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Executive Summary

What is learning?

How did we get it?

How do we model it?

What is wrong with our model?
How do we fix it?

Now what do we do?





http://www.youtube.com/watch?v=9KtSQphEeKc&t=23



http://www.youtube.com/watch?v=hFZFjoX2cGg&t=933



http://www.youtube.com/watch?v=MFzDaBzBlL0&t=125

What's the deal with biological learning?

e Learning: the ability to use the past to improve future performance.
e It evolved because the past is related to the future (though distinct from it).



How do we model learning?

e In Al, what we call “learning”, is a model of a natural phenomenon

e Multiple formal definitions
o PAC learning
o  Online learning
o Reinforcement learning

e George Box: “All models are wrong, some are useful.”



The leading Al model of learning

SULL'APPROSSIMAZIONE EMPIRICA
DI UNA LEGGE DI PROBABILITA

In: «Giornale dell'Istituto Italiano degli Attuari», Roma, 1933, Anno IV, n. 3,
pp. 415420
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The leading Al model of learning

Probably Approximately Correct (PAC)

e Nearly 100 years old

e \Workhorse of modern Al revolution (useful)

e Assumptions are wrong:
1. Data are IID: identical and independently distributed
2. Goalis fixed.



Why you might care...

Google starts estimating

- Google Fl Lagged CDC :
oogle Flu agge high 100 out of 108 weeks

Google Flu + CDC
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Why else you might care...

e Intelligence makes us us.
e We call ourselves homo sapiens!



PROBABLY
APPROXIMATELY
CORRECT

Nature’s Algorithms for Learning and

Prospering in a Complex World

LESLIE VALIANT

Published: 2013



Data model

Input: x (e.g., images, questionnaire answers, etc.)
Output: y (e.g., disease status)

Comes in pairs, (X,y)

Each pairis 11D

D: a “data corpus” of n pairs of |ID data



Data model

e Input: x (e.g., images, questionnaire answers, etc.)
e Output: y (e.g., disease status)
e Comes in pairs, (X,y)
E e s HE
e Each pair neither identical nor independently distributed
e D: a“data corpus” of n pairs of HB data



Hypotheses

e h: eats input, spits out output

e h(x)—y
e H: the set of all possible h’s
o Deep nets
o Random forests
o Linear functions
o etc.



Hypotheses

e h: eats input & time, spits out output
e h(x,t) — y(t)

e H: the set of all possible h’s

Deep nets with time

Random forests with time

Linear functions with time

O
O
O
o etc. with time



Learner

e [Eats a data corpus, spits out a hypothesis
e L(D)—nh
e \We choose a learner that we hope learns a good hypothesis



Learner

e [Eats a data corpus, spits out a hypothesis sequence
e L(D)—h(,1)
e We choose a learner that we hope learns a good hypothesis sequence



A “good” hypothesis

e Minimize empirical loss between predictions and truth
o Loss could be sum of squared errors
o minimize sum( (h(x) - y)?)
e But what about overfitting and stuff?
e Instead, find hypothesis that minimizes expected loss in the future

e Risk = expected future loss



A “good” hypothesis

e Minimize empirical loss between predictions and truth in the future

o Loss could be sum of squared errors over the future
o minimize sum( sum, (h(x.t) - y(t))?)

e But what about overfitting and stuff?
e Instead, find hypothesis that minimizes expected loss in the future
e Risk = expected future loss



Fundamental theorem of pattern recognition

A learner exists with the following property: with enough data, it will select a
hypothesis that is probably approximately correct.

In other words, with enough data, the learner will select a hypothesis whose
expected loss is arbitrarily close to the best one could do, with arbitrarily high
probability.



Example learners with this property

Histograms

Support Vector Machines
Random Forests
Empirical risk minimization

Example learners without this property

e Linear regression
e Deep networks



Fundamental theorem of patterr+recoghition

prospective learning

A learner exists with the following property: with enough data, it will select a
hypothesis that is probably approximately correct forever in the future.

In other words, with enough data, the learner will select a hypothesis whose
expected loss is arbitrarily close to the best one could do, with arbitrarily high
probability.



Theorem 1 (Prospective ERM is a strong prospective learner). Consider a finite family of
stochastic processes Z. If we have (a) consistency, i.e., there exists an increasing sequence of

hypothesis classes H1 C Ho C ... with each H: C (y" )N such thatVZ € Z,

tl—lglo E [hlenf Ri(h) — ] =10, (6)

where h € H; is a random variable in o(Z<), and (b) uniform concentration of the limsup, i.e.,
VZ € Z,

b(h,2) - max Zf(s hs(zs),ys)

E <
[ilzréaiﬁ ] <, (7)

for some v+ — 0 and uy — oo with uy <t (all umform over the family of stochastic processes), then
there exists a sequence iy that depends only on ~; such that a learner that returns

h= aill’g’glm néanicq — ZE s,hs(xs),ys), (8)

is a strong prospective learner for this family. We define prospective ERM as the learner that
implements Eq. (8) given train data z<;.



Time encoding

Time-embedding matrices

Original Transformer Ours
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Existing Al tech fails miserably on simple problems

Task B

Chance

Bayesian GD
Online-SGD
Follow-the-leader

Prospective

-- Bayes Risk

Times (t)



Existing Al tech fails on more complicated problems

MNIST Scenario 2 CIFAR Scenario 2
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And even more complicated problems

Task 1 Task 2 Task 3 Task 4
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Existing Al tech still fails

Synthetic Scenario 3 MNIST Scenario 3 CIFAR Scenario 3
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Can GenAl Prospect (LLMs)?

Scenario 2

Consider the following sequence of outcomes generated by two Bernoulli distributions, where all even
outcomes are generated by a Bernoulli distribution with parameter ’p’ and odd outcomes are generated
from a Bernoulli distribution with parameter '1-p’.

10101010101010101010101000101010101010101

The next 20 most likely sequence of outcomes are:




Prospective risk

Scenario 2 (p=0.9)
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Taking actions

e All the previous results were just about inference
e \We also take actions though, which impact our future rewards/losses
e Can we learn prospectively in such scenarios?



Prospective Foraging




Optimal foraging theory

e OFT says leave patch when average resource available is higher than current
location

e Assumes environment does not change over time

e Leads to sub-optimal behavior

e Optimal: leave to arrive at patch during peak resource time




Existing Al tech fails to reliably solve this problem

Episode Returns Network Loss
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“Single episode/life/reset-free” fails epically

Best Episode Reward

Returns in one episode
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Real-world data



We want new models of learning

e \We are working on one called “Prospective Learning”
e It takes time seriously, as do real-world examples

e Much more work is required
o Scale
o Control
o Real-world

e Joinus?



Publications

1. De Silva et al. The Value of Out-of-Distribution Data, ICML, 2023.
2. De Silva et al. Prospective Learning: Principled Extrapolation to the Future,

CoLLAs, 2023.
3. De Silva et al. Prospective Learning: Learning for a Dynamic Future, Neurips,

2024.
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Discussion

We just added time to the foundation of ML/AI

Theory says simple algorithms should work

Simple (prospective) algorithms solve simple (prospective) problems
Fancy (retrospective) algorithms utterly/embarrassingly fail



What's next?

e Model some humans?
e See whether simple algorithms work on real-world problems
e Make better algorithms



Kinds of biological learning

reinforcement learning
behavioral learning
imitation learning
associational learning
sensorimotor learning
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Scenario 1
Independent and identically distributed
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Scenario 2
Independent but not identically distributed




