Collective behavior from surprise minimization
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Overview

Part I: Background on Bayesian cognitive science & active inference
® Perception as unconscious inference and Bayesian inference
® Minimizing prediction error as an algorithm for inference

e Active inference

Part 1I: Applying the concepts from Part | to model collective motion

o Collective motion overview

® Phenomenological models vs ‘cognitive’ models

o Collective motion from multi-agent active inference
® Emergent information transfer & decision-making

® | earning one’s model online, i.e., ‘behavioral plasticity’



The “Bayesian turn” in the cognitive sciences

® Hermann von Helmholtz, “Perception as
unconscious inference” (unbewusster Schluss)

Hermann von Helmholtz



Perception as explanation

Explanation

Neckar Cube




Perception as explanation

c----‘-\---‘)

* Your perception is not the “raw
data” (aka the pixel intensities on

Kanisza's triangle the screen), but an inference or
interpretation of that data

0



® Hermann von Helmholtz, “Perception as
unconscious inference” (unbewusster Schluss)

e Formalized later in the 20th century as
probabilistic inference — use Bayes Rule to

The “Bayesian turn” in the cognitive sciences

compute posterior probabilities

posterior expectation

prior belief

n posterior belief

sensory evidence

i (likelihood)

Hermann von Helmholtz

P(B|A)P(A)
P(B)

P(A|B) =
]

A

increased sensory precision

decreased prior precision



Perception as &dglamatietection

Latent causes

(e.g. camera position, object identities, locations)
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One way to infer:
minimise prediction error

World Sensory data
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More formally:
use a gradient descent on free energy
to update the posterior means

Belief //t

World Sensory data
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Sensory Prior
prediction errors prediction errors
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Precision weighting is important!

ap - oFu,y)

F xme> + &
dt a//l Free energy §y ]E/jﬂ

= surprise
= “sum of (squared) precision-weighted prediction errors”

posterior expectation n

osterior belief
€A °

y _sensory evidence
Heeeeees (likelihood)

prior belief

SR

increased sensory precision decreased prior precision



Bayesian filtering example with
attenuation In sensory precision

Sensory precision = 3.00
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- Posterior mean
| —— Observations
—  Prior
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What about action?

Active inference, aka belief-guided action

§E = 2
= arg mm( + ﬂﬂeﬂ

Sensory

data \

Actions

...---—

This is a standard reinforcement learning formulation
— how is active inference any different!?



How to act!?
also minimise prediction error

Belief
World Sensory data
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Under active inference, everything is about minimising
prediction error aka “surprise”

There are two ways to become less surprised



Classical “Sandwich Model” of Cognition

e Unidirectional information flow from sensory states to motor effectors
e Distinct stages of processing

o Cognition plays role of generating “actionable representations”

Action

* Cognition *

Perception

Susan Hurley, Synthese 2001



Predictions

Adams, Shipp, Friston (201 3).
Predictions, not Commands:
Active inference in the motor system

Ventral

root Ventral
s Cower horn
\\ Mixed motor
N i
\ A& spinal Muscle neurons
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Applications of active inference

Eye movements and visual foraging (Friston et al. 2012, Mirza et al. 2016, Parr & Friston 2018, ...)
Kinematic and postural control (Maselli et al. 2022, Priorelli et al. 2023)

Embodied spatial decision-making (Priorelli et al. 2024)

Emotion recognition (Smith et al. 2019, Hesp et al. 2021, Mirza et al. 2021)

Economic decision-making under uncertainty (Smith et al. 2020, Markovic et al. 2021)

Language understanding and speech (Parr & Pezzulo 2021, Friston et al. 2020)

Active sensing — e.g., whisking in rodents (Mannella et al. 2021)
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Collective motion in nature

® Example of emergent order from simple,
decentralised interactions

® Universality? Shows up across natural,
technological, artificial disciplines

® C(ollective motion is relevant to biologists for
many reasons (evolutionary, ecological,
cognitive, neurobiological)



Physics-based models (Vicsek model, etc.)




Physics-based models (Vicsek model, etc.)




Physics-based models (Vicsek model, etc.)




Physics-based models (Vicsek model, etc.)




Comparing classical and Bayesian approaches

(e.g. self-propelled particle models) .
\
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Comparing classical and Bayesian approaches

(e.g. self-propelled particle models) .
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Comparing classical and Bayesian approaches

(e.g. self-propelled particle models)




Comparing classical and Bayesian approaches

Classical” force-based approach Explicitly belief-based approach
(e.g. self-propelled particle models) .
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Comparing classical and Bayesian approaches

(e.g. self-propelled particle models)
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Comparing classical and Bayesian approaches

(e.g. self-propelled particle models)




SCIENCE ADVANCES | RESEARCH ARTICLE

PHYSICS

A model of collective behavior based purely on vision

1,241

Renaud Bastien and Pawel Romanczuk™*'

“Collective behavior crucially depends on the sensory information
avallable to individuals; thus, ignoring perception by relying on ad
hoc rules strongly limits our understanding of the underlying
complexity of the problem. Besides, it obstructs the interdisciplinary
exchange between biology, neuroscience, engineering, and physics.”
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Writing down an agent’s world model
a.k.a. the generative model

Generative model <_
p(y,x) = p(y | x)p(x)




Generative model needed for inference

Sensory data

Beliefs
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Generative model needed for inference

Generative model captures in-built
assumptions about optics, light
refraction, prevalence of objects,

etcC.

Hidden states Sensory data Beliefs s
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Writing down an agent’s internal model
a.k.a. the generative model

Generative model
p(y,x) = p(y|x)p(x)

2

What sort of generative model
might an individual in a mobile group have?




Generative model for an individual  Hidden states x, comprise the agent’s environment
p(y,x) = p(y|x)p(x)

Sector-specific average distance :l

Focal agent
r = [l’l, 1”2]



Priors about social distance x,
P(xl) — N(}/]la Ga))

Prior belief about
the social distance in a particular sector

Sector-specific average distance

10
8_

6_

Focal agent
r = |ry,r]
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Social forces emerge from predictive control

. _ V = Direction vector
Sector-specific average distance

Sensorimotor contingency Precision-weighted PE

ﬂ o oP(V)
dt 09V

F doesn’t directly depend on actions

Focal agent

(chain rule)
r = [l’l, 1”2]



Social forces emerge from predictive control

. _ V = Direction vector
Sector-specific average distance
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Focal agent
r = [l’l, 1”2]



Social forces emerge from predictive control

. _ V = Direction vector
Sector-specific average distance

Sensorimotor contingency  Precision-weighted PE

nyd

— = Af'T
dt

Focal agent

y;— Wy > ) ==43 Attraction
r = [l’l, 1”2]

y— Yy < () == Repulsion




Social forces emerge from predictive control

. _ V = Direction vector
Sector-specific average distance

i Sensorimotor contingency  Precision-weighted PE
X = |r;
— = Af'T

dt

Focal agent
r = [l’l, 1”2]




Zonal social force models

Attraction

Repulsion
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Active control of prediction error

e




Social forces emerge from
(multivariate) predictive control

/\
Arz Matrix of sector vectors Sector-wise PEs

Ar,




Important addendum
for collective motion theorists!

y y Sensed distance
Sensorimotor contingency Precision-weighted PE
\ / Y = —
dv
— = At m(y = w) av T (5, —
dt : / E — VyV Hz(yl — H;)
V= ;>0 == Attraction y;—p; >0 == Attraction

v, —u; <0 == Repulsion y;—pu; <O == Repulsion



Important addendum
for collective motion theorists!

Research article

y y Sensed distance
Swarming and pattern formation due to
- y' 8ty Sensed “distance velocity” selective attraction and repulsion
y — // — 62 o o Pawel Romanczuk 2 and Lutz Schimansky-Geier
Y 1 Y | Sensed “distance acceleration Published: 26 September 2012 https://doi.org/101098/rsfs.2012.0030
/ dyl, . " 1 . - 77
y; = 7 IS equivalent to the “relative velocity”,
dV T¥r /~ ~ or the rate at which neighbouring individuals are
Z — Vj;v Hz(yl — //tl) receding (positive) vs. looming (negative)
il =(r;,—r;,)-v +Z (r,—r;)-v
y,—u; >0 ==9 Attraction dr b Jo v
JES
/ / - - - .. .
yl — /’tl < 0 % Repulsion I, Position vector of focal agent i
I'. — Position vector of neighbour j in sector /

J



Evidence for use of prediction errors (i.e., unpredicted
changes in sensory input), rather than absolute values

nature communications nature communications
Article https://doi.org/10.1038/s41467-024-53361-8

Body orientation change of neighbors leads Zebrafish capable of generating future state

to scale-free correlation in collective motion prediction error show improved active avoidance
behavior in virtual reality

Zhicheng Zheng', Yuan Tao', Yalun Xiang ®", Xiaokang Lei ® 2 & Xingguang Peng ®"
Makio Torigoe 1, Tanvir IsIam1'2, Hisaya Kakinuma1'2, Chi Chung Alan Fung3, Takuya Isomura 4,
'School of Marine Science and Technology, Northwestern Polytechnical University, Xi‘an, Shaanxi 710072, P. R. China. 2School of Information and Control Hideaki Shimazaki 5 Tazu AOkﬂ Tomoki Fukai 3 & Hitoshi Okamoto 1,2

Engineering, Xi‘an University of Architecture and Technology, Xi‘an, Shaanxi 710055, P. R. China. e-mail: pxg@nwpu.edu.cn

pNAS ENGINEERING SCIENCE ADVANCES | RESEARCH ARTICLE

BIOLOGICAL SCIENCES

NEUROSCIENCE

Predictive neural computations in the cerebellum

contribute to motor planning and faster behavioral
responses in larval zebrafish

Matthew J. Lutz (&) @0.¢.2.1 Chris R. Reid (2) 921, Christopher J. Lustri () €, Albert B. Kao', Simon Garnier

9, and lain D. Couzin (&) &b.C Sriram Narayanan, Aalok Varma, Vatsala Thirumalai*

Individual error correction drives responsive self-
assembly of army ant scaffolds



Collective simulation achieved by
minimizing individual free energy functionals

J' = Surprise = Prediction error

pu=-—V, Fu,y) V==V F(u,y(v))

Perception Action



Disordered swarm

Milling

ive regimes

Collect

Polarized motion







Potential function vs. free energy function(al)

Potential systems

* Global function of the configurational states of the system

* |Individual dynamics move down gradients of the shared, global potential
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Potential function vs. free energy function(al)

Collective Bayesian
(active inference) systems

* Local functional of probabilistic beliefs about one’s environment

* Individual dynamics driven by dual gradient flows (action and
perception) on this moving functional

\)
Fi(o1,q,) zf 53
orobabilistic beliefs qd (7).

V4
& 0

. : Y S
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Perception Action

Free energy functional of




Potential function vs. free energy function(al)

Collective Bayesian
(active inference) systems

* Local functional of probabilistic beliefs about one’s environment

* Individual dynamics driven by dual gradient flows (action and
perception) on this moving functional

F2(029 QZ)

Free energy functional of

orobabilistic beliefs Q'Z(Z)4

q20< _quFz a20< _Vaze /S

Perception Action



How do properties of individual models determine collective outcomes?

Modify the generative model of single
agents and measure consequences

p(y,x) = p(y [ x)p(x)

=2




Weights vs beliefs

Behavior = f_ .. /(X) +fenv(z) + €




Weights vs beliefs

Behavior = a)lf;OCial(X) -+ wzﬁnv(Z) + €
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Weights vs beliefs

Sensory info | Sensory info 2 Prior info

Behavior = T@ T T@ T T P
/QK

{..““‘

Beliefs about reliability of different types of
sensory and prior information



Re-interpreting force-weights as beliefs about information reliability

Information from different sources can be more or less “trustworthy”
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Re-interpreting force-weights
as beliefs about sensory reliability

Movement = a)lffwcml(x) T a)zfenv(z) + €

Wy, Wy 2



Re-interpreting force-weights
as beliefs about sensory reliability

Prediction errors

7\

Movement — JT1 €1 + TTH€EH

//fAj /5] Beliefs about reliability of signal |
[ 0K

% Beliefs about reliability of signal 2
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How do individual beliefs
determine collective information processing!?
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Collective information transfer



Some agents have an extra source of sensory information

New sensory channel:
Sector-specific average distance Distance-to-target

xp=|[r; =T

Yr =Xr+2

Focal agent
r = [7‘1, 7‘2]



Action becomes a precision-weighted sum of vectors

Heading direction = g x\ T Trareer Xf

TS0 Beliefs about reliability of social info

Beliefs about reliability of target info
ﬂTarget 4 .



Collective navigates to target
despite uninformed individuals

@ Targetl
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High accuracy within a large regime
of social and target precisions
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Group fission in presence of multiple targets
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Decreasing social precision leads to consensus

@ Targetl
@ Target?2
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Oscillations between the targets
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Adapting the generative moadel

F = Surprise = Prediction error

du av
dr dt -
erception Action
/ﬂﬂ
XWw 7Z'Z
a0 _ V F( 0) B
a0

Plasticity



Stimulus time = = =

4---

Phantom prediction errors In single agents
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- Post-perturbation, without learning
- Post-perturbation, with learning
- Pre-perturbation period

Group turning response (cos )
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Vary perturbation size
and measure response
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Integrated turning magnitude (from 500 - 1000 ms)
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Conclusion

Collective behavior from surprise minimization

Conor Heins*"“*!, Beren Millidge“, Lancelot Da Costa®"%, Richard P. Mann", Karl J. Friston®¢, and lain D. Couzin®"°
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Bayesian Machine Learning @ VERSES

e Scaling active inference and Bayesian neural networks to
modern machine learning contexts

® Variational Bayes for Mixture Models

e Can we train deep nets faster, with less data, while also being
Bayesian (i.e., quantifying uncertainty)? VERSES

® (Transformer) Attention as Inference

Come chat to me if you want to learn more!



The goal of model-building

At the end of the day (in my opinion),
science Is about maximizing model evidence

Data

9 Parameters

for model m p(y ‘ m) — Z p(y ‘ 6’, m)p(@ ‘ WL)
0

Model

Also known as “marginal likelihood”

(log) Model evidence = Accuracy — Complexity

-~ N\

ow well | fit the data How many extra bits my explanation need to encode,
relative to my “baseline” expectations about explanations

log p(y |m) = (log p(y|0,m)),01y.m — Dxr(p(@|y, m) || p(@|m))



The space of agent-based models of collective phenomena

Maximizing Highly-parameterized,
evidence black-box models
(e.g. a deep NN)

Complex

social force models Active inference models

Self-propelled
particle models (e.g.,
the Vicsek model)

Accuracy
<10g p(y ‘ 99 m) >p(0|y,m)

Complexity 7

Complexity depends on our prior
DKL(p (6, ‘ Ys m) H P (6) ‘ m) ) over the space of agent-based models



Variational free energy

p(y, 0)
q(0)

F = — Jq(é’)ln

F =Dy (4(9) | P(H)) — E pllogp(y|0)]

Complexity Accuracy



