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Collective behavior from surprise minimization



Overview
Part I: Background on Bayesian cognitive science & active inference 

• Perception as unconscious inference and Bayesian inference

• Minimizing prediction error as an algorithm for inference

• Active inference

Part II: Applying the concepts from Part I to model collective motion

• Collective motion overview

• Phenomenological models vs ‘cognitive' models

• Collective motion from multi-agent active inference

• Emergent information transfer & decision-making

• Learning one’s model online, i.e., ‘behavioral plasticity’



The “Bayesian turn” in the cognitive sciences

• Hermann von Helmholtz, “Perception as 
unconscious inference” (unbewusster Schluss)

Hermann von Helmholtz
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Perception as explanation

Neckar Cube



Perception as explanation

Kanisza’s triangle

Your perception is not the “raw 
data” (aka the pixel intensities on 
the screen), but an inference or 

interpretation of that data



The “Bayesian turn” in the cognitive sciences

• Hermann von Helmholtz, “Perception as 
unconscious inference” (unbewusster Schluss)

Hermann von Helmholtz• Formalized later in the 20th century as 
probabilistic inference — use Bayes Rule to 
compute posterior probabilities

P(A |B) =
P(B |A)P(A)

P(B)
P(A)

P(B)
P(B |A)



Perception as

Feedforward cascade of feature detectorsInference using a generative model (inverse graphics)

Latent causes 
(e.g. camera position, object identities, locations)

Sensory consequences
(pixel values and colors)

feature detectionexplanation



One way to infer:
minimise prediction error

μ* = arg min
μ

((y − μ)2)

Belief

x y
World Sensory data

= μ

Prediction error

What you see What you expect

μ

P(x |y)



More formally:  
use a gradient descent on free energy 

to update the posterior means
Belief

x y
World Sensory data

P(x |y) = μ

dμ
dt

= −
∂F(μ, y)

∂μ
F ∝ ϵ2

y + ϵ2
μϵ2

y ϵ2
μ

Sensory 
prediction errors

Prior 
prediction errors

μ

ϵy = y − μ ϵμ = μ − η



dμ
dt

= −
∂F(μ, y)

∂μ
F ∝

Precision weighting is important!

ϵ2
y ϵ2

μπy πμ+
Free energy 
    = surprise 
    = “sum of (squared) precision-weighted prediction errors”

ϵμ
ϵy



Bayesian filtering example with 
attenuation in sensory precision



Active inference, aka belief-guided action

What about action?

Sensory
data

Actions

World

World

This is a standard reinforcement learning formulation 
— how is active inference any different?

μ* = arg min
μ

(πyϵ2
y + πμϵ2

μ)



How to act?
also minimise prediction error

Belief

x y
World Sensory data

x = μ

a* = arg min
a

(πy(y(a) − μ)2)Actions

a



Under active inference, everything is about minimising 
prediction error aka “surprise”

There are two ways to become less surprised

μ* = arg min
μ

(y − μ)Prediction 
error a* = arg min

a
(y − μ)Prediction 

error

Change your beliefs (perception) or change the world (action)



Perception Cognition Action

Classical “Sandwich Model” of Cognition

Susan Hurley, Synthese 2001

• Unidirectional information flow from sensory states to motor effectors

• Distinct stages of processing

• Cognition plays role of generating “actionable representations”



y

Perceptual
Predictions

Motor
Predictions

Exteroceptive
Prediction errors

Proprioceptive
Prediction errors

Sensory data

Adams, Shipp, Friston (2013).
Predictions, not Commands:

 Active inference in the motor system



• Eye movements and visual foraging (Friston et al. 2012, Mirza et al. 2016, Parr & Friston 2018, …)

• Kinematic and postural control (Maselli et al. 2022, Priorelli et al. 2023)

• Embodied spatial decision-making (Priorelli et al. 2024)

• Emotion recognition (Smith et al. 2019, Hesp et al. 2021, Mirza et al. 2021)

• Economic decision-making under uncertainty (Smith et al. 2020, Markovic et al. 2021)

• Language understanding and speech (Parr & Pezzulo 2021, Friston et al. 2020)

• Active sensing — e.g., whisking in rodents (Mannella et al. 2021)

Applications of active inference



Collective motion in nature



Collective motion in nature

• Example of emergent order from simple, 
decentralised interactions

• Universality? Shows up across natural, 
technological, artificial disciplines

• Collective motion is relevant to biologists for 
many reasons (evolutionary, ecological, 
cognitive, neurobiological)



Physics-based models (Vicsek model, etc.)



Physics-based models (Vicsek model, etc.)
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Physics-based models (Vicsek model, etc.)
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Physics-based models (Vicsek model, etc.)

x1

x2
Enviro

nmental 
forces



“Classical” force-based approach

(e.g. self-propelled particle models)

Explicitly belief-based approach


x1

x2

Environment
 x1

x2
Environment


Comparing classical and Bayesian approaches



“Classical” force-based approach

(e.g. self-propelled particle models)

Explicitly belief-based approach
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Comparing classical and Bayesian approaches



“Classical” force-based approach

(e.g. self-propelled particle models)

Explicitly belief-based approach
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Comparing classical and Bayesian approaches



“Classical” force-based approach

(e.g. self-propelled particle models)

Explicitly belief-based approach
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Comparing classical and Bayesian approaches



“Classical” force-based approach

(e.g. self-propelled particle models)

Explicitly belief-based approach
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“Classical” force-based approach

(e.g. self-propelled particle models)

Explicitly belief-based approach
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Environment
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( ̂x1, ̂x2)
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Sensory 

data
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Comparing classical and Bayesian approaches



“Collective behavior crucially depends on the sensory information 
available to individuals; thus, ignoring perception by relying on ad 
hoc rules strongly limits our understanding of the underlying 
complexity of the problem. Besides, it obstructs the interdisciplinary 
exchange between biology, neuroscience, engineering, and physics.”

Sensory data Response

P(x |y)

Inference



Generative model  
p(y, x) = p(y |x)p(x)

Writing down an agent’s world model
a.k.a. the generative model

x

y

p(y |x)

p(x)



Sensory data
Beliefs

Generative model needed for inference



Sensory dataHidden states
Beliefs

Generative model captures in-built 
assumptions about optics, light 

refraction, prevalence of objects, 
etc.

Generative model needed for inference



Generative model  
p(y, x) = p(y |x)p(x)

Writing down an agent’s internal model
a.k.a. the generative model

What sort of generative model 
might an individual in a mobile group have?



y1
y2

y3

y4

x2

x3

x4

Focal agent

Observations  are sampled from 
hidden states 

yt
xt

Hidden states  comprise the agent’s environmentxt

x

y

x1

xl =
1
Kl

Kl

∑
j=1

∥rj − r∥

r = [r1, r2]

Sector-specific average distance

Generative model for an individual 
p(y, x) = p(y |x)p(x)



Priors about social distance xl

y1
y2

y3

y4

x2

x3

x4

x1

xl =
1
Kl

Kl

∑
j=1

∥rj − r∥

r = [r1, r2]

P(xl) = N(ηl, σω)
Prior belief about 


the social distance in a particular sector

dxl

dt
= − α(xl − ηl) + ωl

Focal agent

Sector-specific average distance

Agent's model says: 

“Distance within sector  relaxes to ” l ηl

ηl = 5.0



Precision-weighted PESensorimotor contingency

y1
y2

y3

y4

x2

x3

x4

x1

xl =
1
Kl

Kl

∑
j=1

∥rj − r∥

r = [r1, r2]

Social forces emerge from predictive control

Focal agent

Sector-specific average distance

dv
dt

= −
∂y(v)

∂v
∂F

∂y(v)
dv
dt

= −
∂F
∂v

(chain rule)
F doesn’t directly depend on actions

v = Direction vector
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Social forces emerge from predictive control

Focal agent

Sector-specific average distance

Δ ̂r

Precision-weighted PESensorimotor contingency

dv
dt

= Δ ̂r⊤πz(yl − μl)

Δ ̂r =
1
K

K

∑
j=1

Δrj

∥Δrj∥
, Δrj = rj − r

v = Direction vector
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Social forces emerge from predictive control

Focal agent

Sector-specific average distance

Δ ̂r

Precision-weighted PESensorimotor contingency

dv
dt

= Δ ̂r⊤πz(yl − μl)

yl − μl > 0 Attraction

Repulsionyl − μl < 0

v = Direction vector
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Focal agent

Sector-specific average distance

Δ ̂r

Precision-weighted PESensorimotor contingency

dv
dt

= Δ ̂r⊤πz(yl − μl)

Δ ̂r =
1
K

K

∑
j=1

Δrj

∥Δrj∥
, Δrj = rj − rηl = 5.0

μl → ηl

v = Direction vector



RepulsionAttraction

Zonal social force models



Active control of prediction error

Negative  
prediction error

< 0

Positive  
Prediction error

Data     expectation− > 0Data     expectation−



y1
y2

y3

y4

x2

x3

x4

x1

Social forces emerge from 
(multivariate) predictive control

Matrix of sector vectors Sector-wise PEs

Δ ̂r3 dv
dt

= ΔR̂⊤ξ̃y

ΔR̂ =

Δ ̂r1

Δ ̂r2
⋮

Δ ̂rL

ξ̃y =

∇ỹ1
F

∇ỹ2
F

⋮
∇ỹL

F

Δ ̂r2Δ ̂r1

Δ ̂r4



Important addendum 
for collective motion theorists!

Precision-weighted PESensorimotor contingency

dv
dt

= Δ ̂r⊤πz(yl − μl)

yl − μl > 0 Attraction

Repulsionyl − μl < 0

dv
dt

= ∇ỹv⊤Π̃z(ỹl − μ̃l)

y′ l − μ′ l > 0 Attraction

Repulsiony′ l − μ′ l < 0

ỹ =

y
y′ 

y′ ′ 

⋮

=

y
∂ty
∂2

t y
⋮

Sensed distance

Sensed “distance velocity”

Sensed “distance acceleration”



Important addendum 
for collective motion theorists!

dv
dt

= ∇ỹv⊤Π̃z(ỹl − μ̃l)

y′ l − μ′ l > 0 Attraction

Repulsiony′ l − μ′ l < 0

ỹ =

y
y′ 

y′ ′ 

⋮

=

y
∂ty
∂2

t y
⋮

Sensed distance

Sensed “distance velocity”

Sensed “distance acceleration”

 is equivalent to the “relative velocity”, 

or the rate at which neighbouring individuals are 
receding (positive) vs. looming (negative)

y′ l =
dy′ l

dt

dyl

dt
= (ri − rj) ⋅ vi + ∑

j∈Sl

((rj − ri) ⋅ vj)
ri =
rj = Position vector of neighbour  in sector  j l

Position vector of focal agent i



Evidence for use of prediction errors (i.e., unpredicted 
changes in sensory input), rather than absolute values



Perception Action

·μ = − ∇μF(μ, y) ·v = − ∇vF(μ, y(v))

F =  Surprise = Prediction error

Collective simulation achieved by
minimizing individual free energy functionals



Collective regimes





Potential function vs. free energy function(al) 

• Global function of the configurational states of the system
• Individual dynamics move down gradients of the shared, global potential

Potential systems 

s1 s2
s3

s5s4

E(s1, s2, s3, . . . )s1 s2 s3 ·s1 ∝ − ∇s1
E

·s2 ∝ − ∇s2
E

⋮
·s3 ∝ − ∇s3

E



F1(o1, q1)
Free energy functional of 
probabilistic beliefs

Potential function vs. free energy function(al) 

• Local functional of probabilistic beliefs about one’s environment
• Individual dynamics driven by dual gradient flows (action and 

perception) on this moving functional

Collective Bayesian 
(active inference) systems

s1

s2 s3

s4

o1
q1(z)

·q1 ∝ − ∇q1
F1

·a1 ∝ − ∇a1
F1

ActionPerception



F2(o2, q2)
Free energy functional of 
probabilistic beliefs

Potential function vs. free energy function(al) 

• Local functional of probabilistic beliefs about one’s environment
• Individual dynamics driven by dual gradient flows (action and 

perception) on this moving functional

Collective Bayesian 
(active inference) systems

s1

s2 s3

s4

o2

·q2 ∝ − ∇q2
F2

·a2 ∝ − ∇a2
F2

ActionPerception

q2(z)



How do properties of individual models determine collective outcomes?

Modify the generative model of single 
agents and measure consequences  

p(y, x) = p(y |x)p(x)



Weights vs beliefs

behaviour = fsocial(x) + fenv(z) + ϵBehavior 



behaviour = ω1fsocial(x) + ω2 fenv(z) + ϵBehavior 

ω1, ω2 ? 

Weights vs beliefs



behaviour =Behavior PE

Sensory info 1 Prior info

+

Beliefs about reliability of different types of
sensory and prior information

Weights vs beliefs

E

Sensory info 2

+



x y Increasing 
variance

Increasing 
precision

Re-interpreting force-weights as beliefs about information reliability

σ
Information from different sources can be more or less “trustworthy”

π



behaviour = ω1fsocial(x) + ω2 fenv(z) + ϵ

ω1, ω2 ? 

Movement

Re-interpreting force-weights 
as beliefs about sensory reliability



Prediction errors

behaviour = π1ϵ1 + π2ϵ2Movement

π1 Beliefs about reliability of signal 1

π2 Beliefs about reliability of signal 2

Re-interpreting force-weights 
as beliefs about sensory reliability



π

How do individual beliefs
determine collective information processing?



Collective information transfer



Some agents have an extra source of sensory information

y1
y2

y3

y4

x2

x3

x4

Focal agent

x1

xl =
1
Kl

Kl

∑
j=1

∥rj − r∥

r = [r1, r2]

Sector-specific average distance

xT = ∥rj − T∥

yT = xT + z

New sensory channel:
Distance-to-target 



πSoc Beliefs about reliability of social info

πTarget
Beliefs about reliability of target info

Action becomes a precision-weighted sum of vectors

Heading direction πSoc × πTarget ×+=



python src/demo_animation_decisionmaking.py -s 5 -zhp 0.01 -nsec 4 -secang 
80.0 --dist_thr 5. -N 200 -st 120 -et 3000 -T 3000 -tsb 20 -sk 10 -alpha 0.5 
-action_lr 0.2 -maxs 7.0 -ws 12 -ds 15.0 -pizt 0.5 -ntar 1 -pctinf 0.05 --
save_name Movie_InformationTransfer_withcolors.mp4

Collective navigates to target 
despite uninformed individuals
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High accuracy within a large regime 

of social and target precisions

Γz−Social = πSocial Γz−Target = πTarget



python src/demo_animation_decisionmaking.py -s 1 -zhp 0.01 -nsec 4 -secang 
60.0 --dist_thr 5. -N 50 -st 120 -et 1900 -T 1900 -tsb 20 -sk 10 -alpha 0.5 
-action_lr 0.2 -maxs 7.0 -ws 12 -btwn_theta 90. -ds 10.0 -pizt 1.0 -ntar 2 
-pctinf 0.36 --save_name Movie_Decision_TwoTargets_fission_withcolors.mp4Group fission in presence of multiple targets

Γz−Social = πSocial = 1



python src/demo_animation_decisionmaking.py -s 4 -zhp 
0.01 -nsec 4 -secang 60.0 --dist_thr 5. -N 50 -st 120 
-et 1900 -T 1900 -tsb 20 -sk 10 -alpha 0.5 -action_lr 
0.2 -maxs 7.0 -ws 12 -btwn_theta 90. -ds 10.0 -pizt 0.25 
-ntar 2 -pctinf 0.36 --save_name 
Movie_Decision_TwoTargets_consensus_withcolors.mp4

Decreasing social precision leads to consensus

Γz−Social = πSocial =
1
4



python src/demo_animation_decisionmaking.py -s 15 -nsec 4 
-secang 60.0 --dist_thr 5. -N 100 -st 120 -et 2500 -T 2500 
-tsb 20 -sk 10 -alpha 0.5 -action_lr 0.2 -maxs 7.0 -ws 12 
-btwn_theta 90. -ds 10.0 -pizt 0.5 -ntar 2 -pctinf 0.36 --
save_name 
Movie_Decision_TwoTargets_consensus_withcolors_4.mp4 -zh 
0.1 -zhp 0.1 -ztd 0.1 -ztdp 0.1 -piz 1.5

Oscillations between the targets

Γz−Social = πSocial =
1
4



Adapting the generative model

Perception Action

dμ
dt

= − ∇μF(μ, y)
dv
dt

= − ∇vF(μ, y(v))

F =  Surprise = Prediction error

Plasticity

dθ
dt

= − ∇θF(μ, y, θ)

πz
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Vary perturbation size 
and measure response



Probability of response (large turn)Total turning magnitude



• Active inference generalises and recovers classical social force models of 
collective motion without hand-crafted behavioral rules


• Ad-hoc weight parameters used to trade-off the responsiveness to private 
and social information, can be re-interpreted as precision-weighted 
prediction errors.


• “Behavioural plasticity”, operationalised as the ability to adapt model 
parameters online, allows groups to amplify and encode information more 
robustly, compared to agents without this ability.

Conclusion



Thanks to the team behind this work
Iain Couzin Karl Friston Richard MannLance Da Costa Beren Millidge



Bayesian Machine Learning @ VERSES

• Scaling active inference and Bayesian neural networks to 
modern machine learning contexts

• Variational Bayes for Mixture Models

• Can we train deep nets faster, with less data, while also being 
Bayesian (i.e., quantifying uncertainty)?

• (Transformer) Attention as Inference

Come chat to me if you want to learn more!



log p(y |m) = ⟨log p(y |θ, m)⟩p(θ|y,m) − DKL(p(θ |y, m) ∥ p(θ |m))

The goal of model-building

At the end of the day (in my opinion), 

science is about maximizing model evidence

p(y |m) = ∑
θ

p(y |θ, m)p(θ |m)

Also known as “marginal likelihood”

(log) Model evidence = Accuracy — Complexity 

How well I fit the data How many extra bits my explanation need to encode,

relative to my “baseline” expectations about explanations

y
θ
m

Parameters 

for model m

Data

Model



The space of agent-based models of collective phenomena

Ac
cu

ra
cy

Complexity

Highly-parameterized, 
black-box models

(e.g. a deep NN)

Self-propelled 

particle models (e.g., 

the Vicsek model)

Maximizing 

evidence

DKL(p(θ |y, m) ∥ p(θ |m))

Complex 

social force models

⟨l
og

p(
y|

θ,
m

)⟩
p(

θ|
y,

m
)

Active inference models

Complexity depends on our prior

over the space of agent-based models



ℱ = − ∫ q(θ)ln
p(y, θ)
q(θ)

= − 𝔼q(θ)[ln p(y, θ)] − ℍ[q(θ)]
EntropyEnergy

Variational free energy

ℱ = DKL (q(θ) ∥ p(θ)) − 𝔼q(θ)[log p(y |θ)]
AccuracyComplexity


