. At this stage, she expects to receive a
total reward of Vðtþ dt; r̂1ðtþ dtÞ; r̂2ðtþ dtÞÞ. Therefore, the
total expected reward for accumulating more evidence is given by
the value for ‘waiting’, V tþ dt; r̂1 tþ dtð Þ; r̂2ðtþ dtÞð Þh i$ cdt
(Fig. 3b), where the expectation is over the distribution of future

expected rewards, r̂1ðtþ dtÞ and r̂2ðtþ dtÞ, given that they are r̂1
and r̂2 at time t (see Methods section for an expression of this
distribution). The decision maker ought to only accumulate more
evidence if doing so promises more total reward, such that the
value function can be written recursively in a form called
Bellman’s equation (Fig. 3a-c,e; see Supplementary Note 1 for
formal derivation),

V t; r̂1; r̂2ð Þ ¼ max Vd r̂1; r̂2ð Þ;f

hV tþ dt; r̂1 tþ dtð Þ; r̂2ðtþ dtÞð Þ j r̂1;2 tð Þ ¼ r̂1;2i$ c dtg:
ð3Þ

With knowledge of the value function, optimal choices are
performed as follows. Before having accumulated any evidence,
the subjective expected reward associated with option j equals the
mean of the prior belief, r̂j ¼ !zj, such that the total expected
reward at this point is given by Vð0; r̂1 ¼ !z1; r̂2 ¼ !z2Þ. Once
evidence is accumulated, r̂1 and r̂2 evolve over time, reflecting the
accumulated evidence and associated updated belief of the true
reward of the choice options. It remains advantageous to
accumulate evidence as long as the total expected reward for
doing so is larger than that for deciding immediately. As soon as
deciding and waiting become equally valuable, that is,
Vd r̂1; r̂2ð Þ ¼ Vðtþ dt; r̂1ðtþ dtÞ; r̂2ðtþ dtÞÞh i$ cdt, it is best to
choose option j associated with the higher rewarded expected
rewarded r̂j. This optimal policy results in two decision
boundaries in ðr̂1; r̂2Þ-space that might change with time
(Fig. 3f). In-between these boundaries it remains advantageous
to accumulate more evidence, but as soon as either boundary is
reached, the associated option ought to be chosen.

Parallel optimal decision boundaries. For the task setup
considered above, the decision boundaries take a surprisingly
simple shape. When plotted in the ðr̂1; r̂2Þ-space of estimated
option rewards for some fixed time t, the two boundaries are
always parallel to the diagonal r̂1 ¼ r̂2 (Fig. 3f). Furthermore, they
are always above and below this diagonal, reflecting that the
diagonal separates the regions in which the choice of either option
promises more reward. Here, we provide an informal argument
why this is the case.

The argument relies on the fact that, for each time t, the decision
boundaries are determined by the intersection between the value
for deciding and that for waiting (Fig. 3c,d). Both of these values
share the property that, in lines parallel to the diagonal, they are
linearly increasing with slope one. Formally, both functions satisfy
f t; r̂1þC; r̂2þCð Þ ¼ f t; r̂1; r̂2ð ÞþC for any fixed time t, reward
estimates r̂1 and r̂2, and arbitrary scalar C. This implies that, if they
intersect at some point r̂&1 ; r̂&2

# $
, thus forming part of the decision

boundary, they will intersect at the whole line r̂&1 þC; r̂&2 þC
# $

that
is parallel to the diagonal (Fig. 3c,e,f). Therefore both decision
boundaries are parallel to the diagonal.

How can we guarantee that the values for both deciding and
waiting are linearly increasing in lines parallel to the diagonal?
For the value for deciding, Vd r̂1; r̂2ð Þ ¼ maxfr̂1; r̂2g, this is
immediately obvious from its definition (Fig. 3a and caption).
Showing the same for the value for waiting requires more work,
and is done by a backwards induction argument in time (see
Methods section for details). Intuitively, after having accumulated
evidence about reward for a long time (t-N), the decision
maker expects to gain little further insight by any additional
evidence. Therefore, deciding is better than waiting, such that the
value function will be that for deciding, Vðt; r̂1; r̂2Þ ¼ Vdðr̂1; r̂2Þ,
which, as previously mentioned, is linearly increasing in lines
parallel to the diagonal, providing the base case. Next, it can be
shown that, if the value function at time tþ dt is linearly
increasing in lines parallel to the diagonal, then so is the value of
waiting at time t, and, as a consequence, also the value function at
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process responsible for the accumulation of the evidence is
assumed to be noiseless, an assumption consistent with recent
neurophysiological recordings.21

What are the costs and rewards that the decision maker
incurs during the course of her decisions? In terms of costs we
assume that the decision maker pays a cost c per second of
accumulating evidence, from onset of the choice options
until an option is chosen. This cost could, for example, be an
explicit cost for delayed choices, or represent the effort induced
by evidence accumulation. In the context of choosing between
lunch menus, this cost might arise from missing the passing
waiter yet again, or from being late for a post-lunch meeting.
Choosing option j is associated with experiencing some reward rj
that is a function of the true reward zj associated with this option,
as, for example, when experiencing reward for consuming the
lunch. For now, we assume experienced and true reward to be
equivalent, that is rj¼ zj. For a single choice, the overall aim of the
decision maker is to maximize expected reward minus expected
cost,

rj j dxjð0 : TÞ
! "

$ c Th i; ð2Þ

where the expectation is across choices j and evidence
accumulation times T, given the flow of evidence dxj (0:T) from
time 0 to T. We first derive the optimal behaviour, or ‘policy’, that
maximizes this objective function for single, isolated choices and
later generalize it to the more realistic scenario in which the total
reward in a long consecutive sequence is maximized.

Optimal decisions with DDMs with collapsing boundaries. To
find the optimal policy, we borrow tools from dynamic pro-
gramming (DP). One of these tools is the ‘value function’, which
can be defined recursively through Bellman’s equation. In what
follows, we show that the optimal policy resulting from this value
function is described by two time-dependent parallel bounds in
the two-dimensional space of current estimates of the true option
rewards. These bounds are parallel with unity slopes, approach
each other over time and together form a bound on the difference
of reward estimates. This difference is efficiently inferred by
diffusion models, such that DDMs can implement the optimal
strategy for value-based decision-making.

Bellman’s equation for optimal value-based decision-making. To
define the value function, assume that the decision maker has
accumulated some evidence about the option rewards for some
time t. Given this accumulated evidence, the value function
returns the total reward the decision maker expects to receive
when following the optimal policy. This value includes both the
cost for evidence accumulation from time t onwards and the
reward resulting from the final choice. The expected rewards,
r̂j tð Þ ¼ rj j dxð0 : tÞ

! "
, and elapsed time t are sufficient statistics

of the accumulated evidence (see Methods section), such that the
value function is defined over these quantities. At each point in
time t during evidence accumulation we can either commit to a
choice or accumulate more evidence and choose later. When
committing to a choice, it is best to choose the option associated
with the higher expected reward, such that the total expected
reward Vdðr̂1; r̂2Þ for choosing immediately is given by the value
for ‘deciding’, Vd r̂1; r̂2ð Þ ¼ maxfr̂1; r̂2g (Fig. 3a). When accumu-
lating more evidence for a small duration dt, in contrast, the
decision maker observes additional evidence on which she
updates her belief about the true rewards while paying
accumulation cost cdt. At this stage, she expects to receive a
total reward of Vðtþ dt; r̂1ðtþ dtÞ; r̂2ðtþ dtÞÞ. Therefore, the
total expected reward for accumulating more evidence is given by
the value for ‘waiting’, V tþ dt; r̂1 tþ dtð Þ; r̂2ðtþ dtÞð Þh i$ cdt
(Fig. 3b), where the expectation is over the distribution of future

expected rewards, r̂1ðtþ dtÞ and r̂2ðtþ dtÞ, given that they are r̂1
and r̂2 at time t (see Methods section for an expression of this
distribution). The decision maker ought to only accumulate more
evidence if doing so promises more total reward, such that the
value function can be written recursively in a form called
Bellman’s equation (Fig. 3a-c,e; see Supplementary Note 1 for
formal derivation),

V t; r̂1; r̂2ð Þ ¼ max Vd r̂1; r̂2ð Þ;f

hV tþ dt; r̂1 tþ dtð Þ; r̂2ðtþ dtÞð Þ j r̂1;2 tð Þ ¼ r̂1;2i$ c dtg:
ð3Þ

With knowledge of the value function, optimal choices are
performed as follows. Before having accumulated any evidence,
the subjective expected reward associated with option j equals the
mean of the prior belief, r̂j ¼ !zj, such that the total expected
reward at this point is given by Vð0; r̂1 ¼ !z1; r̂2 ¼ !z2Þ. Once
evidence is accumulated, r̂1 and r̂2 evolve over time, reflecting the
accumulated evidence and associated updated belief of the true
reward of the choice options. It remains advantageous to
accumulate evidence as long as the total expected reward for
doing so is larger than that for deciding immediately. As soon as
deciding and waiting become equally valuable, that is,
Vd r̂1; r̂2ð Þ ¼ Vðtþ dt; r̂1ðtþ dtÞ; r̂2ðtþ dtÞÞh i$ cdt, it is best to
choose option j associated with the higher rewarded expected
rewarded r̂j. This optimal policy results in two decision
boundaries in ðr̂1; r̂2Þ-space that might change with time
(Fig. 3f). In-between these boundaries it remains advantageous
to accumulate more evidence, but as soon as either boundary is
reached, the associated option ought to be chosen.

Parallel optimal decision boundaries. For the task setup
considered above, the decision boundaries take a surprisingly
simple shape. When plotted in the ðr̂1; r̂2Þ-space of estimated
option rewards for some fixed time t, the two boundaries are
always parallel to the diagonal r̂1 ¼ r̂2 (Fig. 3f). Furthermore, they
are always above and below this diagonal, reflecting that the
diagonal separates the regions in which the choice of either option
promises more reward. Here, we provide an informal argument
why this is the case.

The argument relies on the fact that, for each time t, the decision
boundaries are determined by the intersection between the value
for deciding and that for waiting (Fig. 3c,d). Both of these values
share the property that, in lines parallel to the diagonal, they are
linearly increasing with slope one. Formally, both functions satisfy
f t; r̂1þC; r̂2þCð Þ ¼ f t; r̂1; r̂2ð ÞþC for any fixed time t, reward
estimates r̂1 and r̂2, and arbitrary scalar C. This implies that, if they
intersect at some point r̂&1 ; r̂&2

# $
, thus forming part of the decision

boundary, they will intersect at the whole line r̂&1 þC; r̂&2 þC
# $

that
is parallel to the diagonal (Fig. 3c,e,f). Therefore both decision
boundaries are parallel to the diagonal.

How can we guarantee that the values for both deciding and
waiting are linearly increasing in lines parallel to the diagonal?
For the value for deciding, Vd r̂1; r̂2ð Þ ¼ maxfr̂1; r̂2g, this is
immediately obvious from its definition (Fig. 3a and caption).
Showing the same for the value for waiting requires more work,
and is done by a backwards induction argument in time (see
Methods section for details). Intuitively, after having accumulated
evidence about reward for a long time (t-N), the decision
maker expects to gain little further insight by any additional
evidence. Therefore, deciding is better than waiting, such that the
value function will be that for deciding, Vðt; r̂1; r̂2Þ ¼ Vdðr̂1; r̂2Þ,
which, as previously mentioned, is linearly increasing in lines
parallel to the diagonal, providing the base case. Next, it can be
shown that, if the value function at time tþ dt is linearly
increasing in lines parallel to the diagonal, then so is the value of
waiting at time t, and, as a consequence, also the value function at
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process responsible for the accumulation of the evidence is
assumed to be noiseless, an assumption consistent with recent
neurophysiological recordings.21

What are the costs and rewards that the decision maker
incurs during the course of her decisions? In terms of costs we
assume that the decision maker pays a cost c per second of
accumulating evidence, from onset of the choice options
until an option is chosen. This cost could, for example, be an
explicit cost for delayed choices, or represent the effort induced
by evidence accumulation. In the context of choosing between
lunch menus, this cost might arise from missing the passing
waiter yet again, or from being late for a post-lunch meeting.
Choosing option j is associated with experiencing some reward rj
that is a function of the true reward zj associated with this option,
as, for example, when experiencing reward for consuming the
lunch. For now, we assume experienced and true reward to be
equivalent, that is rj¼ zj. For a single choice, the overall aim of the
decision maker is to maximize expected reward minus expected
cost,

rj j dxjð0 : TÞ
! "

$ c Th i; ð2Þ

where the expectation is across choices j and evidence
accumulation times T, given the flow of evidence dxj (0:T) from
time 0 to T. We first derive the optimal behaviour, or ‘policy’, that
maximizes this objective function for single, isolated choices and
later generalize it to the more realistic scenario in which the total
reward in a long consecutive sequence is maximized.

Optimal decisions with DDMs with collapsing boundaries. To
find the optimal policy, we borrow tools from dynamic pro-
gramming (DP). One of these tools is the ‘value function’, which
can be defined recursively through Bellman’s equation. In what
follows, we show that the optimal policy resulting from this value
function is described by two time-dependent parallel bounds in
the two-dimensional space of current estimates of the true option
rewards. These bounds are parallel with unity slopes, approach
each other over time and together form a bound on the difference
of reward estimates. This difference is efficiently inferred by
diffusion models, such that DDMs can implement the optimal
strategy for value-based decision-making.

Bellman’s equation for optimal value-based decision-making. To
define the value function, assume that the decision maker has
accumulated some evidence about the option rewards for some
time t. Given this accumulated evidence, the value function
returns the total reward the decision maker expects to receive
when following the optimal policy. This value includes both the
cost for evidence accumulation from time t onwards and the
reward resulting from the final choice. The expected rewards,
r̂j tð Þ ¼ rj j dxð0 : tÞ

! "
, and elapsed time t are sufficient statistics

of the accumulated evidence (see Methods section), such that the
value function is defined over these quantities. At each point in
time t during evidence accumulation we can either commit to a
choice or accumulate more evidence and choose later. When
committing to a choice, it is best to choose the option associated
with the higher expected reward, such that the total expected
reward Vdðr̂1; r̂2Þ for choosing immediately is given by the value
for ‘deciding’, Vd r̂1; r̂2ð Þ ¼ maxfr̂1; r̂2g (Fig. 3a). When accumu-
lating more evidence for a small duration dt, in contrast, the
decision maker observes additional evidence on which she
updates her belief about the true rewards while paying
accumulation cost cdt. At this stage, she expects to receive a
total reward of Vðtþ dt; r̂1ðtþ dtÞ; r̂2ðtþ dtÞÞ. Therefore, the
total expected reward for accumulating more evidence is given by
the value for ‘waiting’, V tþ dt; r̂1 tþ dtð Þ; r̂2ðtþ dtÞð Þh i$ cdt
(Fig. 3b), where the expectation is over the distribution of future

expected rewards, r̂1ðtþ dtÞ and r̂2ðtþ dtÞ, given that they are r̂1
and r̂2 at time t (see Methods section for an expression of this
distribution). The decision maker ought to only accumulate more
evidence if doing so promises more total reward, such that the
value function can be written recursively in a form called
Bellman’s equation (Fig. 3a-c,e; see Supplementary Note 1 for
formal derivation),

V t; r̂1; r̂2ð Þ ¼ max Vd r̂1; r̂2ð Þ;f

hV tþ dt; r̂1 tþ dtð Þ; r̂2ðtþ dtÞð Þ j r̂1;2 tð Þ ¼ r̂1;2i$ c dtg:
ð3Þ

With knowledge of the value function, optimal choices are
performed as follows. Before having accumulated any evidence,
the subjective expected reward associated with option j equals the
mean of the prior belief, r̂j ¼ !zj, such that the total expected
reward at this point is given by Vð0; r̂1 ¼ !z1; r̂2 ¼ !z2Þ. Once
evidence is accumulated, r̂1 and r̂2 evolve over time, reflecting the
accumulated evidence and associated updated belief of the true
reward of the choice options. It remains advantageous to
accumulate evidence as long as the total expected reward for
doing so is larger than that for deciding immediately. As soon as
deciding and waiting become equally valuable, that is,
Vd r̂1; r̂2ð Þ ¼ Vðtþ dt; r̂1ðtþ dtÞ; r̂2ðtþ dtÞÞh i$ cdt, it is best to
choose option j associated with the higher rewarded expected
rewarded r̂j. This optimal policy results in two decision
boundaries in ðr̂1; r̂2Þ-space that might change with time
(Fig. 3f). In-between these boundaries it remains advantageous
to accumulate more evidence, but as soon as either boundary is
reached, the associated option ought to be chosen.

Parallel optimal decision boundaries. For the task setup
considered above, the decision boundaries take a surprisingly
simple shape. When plotted in the ðr̂1; r̂2Þ-space of estimated
option rewards for some fixed time t, the two boundaries are
always parallel to the diagonal r̂1 ¼ r̂2 (Fig. 3f). Furthermore, they
are always above and below this diagonal, reflecting that the
diagonal separates the regions in which the choice of either option
promises more reward. Here, we provide an informal argument
why this is the case.

The argument relies on the fact that, for each time t, the decision
boundaries are determined by the intersection between the value
for deciding and that for waiting (Fig. 3c,d). Both of these values
share the property that, in lines parallel to the diagonal, they are
linearly increasing with slope one. Formally, both functions satisfy
f t; r̂1þC; r̂2þCð Þ ¼ f t; r̂1; r̂2ð ÞþC for any fixed time t, reward
estimates r̂1 and r̂2, and arbitrary scalar C. This implies that, if they
intersect at some point r̂&1 ; r̂&2

# $
, thus forming part of the decision

boundary, they will intersect at the whole line r̂&1 þC; r̂&2 þC
# $

that
is parallel to the diagonal (Fig. 3c,e,f). Therefore both decision
boundaries are parallel to the diagonal.

How can we guarantee that the values for both deciding and
waiting are linearly increasing in lines parallel to the diagonal?
For the value for deciding, Vd r̂1; r̂2ð Þ ¼ maxfr̂1; r̂2g, this is
immediately obvious from its definition (Fig. 3a and caption).
Showing the same for the value for waiting requires more work,
and is done by a backwards induction argument in time (see
Methods section for details). Intuitively, after having accumulated
evidence about reward for a long time (t-N), the decision
maker expects to gain little further insight by any additional
evidence. Therefore, deciding is better than waiting, such that the
value function will be that for deciding, Vðt; r̂1; r̂2Þ ¼ Vdðr̂1; r̂2Þ,
which, as previously mentioned, is linearly increasing in lines
parallel to the diagonal, providing the base case. Next, it can be
shown that, if the value function at time tþ dt is linearly
increasing in lines parallel to the diagonal, then so is the value of
waiting at time t, and, as a consequence, also the value function at
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process responsible for the accumulation of the evidence is
assumed to be noiseless, an assumption consistent with recent
neurophysiological recordings.21

What are the costs and rewards that the decision maker
incurs during the course of her decisions? In terms of costs we
assume that the decision maker pays a cost c per second of
accumulating evidence, from onset of the choice options
until an option is chosen. This cost could, for example, be an
explicit cost for delayed choices, or represent the effort induced
by evidence accumulation. In the context of choosing between
lunch menus, this cost might arise from missing the passing
waiter yet again, or from being late for a post-lunch meeting.
Choosing option j is associated with experiencing some reward rj
that is a function of the true reward zj associated with this option,
as, for example, when experiencing reward for consuming the
lunch. For now, we assume experienced and true reward to be
equivalent, that is rj¼ zj. For a single choice, the overall aim of the
decision maker is to maximize expected reward minus expected
cost,

rj j dxjð0 : TÞ
! "

$ c Th i; ð2Þ

where the expectation is across choices j and evidence
accumulation times T, given the flow of evidence dxj (0:T) from
time 0 to T. We first derive the optimal behaviour, or ‘policy’, that
maximizes this objective function for single, isolated choices and
later generalize it to the more realistic scenario in which the total
reward in a long consecutive sequence is maximized.

Optimal decisions with DDMs with collapsing boundaries. To
find the optimal policy, we borrow tools from dynamic pro-
gramming (DP). One of these tools is the ‘value function’, which
can be defined recursively through Bellman’s equation. In what
follows, we show that the optimal policy resulting from this value
function is described by two time-dependent parallel bounds in
the two-dimensional space of current estimates of the true option
rewards. These bounds are parallel with unity slopes, approach
each other over time and together form a bound on the difference
of reward estimates. This difference is efficiently inferred by
diffusion models, such that DDMs can implement the optimal
strategy for value-based decision-making.

Bellman’s equation for optimal value-based decision-making. To
define the value function, assume that the decision maker has
accumulated some evidence about the option rewards for some
time t. Given this accumulated evidence, the value function
returns the total reward the decision maker expects to receive
when following the optimal policy. This value includes both the
cost for evidence accumulation from time t onwards and the
reward resulting from the final choice. The expected rewards,
r̂j tð Þ ¼ rj j dxð0 : tÞ

! "
, and elapsed time t are sufficient statistics

of the accumulated evidence (see Methods section), such that the
value function is defined over these quantities. At each point in
time t during evidence accumulation we can either commit to a
choice or accumulate more evidence and choose later. When
committing to a choice, it is best to choose the option associated
with the higher expected reward, such that the total expected
reward Vdðr̂1; r̂2Þ for choosing immediately is given by the value
for ‘deciding’, Vd r̂1; r̂2ð Þ ¼ maxfr̂1; r̂2g (Fig. 3a). When accumu-
lating more evidence for a small duration dt, in contrast, the
decision maker observes additional evidence on which she
updates her belief about the true rewards while paying
accumulation cost cdt. At this stage, she expects to receive a
total reward of Vðtþ dt; r̂1ðtþ dtÞ; r̂2ðtþ dtÞÞ. Therefore, the
total expected reward for accumulating more evidence is given by
the value for ‘waiting’, V tþ dt; r̂1 tþ dtð Þ; r̂2ðtþ dtÞð Þh i$ cdt
(Fig. 3b), where the expectation is over the distribution of future

expected rewards, r̂1ðtþ dtÞ and r̂2ðtþ dtÞ, given that they are r̂1
and r̂2 at time t (see Methods section for an expression of this
distribution). The decision maker ought to only accumulate more
evidence if doing so promises more total reward, such that the
value function can be written recursively in a form called
Bellman’s equation (Fig. 3a-c,e; see Supplementary Note 1 for
formal derivation),

V t; r̂1; r̂2ð Þ ¼ max Vd r̂1; r̂2ð Þ;f

hV tþ dt; r̂1 tþ dtð Þ; r̂2ðtþ dtÞð Þ j r̂1;2 tð Þ ¼ r̂1;2i$ c dtg:
ð3Þ

With knowledge of the value function, optimal choices are
performed as follows. Before having accumulated any evidence,
the subjective expected reward associated with option j equals the
mean of the prior belief, r̂j ¼ !zj, such that the total expected
reward at this point is given by Vð0; r̂1 ¼ !z1; r̂2 ¼ !z2Þ. Once
evidence is accumulated, r̂1 and r̂2 evolve over time, reflecting the
accumulated evidence and associated updated belief of the true
reward of the choice options. It remains advantageous to
accumulate evidence as long as the total expected reward for
doing so is larger than that for deciding immediately. As soon as
deciding and waiting become equally valuable, that is,
Vd r̂1; r̂2ð Þ ¼ Vðtþ dt; r̂1ðtþ dtÞ; r̂2ðtþ dtÞÞh i$ cdt, it is best to
choose option j associated with the higher rewarded expected
rewarded r̂j. This optimal policy results in two decision
boundaries in ðr̂1; r̂2Þ-space that might change with time
(Fig. 3f). In-between these boundaries it remains advantageous
to accumulate more evidence, but as soon as either boundary is
reached, the associated option ought to be chosen.

Parallel optimal decision boundaries. For the task setup
considered above, the decision boundaries take a surprisingly
simple shape. When plotted in the ðr̂1; r̂2Þ-space of estimated
option rewards for some fixed time t, the two boundaries are
always parallel to the diagonal r̂1 ¼ r̂2 (Fig. 3f). Furthermore, they
are always above and below this diagonal, reflecting that the
diagonal separates the regions in which the choice of either option
promises more reward. Here, we provide an informal argument
why this is the case.

The argument relies on the fact that, for each time t, the decision
boundaries are determined by the intersection between the value
for deciding and that for waiting (Fig. 3c,d). Both of these values
share the property that, in lines parallel to the diagonal, they are
linearly increasing with slope one. Formally, both functions satisfy
f t; r̂1þC; r̂2þCð Þ ¼ f t; r̂1; r̂2ð ÞþC for any fixed time t, reward
estimates r̂1 and r̂2, and arbitrary scalar C. This implies that, if they
intersect at some point r̂&1 ; r̂&2

# $
, thus forming part of the decision

boundary, they will intersect at the whole line r̂&1 þC; r̂&2 þC
# $

that
is parallel to the diagonal (Fig. 3c,e,f). Therefore both decision
boundaries are parallel to the diagonal.

How can we guarantee that the values for both deciding and
waiting are linearly increasing in lines parallel to the diagonal?
For the value for deciding, Vd r̂1; r̂2ð Þ ¼ maxfr̂1; r̂2g, this is
immediately obvious from its definition (Fig. 3a and caption).
Showing the same for the value for waiting requires more work,
and is done by a backwards induction argument in time (see
Methods section for details). Intuitively, after having accumulated
evidence about reward for a long time (t-N), the decision
maker expects to gain little further insight by any additional
evidence. Therefore, deciding is better than waiting, such that the
value function will be that for deciding, Vðt; r̂1; r̂2Þ ¼ Vdðr̂1; r̂2Þ,
which, as previously mentioned, is linearly increasing in lines
parallel to the diagonal, providing the base case. Next, it can be
shown that, if the value function at time tþ dt is linearly
increasing in lines parallel to the diagonal, then so is the value of
waiting at time t, and, as a consequence, also the value function at
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• Solved the Bellman equation for decisions:

• Found DDMs with decision boundaries that collapse over time


• Optimise speed-accuracy tradeoffs


• No magnitude-sensitive deadlock-breaking

process responsible for the accumulation of the evidence is
assumed to be noiseless, an assumption consistent with recent
neurophysiological recordings.21

What are the costs and rewards that the decision maker
incurs during the course of her decisions? In terms of costs we
assume that the decision maker pays a cost c per second of
accumulating evidence, from onset of the choice options
until an option is chosen. This cost could, for example, be an
explicit cost for delayed choices, or represent the effort induced
by evidence accumulation. In the context of choosing between
lunch menus, this cost might arise from missing the passing
waiter yet again, or from being late for a post-lunch meeting.
Choosing option j is associated with experiencing some reward rj
that is a function of the true reward zj associated with this option,
as, for example, when experiencing reward for consuming the
lunch. For now, we assume experienced and true reward to be
equivalent, that is rj¼ zj. For a single choice, the overall aim of the
decision maker is to maximize expected reward minus expected
cost,

rj j dxjð0 : TÞ
! "

$ c Th i; ð2Þ

where the expectation is across choices j and evidence
accumulation times T, given the flow of evidence dxj (0:T) from
time 0 to T. We first derive the optimal behaviour, or ‘policy’, that
maximizes this objective function for single, isolated choices and
later generalize it to the more realistic scenario in which the total
reward in a long consecutive sequence is maximized.

Optimal decisions with DDMs with collapsing boundaries. To
find the optimal policy, we borrow tools from dynamic pro-
gramming (DP). One of these tools is the ‘value function’, which
can be defined recursively through Bellman’s equation. In what
follows, we show that the optimal policy resulting from this value
function is described by two time-dependent parallel bounds in
the two-dimensional space of current estimates of the true option
rewards. These bounds are parallel with unity slopes, approach
each other over time and together form a bound on the difference
of reward estimates. This difference is efficiently inferred by
diffusion models, such that DDMs can implement the optimal
strategy for value-based decision-making.

Bellman’s equation for optimal value-based decision-making. To
define the value function, assume that the decision maker has
accumulated some evidence about the option rewards for some
time t. Given this accumulated evidence, the value function
returns the total reward the decision maker expects to receive
when following the optimal policy. This value includes both the
cost for evidence accumulation from time t onwards and the
reward resulting from the final choice. The expected rewards,
r̂j tð Þ ¼ rj j dxð0 : tÞ

! "
, and elapsed time t are sufficient statistics

of the accumulated evidence (see Methods section), such that the
value function is defined over these quantities. At each point in
time t during evidence accumulation we can either commit to a
choice or accumulate more evidence and choose later. When
committing to a choice, it is best to choose the option associated
with the higher expected reward, such that the total expected
reward Vdðr̂1; r̂2Þ for choosing immediately is given by the value
for ‘deciding’, Vd r̂1; r̂2ð Þ ¼ maxfr̂1; r̂2g (Fig. 3a). When accumu-
lating more evidence for a small duration dt, in contrast, the
decision maker observes additional evidence on which she
updates her belief about the true rewards while paying
accumulation cost cdt. At this stage, she expects to receive a
total reward of Vðtþ dt; r̂1ðtþ dtÞ; r̂2ðtþ dtÞÞ. Therefore, the
total expected reward for accumulating more evidence is given by
the value for ‘waiting’, V tþ dt; r̂1 tþ dtð Þ; r̂2ðtþ dtÞð Þh i$ cdt
(Fig. 3b), where the expectation is over the distribution of future

expected rewards, r̂1ðtþ dtÞ and r̂2ðtþ dtÞ, given that they are r̂1
and r̂2 at time t (see Methods section for an expression of this
distribution). The decision maker ought to only accumulate more
evidence if doing so promises more total reward, such that the
value function can be written recursively in a form called
Bellman’s equation (Fig. 3a-c,e; see Supplementary Note 1 for
formal derivation),

V t; r̂1; r̂2ð Þ ¼ max Vd r̂1; r̂2ð Þ;f

hV tþ dt; r̂1 tþ dtð Þ; r̂2ðtþ dtÞð Þ j r̂1;2 tð Þ ¼ r̂1;2i$ c dtg:
ð3Þ

With knowledge of the value function, optimal choices are
performed as follows. Before having accumulated any evidence,
the subjective expected reward associated with option j equals the
mean of the prior belief, r̂j ¼ !zj, such that the total expected
reward at this point is given by Vð0; r̂1 ¼ !z1; r̂2 ¼ !z2Þ. Once
evidence is accumulated, r̂1 and r̂2 evolve over time, reflecting the
accumulated evidence and associated updated belief of the true
reward of the choice options. It remains advantageous to
accumulate evidence as long as the total expected reward for
doing so is larger than that for deciding immediately. As soon as
deciding and waiting become equally valuable, that is,
Vd r̂1; r̂2ð Þ ¼ Vðtþ dt; r̂1ðtþ dtÞ; r̂2ðtþ dtÞÞh i$ cdt, it is best to
choose option j associated with the higher rewarded expected
rewarded r̂j. This optimal policy results in two decision
boundaries in ðr̂1; r̂2Þ-space that might change with time
(Fig. 3f). In-between these boundaries it remains advantageous
to accumulate more evidence, but as soon as either boundary is
reached, the associated option ought to be chosen.

Parallel optimal decision boundaries. For the task setup
considered above, the decision boundaries take a surprisingly
simple shape. When plotted in the ðr̂1; r̂2Þ-space of estimated
option rewards for some fixed time t, the two boundaries are
always parallel to the diagonal r̂1 ¼ r̂2 (Fig. 3f). Furthermore, they
are always above and below this diagonal, reflecting that the
diagonal separates the regions in which the choice of either option
promises more reward. Here, we provide an informal argument
why this is the case.

The argument relies on the fact that, for each time t, the decision
boundaries are determined by the intersection between the value
for deciding and that for waiting (Fig. 3c,d). Both of these values
share the property that, in lines parallel to the diagonal, they are
linearly increasing with slope one. Formally, both functions satisfy
f t; r̂1þC; r̂2þCð Þ ¼ f t; r̂1; r̂2ð ÞþC for any fixed time t, reward
estimates r̂1 and r̂2, and arbitrary scalar C. This implies that, if they
intersect at some point r̂&1 ; r̂&2

# $
, thus forming part of the decision

boundary, they will intersect at the whole line r̂&1 þC; r̂&2 þC
# $

that
is parallel to the diagonal (Fig. 3c,e,f). Therefore both decision
boundaries are parallel to the diagonal.

How can we guarantee that the values for both deciding and
waiting are linearly increasing in lines parallel to the diagonal?
For the value for deciding, Vd r̂1; r̂2ð Þ ¼ maxfr̂1; r̂2g, this is
immediately obvious from its definition (Fig. 3a and caption).
Showing the same for the value for waiting requires more work,
and is done by a backwards induction argument in time (see
Methods section for details). Intuitively, after having accumulated
evidence about reward for a long time (t-N), the decision
maker expects to gain little further insight by any additional
evidence. Therefore, deciding is better than waiting, such that the
value function will be that for deciding, Vðt; r̂1; r̂2Þ ¼ Vdðr̂1; r̂2Þ,
which, as previously mentioned, is linearly increasing in lines
parallel to the diagonal, providing the base case. Next, it can be
shown that, if the value function at time tþ dt is linearly
increasing in lines parallel to the diagonal, then so is the value of
waiting at time t, and, as a consequence, also the value function at
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correlated in time, either with short-range temporal correlations, as 
is often observed in spikes trains, or with long-range temporal cor-
relations as postulated, for example, in the linear ballistic accumula-
tor model18,19. Our results also apply to experiments such as the ones 
performed by Thura and Cisek20,21 where the momentary evidence 
is accumulated directly on the screen, in which case there is no need 
for latent integration.

Circuit implementation of the optimal policy. In the optimal pol-
icy we have derived, evidence accumulation is simple: it involves 
N accumulators, each summing up their associated momentary 
evidence independent of the other accumulators. By contrast, the 
stopping rule is complex: at every time step, the policy requires 
computing N time-dependent nonlinear functions that form the 
individual stopping boundaries. This rule is nonlocal because 

whether an accumulator stops depends not only on its own state but 
also on that of all the other accumulators. A simpler stopping rule 
would be one where a decision is made whenever one of the accu-
mulators reaches a particular threshold value, as in independent 
race models. However, this would require a nonlinear and nonlo-
cal accumulation process to implement the same policy through a 
proper variable transformation. Nonetheless, such a solution would 
be appealing from a neural point of view since it could be imple-
mented in a nonlinear recurrent network endowed with a simple 
winner-takes-all mechanism that selects a choice once the threshold 
is reached by one of the accumulators.

Armed with this insight, we found that a recurrent network with 
independent thresholds (Fig. 2c) can indeed approximate the opti-
mal solution very closely. It consists of N neurons (or N groups of 
identical neurons), one per option, which receive evidence for their 
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Fig. 2 | The optimal decision policy for three alternative choices. a, The derived optimal decision boundaries in the diffusion space. In contrast to the 
standard race model’s decision boundaries (Fig. 1d), they are nonlinear but symmetric with respect to the diagonal (that is, the vector (1,1,1)). b, Lower 
dimensional projections of decision boundaries at different time points. The solid curves are the optimal decision boundaries projected onto the plane 
orthogonal to the diagonal (the black triangle in a). The dashed curves indicate the effective decision boundaries implemented by the circuit in c. c, The 
circuit approximating the optimal policy. Like race models, it features constant decision thresholds that are independently applied to individual options. 
However, the evidence accumulation process is now modulated by recurrent global inhibition after a nonlinear activation function (the ‘normalization’ 
term), a time-dependent global bias input (‘urgency signal’) and rescaling (‘divisive normalization’). d, Schematic illustrations of why the circuit in c 
can implement the optimal decision policy. The nonlinear recurrent normalization and urgency signal constrain the neural population states to a time-
dependent manifold (the gray areas). Evidence accumulation corresponds to a diffusion process on this nonlinear ((N!−!1)-dimensional) manifold. The 
stopping bounds are implemented as the intersections (the colored thick curves) of the manifold and the cube (colored thin lines), where the cube 
represents the independent, constant decision thresholds for the individual choice options. Due to the urgency signal, the manifold moves toward the 
corner of the cube as time elapses, causing the intersections (that is, the stopping bounds) to collapse onto each other over time.
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Dynamic program for decision making
Marshall et al.

• Solved the geometric Bellman equation for decisions:

• Found time and magnitude-varying decision boundaries


• Optimise speed-value trade-off 

• Magnitude-sensitive deadlock-breaking

V (t, r̂1, r̂2) = max{Vd(r̂1, r̂2),
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VALUE OF SAMPLINGCOST OF SAMPLING
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dependent non-linear decision thresholds ((Tajima et al., 2019) Fig. 7) into either simple linear ones141

that collapse over time for lower-value option sets (Fig. 3), or nonlinear boundaries that evolve142

over time similarly to the Bayes Risk-optimising case for higher-value option sets (Marshall (2019);143

Fig. 3). As Tajima et al. note, the simpler linear decision boundaries implement the ‘best-vs-average’144

decision strategy, whereas the more complex boundaries interpolate between ‘best-vs-average’145

and ‘best-vs-next’ decision strategies (Tajima et al., 2019); interestingly simply moving to nonlinear146

subjective utility with linear time costs simpli�es the decision strategy to the ‘best-vs-next’ strategy147

(Fig. 3; see Tajima et al. (2019), Fig. 6C).148

Figure 3. Linear time costs lead to weakly magnitude-sensitive optimal policies (top row), while geometric
discounting of reward leads to strongly magnitude-sensitive optimal policies (bottom row). In the linear time
cost (Bayes Risk) case nonlinear subjective utility changes complex time and value-dependent decision
boundaries in estimate space into a simple mostly magnitude-insensitive ‘best-vs-next‘ strategy (top row; see
Tajima et al. (2019), Fig. 6C). For geometric discounting of rewards over time, optimal decision boundaries are
strongly magnitude-sensitive and interpolate between simple ‘best-vs-average’ and ‘best-vs-next’ strategies (see
Tajima et al. (2019), Fig. 6). Triangles are low dimensional projections of the 3-dimensional evidence estimate
space onto a plane moving along the equal value line, at value v (Tajima et al., 2019). Dynamic programming
parameters were: prior mean x̄p,i = 1.5 and variance �2

p,i = 5, waiting time tw = 1, temporal costs c = 0,
� = 0.2, and utility function parametersm = 4, s = 0.25 (for the linear time cost) andm = 4, s = 3.5 (for the
geometric time cost).

Multi-Alternative Decisions: Optimal Policies are Weakly Magnitude-Sensitive for Nonlin-149

ear Subjective Utility Under Bayes Risk-Optimisation150

Under Bayes Risk-optimisation it is known that, for binary decisions, optimal policies are magnitude-151

insensitive when subjective utility is linear, whereas they are magnitude-sensitive when subjective152

utility is nonlinear (Tajima et al., 2016, 2019).153

For ternary decisions, however, even with nonlinear subjective utility, policies exhibit very weak154

magnitude-sensitivity early in decisions, becoming magnitude-insensitive as decisions progress155

(Fig. 3, row ‘linear‘). Sensitivity analysis shows that magnitude-insensitivity is a general pattern. An156

informal understanding of this can be arrived at by appreciating that sigmoidal functions have157
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Figure 7. (A) Stimuli example for human psychophysical experiments: Participants were requested to decide as
fast and accurately as possible which of the three stimuli was brighter; they were asked to maintain �xation on
the cross at the centre of the screen and minimise distraction for the short duration of the experiment.
Unknown to participants, conditions of interest were conditions for which the stimuli had equal mean
brightness. (B) Photograph showing a slime mould that chose one food alternative among three equal ones.
The slime mould was placed in the centre of a petri dish (6cm �) �lled with agar gel (10 g/l) at a distance of 2cm
from each food alternative.

This strategy is bene�cial for online studies since the large number of participants helps ensure249

that variation in participants’motivation or viewing arrangements is averaged out. We therefore250

recruited 117 participants via external advertisement on Twitter, and internal email lists at the251

University of She�eld (mean age = 40.4, SD = 11.2774, range 23 -77; 79 females, 37 males, 1 did252

not indicate their gender). We requested participants to follow the link to the experiment only if253

aged 18 years or older. The experiment lasted about 5 minutes and participation was voluntary;254

participants did not receive any reward for their participation.255

After reading the instructions, participants were informed that by continuing they were con�rm-256

ing that they understood the nature of the experiment and consented to participate. Participants257

were also informed that they could leave the experiment at any time by closing the browser. For this258

experiment, all procedures were approved by the University of She�eld, Department of Computer259

Science Ethics Committee.260

Experimental setup261

Similarly to previous studies (Teodorescu et al., 2016; Pirrone et al., 2018a), stimuli consisted of262

three homogeneous, round, white patches in a triangular arrangement on a grey background, as263

depicted in Figure 7. Throughout the task participants were presented with a central �xation cross264

that they were requested to �xate on.265

On a scale from 0 to 1 in PsychoPy, the patches could have a brightness of 0.3, 0.4, 0.5 or 0.6.266

There were 43 = 64 possible trial combinations, of which 4 were equal alternatives (i.e., alternatives267

having a brightness of [0.3,0.3,0.3], [0.4,0.4,0.4], [0.5,0.5,0.5] or [0.6,0.6,0.6]). We selected 10 equal268

trial repeats, and only one trial repeat for all possible unequal alternatives, for a total of 100269
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Multi-Alternative Decisions in Foraging Trials by Unicellular Organisms are Magnitude-121

Sensitive122

Here, using slime moulds of the species Physarum polycephalum, we also observed strong empirical123

evidence for magnitude sensitivity with three alternative foraging tasks. Details of the experiment124

are reported in Materials and Methods. Slime moulds were confronted with a choice o�ering three125

equal food sources. We increased the magnitude of the options by increasing the quality of the food126

sources. As shown in Figure 2, the latency to reach one of the alternatives depends on the quality of127

the food sources; the higher the quality the faster the slime mould. This was con�rmed by a linear128

mixed model similar to the one applied to the human data, in which reaction times signi�cantly129

decreased as a function of food quality (b = -0.03, p < .001, CI -0.03 -0.02; further details, Table S2 in130

the supplementary information).131

Figure 2. Empirical results from the slime mould experiment. Decreasing latencies to reach a food source as a
function of the magnitude of the equal alternatives. X-axis presents the concentration in egg yolk of equal food
sources (20, 40, 60, 80 g.L-1). Y-axis presents mean latency to reach a food source, in minutes. Bars show 95%
con�dence intervals. 50 slime moulds were tested for each magnitude for a total of 200 slime moulds.

Optimal Policies132

For our theoretical analysis we begin by re-deriving optimal policies for decisions when the change133

is made from linear costing of time, or Bayes Risk, to geometric discounting of future reward. Note134

that geometric discounting of future rewards is similar to, but not the same as, non-linear utility. As135

remarked in the introduction above, for binary decisions magnitude-sensitive reaction times can be136

explained by optimal decision policies for either multiplicative (e.g. geometric) time discounting137

(Marshall, 2019; Steverson et al., 2019) or nonlinear subjective utility with linear time costs (Tajima138

et al., 2016). In the multi-alternative case, on the other hand, the picture is more nuanced; moving139

from linear costing of time to geometric discounting of future rewards changes complicated time-140
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We propose an alternative function for negative feedback signals, 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Honeybee foraging
Collective emigration foraging model

Discovery Abandonment

Recruitment Inhibition-+

[Bidari et al. R.Soc.O.S. 2019, Seeley at al. Science 2012]

-+

Positive feedback Negative feedback
e.g. waggle dance in bees 
       pheromone trails in ants

e.g. stop signals in bees 
       repellent pheromone in ants
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The model without negative feedback looks quicker
Speed of convergence
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but it is actually slower
 symmetric initial conditions   asymmetric initial conditions   



Negative feedback strength regulates the trade-off
Speed-robustness trade-off
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We know negative feedback is an efficient mechanism to allow social insects:

• break symmetry in collective decisions [Seeley et al. Science 2012, Reina et al. PhyRev. E 2015]


• adapt to time-varying environments [Nieh Curr. Biol. 2010, Robinson et al. Nature 2005,…]
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We know negative feedback is an efficient mechanism to allow social insects:

• break symmetry in collective decisions [Seeley et al. Science 2012, Reina et al. PhyRev. E 2015]


• adapt to time-varying environments [Nieh Curr. Biol. 2010, Robinson et al. Nature 2005,…]

We find an additional important role of negative feedback: variance reduction 
• similar strategy found in gene networks or electronics


• it could explain why, even in static conditions, honeybees always deliver a small 
quantity of stop signals to foragers visiting the same forage patch [Lau & Nieh Apidologie 2010]



An evolutionary framework for collective behaviour
Tinbergen, Behavioural Ecology, and Collective Behaviour

Dynamic View Static View

Proximate View Behavioural 
development

Behavioural 
mechanism

Ultimate View Behavioural 
evolution

Behavioural 
function



An evolutionary framework for collective behaviour
Tinbergen, Behavioural Ecology, and Collective Behaviour

Dynamic View Static View

Proximate View Behavioural 
development

Behavioural 
mechanism

Ultimate View Behavioural 
evolution

Behavioural 
function



Negative feedback
Progression in the evolution of collective foraging



Negative feedback
Progression in the evolution of collective foraging

Individual foragers 
—no feedback— 

low efficiency



Negative feedback
Progression in the evolution of collective foraging

Individual foragers 
—no feedback— 

low efficiency

Recruitment 
—positive feedback— 

efficient but noisy



Negative feedback
Progression in the evolution of collective foraging

Individual foragers 
—no feedback— 

low efficiency

Recruitment 
—positive feedback— 

efficient but noisy

Inhibition 
—negative feedback— 

low variance + adaptive
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