Conor Heins

- **X @conorheins**
- VERSES Machine Learning Lab
- Max Planck Institute of Animal Behavior

Modelling Multi-Scale Collective Intelligences Workshop 19 November 2024

Collective behavior from surprise minimization

Overview

Part I: Background on Bayesian cognitive science & active inference

- Perception as unconscious inference and Bayesian inference
- Minimizing prediction error as an algorithm for inference
- Active inference

Part II: Applying the concepts from Part I to model collective motion

- Collective motion overview
- Phenomenological models vs 'cognitive' models
- Collective motion from multi-agent active inference
- Emergent information transfer & decision-making
- Learning one's model online, i.e., 'behavioral plasticity'

The "Bayesian turn" in the cognitive sciences

• Hermann von Helmholtz, "Perception as unconscious inference" (*unbewusster Schluss*)

Hermann von Helmholtz

vs

Perception as explanation

Neckar Cube

Perception as explanation

Kanisza's triangle

Your perception is not the "raw data" (aka the pixel intensities on the screen), but an **inference** or **interpretation** of that data

The "Bayesian turn" in the cognitive sciences

- Hermann von Helmholtz, "Perception as unconscious inference" (*unbewusster Schluss*)
- Formalized later in the 20th century as **Hermann** von Helmholtz probabilistic inference — use Bayes Rule to compute posterior probabilities

increased sensory precision

decreased prior precision

Perception as teature addetection

Inference using a generative model (inverse graphics)

One way to infer: minimise **prediction error**

Belief

μ

P(*x* | *y*)

dμ dt = − ∂*F*(*μ*, *y*) ∂*μ*

 $F \propto \epsilon_y^2 + \epsilon_\mu^2$

Sensory prediction errors

Prior prediction errors

 $\epsilon_y = y - \mu$ $\epsilon_{\mu} = \mu - \eta$

Bayesian filtering example with attenuation in sensory precision

What about action?

This is a standard reinforcement learning formulation — how is active inference any different?

How to act? also minimise **prediction error**

a

Under **active inference**, everything is about minimising **prediction error** aka "surprise"

There are two ways to become less surprised

Classical "Sandwich Model" of Cognition

Susan Hurley, *Synthese* 2001

-
- Distinct stages of processing
- Cognition plays role of generating "actionable representations"

• Unidirectional information flow from sensory states to motor effectors

- Eye movements and visual foraging (Friston et al. 2012, Mirza et al. 2016, Parr & Friston 2018, …)
- Kinematic and postural control (Maselli et al. 2022, Priorelli et al. 2023)
- Embodied spatial decision-making (Priorelli et al. 2024)
- Emotion recognition (Smith et al. 2019, Hesp et al. 2021, Mirza et al. 2021)
- Economic decision-making under uncertainty (Smith et al. 2020, Markovic et al. 2021)
- Language understanding and speech (Parr & Pezzulo 2021, Friston et al. 2020)
- Active sensing e.g., whisking in rodents (Mannella et al. 2021)

Applications of active inference

Collective motion in nature

Collective motion in nature

- Example of emergent order from simple, decentralised interactions
- Universality? Shows up across natural, technological, artificial disciplines
- Collective motion is relevant to biologists for many reasons (evolutionary, ecological, cognitive, neurobiological)

PHYSICS

A model of collective behavior based purely on vision

Renaud Bastien^{1,2*+} and Pawel Romanczuk^{3,4+}

"*Collective behavior crucially depends on the sensory information available to individuals; thus, ignoring perception by relying on ad hoc rules strongly limits our understanding of the underlying complexity of the problem. Besides, it obstructs the interdisciplinary exchange between biology, neuroscience, engineering, and physics.*"

Writing down an agent's world model a.k.a. the generative model

Generative model $p(y, x) = p(y | x)p(x)$

Generative model needed for inference

Generative model captures in-built assumptions about optics, light refraction, prevalence of objects,

etc.

Generative model needed for inference

Writing down an agent's internal model a.k.a. the generative model

What sort of generative model might an individual in a mobile group have?

Generative model $p(y, x) = p(y | x)p(x)$

Hidden states x_t comprise the agent's environment

Generative model for an individual $p(y, x) = p(y | x)p(x)$

Sector-specific average distance

Prior belief about the social distance in a particular sector

Priors about social distance x_1 $P(x_l) = N(\eta_l, \sigma_\omega)$

Sector-specific average distance

Sector-specific average distance

(chain rule) F doesn't directly depend on actions

Sector-specific average distance

Sector-specific average distance

Sector-specific average distance

Zonal social force models

Active control of prediction error

Negative prediction error

Social forces emerge from (multivariate) predictive control

Important addendum for collective motion theorists!

*d***v** *dt* $= \nabla_{\tilde{y}} \mathbf{v}^\top \tilde{\Pi}$ $z^{(\tilde{y}_l - \tilde{\mu})}$ *l*) $\ddot{\bullet}$

y′ $\mu_l' - \mu_l'$ $\lambda_l > 0$ **- - >** Attraction $y'_l - \mu'_l < 0$ **- - >** Repulsion

Research article

Swarming and pattern formation due to selective attraction and repulsion

Pawel Romanczuk⊠ and Lutz Schimansky-Geier

Published: 26 September 2012 https://doi.org/10.1098/rsfs.2012.0030

y

y′

y′′

 $\ddot{\bullet}$

 $\tilde{y} =$

=

y

 $\partial_t y$

 ∂_t^2

t y

Sensed distance

Sensed "distance velocity"

 $y'_{l} = \frac{y'_{l}}{dt}$ is equivalent to the "relative velocity", or the rate at which neighbouring individuals are receding (positive) vs. looming (negative) dy'_{l} *dt*

Sensed "distance acceleration"

$$
\frac{dy_l}{dt} = (\mathbf{r}_i - \mathbf{r}_j) \cdot \mathbf{v}_i + \sum_{j \in S_l} ((\mathbf{r}_j - \mathbf{r}_i) \cdot \mathbf{v}_j)
$$

 \mathbf{r}_i = Position vector of focal agent *i* \mathbf{r}_i = Position vector of neighbour *j* in sector *l*

Evidence for use of prediction errors (i.e., unpredicted changes in sensory input), rather than absolute values

6

nature communications

Article

https://doi.org/10.1038/s41467-024-53361-8

Body orientation change of neighbors leads to scale-free correlation in collective motion

Zhicheng Zheng 1 , Yuan Tao 1 , Yalun Xiang ® 1 , Xiaokang Lei ® 2 & Xingguang Peng ® 1 \boxtimes

¹School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China. ²School of Information and Contro Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, P. R. China. Me-mail: pxg@nwpu.edu.cn

RESEARCH ARTICLE

ENGINEERING BIOLOGICAL SCIENCES

OPEN ACCESS

Individual error correction drives responsive selfassembly of army ant scaffolds

Matthew J. Lutz in a, b,c,2,1, Chris R. Reid in d,2,1, Christopher J. Lustri in ^e, Albert B. Kao^f, Simon Garnier **iD** ^g, and lain D. Couzin **iD** a,b,c

nature communications

6

Zebrafish capable of generating future state prediction error show improved active avoidance behavior in virtual reality

Makio Torigoe ¹, Tanvir Islam^{1,2}, Hisaya Kakinuma^{1,2}, Chi Chung Alan Fung³, Takuya Isomura ⁴, Hideaki Shimazaki D 5, Tazu Aoki¹, Tomoki Fukai D 3 & Hitoshi Okamoto D ^{1,2⊠}

SCIENCE ADVANCES | RESEARCH ARTICLE

NEUROSCIENCE

Predictive neural computations in the cerebellum contribute to motor planning and faster behavioral responses in larval zebrafish

Sriram Narayanan, Aalok Varma, Vatsala Thirumalai*

Collective simulation achieved by minimizing individual free energy functionals

Perception Action $\dot{\mu} = - \nabla_{\mu} F(\mu, y)$ *i*

 $F =$ Surprise $=$ Prediction error

$\dot{v} = -\nabla_{\mathbf{v}}F(\mu, y(\mathbf{v}))$

Collective regimes

-
- **Global function** of the configurational states of the system • Individual dynamics move down gradients of the shared, global potential

Potential systems

$$
\begin{array}{ccc}\n\mathbf{S}_1 & \mathbf{S}_2 & \mathbf{S}_3 \\
\mathbf{S}_4 & \mathbf{S}_5 & \mathbf{S}_4 & \mathbf{S}_5\n\end{array}
$$

$$
E(s_1, s_2, s_3, \ldots)
$$

$$
\dot{s}_1 \propto -\nabla_{s_1} E
$$
\n
$$
\dot{s}_2 \propto -\nabla_{s_2} E
$$
\n
$$
\dot{s}_3 \propto -\nabla_{s_3} E
$$

Free energy functional of probabilistic beliefs

.
2 $\dot{q}_1 \propto -\nabla_{q_1} F_1$

Perception Action

Potential function vs. free energy function(al)

• **Local functional** of probabilistic beliefs about one's environment • Individual dynamics driven by dual gradient flows (action and

> · $\dot{a_1} \propto -\nabla_{a_1}$

-
- perception) on this moving functional

 $F_1(o_1, q_1)$

Collective Bayesian (active inference) systems

Free energy functional of probabilistic beliefs

.
7 $\dot{q}_2 \propto -\nabla_{q_2} F_2$

Perception Action

 $\boldsymbol{\mathring{l}}$ $a_2 \propto -\nabla_{a_2}$

Potential function vs. free energy function(al)

• **Local functional** of probabilistic beliefs about one's environment • Individual dynamics driven by dual gradient flows (action and

-
- perception) on this moving functional

 $F_2(o_2, q_2)$

Collective Bayesian (active inference) systems

How do properties of individual models determine collective outcomes?

$$
p(y,x) =
$$

Modify the generative model of single agents and measure consequences

Behavior = f *social*

Weights vs beliefs

Behavior $=f_{social}(x) + f_{env}(z) + \epsilon$

Weights vs beliefs

behavior $= \omega_1 f_{social}(x) + \omega_2 f_{env}(z) + \epsilon$

*ω*1,*ω*² ?

Beliefs about reliability of different types of sensory and prior information

Weights vs beliefs

Re-interpreting force-weights as beliefs about information reliability

Information from different sources can be more or less "trustworthy"

*ω*1,*ω*² ?

Movement

 Δ *b m b w*₁ *f*_{*social*} $(x) + \omega_2 f_{env}(z) + \epsilon$

Re-interpreting force-weights as beliefs about sensory reliability

Re-interpreting force-weights as beliefs about sensory reliability

Prediction errors $M\novement = $\pi_1 \epsilon_1 + \pi_2 \epsilon_2$$

π ₁ Beliefs about reliability of signal 1

 π ₂ Beliefs about reliability of signal 2

How do individual beliefs determine collective information processing?

Collective information transfer

Some agents have an extra source of sensory information

 x_3

PERSONAL PROPERTY

*x*4

Sector-specific average distance

$$
x_T = \|\mathbf{r}_j - \mathbf{T}\|
$$

$$
y_T = x_T + z
$$

New sensory channel: Distance-to-target

πSoc Beliefs about reliability of social info

πTarget Beliefs about reliability of target info

Action becomes a precision-weighted sum of vectors

Collective navigates to target despite uninformed individuals

 A ac

 $\Gamma_{z-Social} = \pi_{Social}$ $\Gamma_{z-Target} = \pi_{Target}$

A B High accuracy within a large regime of social and target precisions

Group fission in presence of multiple targets

 $\Gamma_{z-Social} = \pi_{Social} = 1$

Decreasing social precision leads to consensus

 \bullet

Oscillations between the targets

Adapting the generative model

$$
\frac{d\mathbf{v}}{dt} = -\nabla_{\mathbf{v}} F(\mu, y(\mathbf{v}))
$$

Action

 $= - \nabla_{\theta} F(\mu, y, \theta)$

Plasticity

$F =$ Surprise $=$ Prediction error

Stimulated agent

Pseudo-motion

Phantom prediction errors in single agents *y*¹ *y*² *y*³ *y*⁴ *μ*1 *y*¹ *y*² *y*³ *y*⁴ *y*2 y_1 μ_{2} **+1** \blacksquare \blacksquare Stimulus time Stimulus time *y*3 `` **0** μ_3 \blacksquare \blacksquare *μ*4 *y*4 **-1**

Vary perturbation size and measure response

Total turning magnitude Probability of response (large turn)

Conclusion

Collective behavior from surprise minimization

prediction in the contract of the contract of
The contract of the contract o

Conor Heins^{a,b,c,e,1}, Beren Millidge^d, Lancelot Da Costa^{e,f,g}, Richard P. Mann^h, Karl J. Friston^{e,g}, and lain D. Couzin^{a,b,c}

Thanks to the team behind this work

Iain Couzin **Karl Friston** Lance Da Costa Beren Millidge Richard Mann

Bayesian Machine Learning @ VERSES

- Scaling active inference and Bayesian neural networks to modern machine learning contexts
- Variational Bayes for Mixture Models
- Can we train deep nets faster, with less data, while also being Bayesian (i.e., quantifying uncertainty)?
- (Transformer) Attention as Inference

Come chat to me if you want to learn more!

The goal of model-building

- At the end of the day (in my opinion), science is about maximizing **model evidence**
	- *p*(*y* |*θ*, *m*)*p*(*θ*|*m*)

$$
p(y|m) = \sum_{\theta}
$$

 $\log p(y|m) = \langle \log p(y|\theta,m) \rangle_{p(\theta|y,m)} - D_{KL}(p(\theta|y,m) || p(\theta|m))$ How well I fit the data How many extra bits my explanation need to encode, relative to my "baseline" expectations about explanations

Also known as "marginal likelihood"

(log) Model evidence = Accuracy — Complexity

The space of agent-based models of collective phenomena

Accuracy

Highly-parameterized, black-box models (e.g. a deep NN)

Complex social force models

p \blacktriangleright

m **)**

> Self-propelled particle models (e.g., the Vicsek model)

Maximizing evidence

⟨log

p

 $\overline{}$

y |*θ*

m

 $\sqrt{2}$ $\left(\frac{1}{2}\right)$

 \bullet

θ|*y* ,

Active inference models

$\mathcal{F} = -\int q(\theta) \ln \frac{p(y, \theta)}{q(\theta)}$

$\mathscr{F} = D_{KL} (q(\theta) || p(\theta)) - \mathbb{E}_{q(\theta)}$

q(*θ*)

Variational free energy

