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Figure: Model Organisms: Quinn and Devi
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Deep Neural Networks (DNNs) are remarkably successful:
They generalize well when trained on various datasets, predict
3D protein folding structures, . . . .

Nevertheless, there remain significant questions as to how:
Issues about overfitting and generalization, among others
things.

A number of authors have suggested or implied that one
might explain (some) successes by arguing that DNNs (at
least for certain tasks) are implementing Renormalization
Group (RG)-like operations.
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Here I want to explore and go beyond some aspects of these
suggestions.

While I believe claims of an exact mapping between DNNs
and the RG are likely overblown, certain DNNs can be
understood as extracting relevant correlational information
that is “hidden” in the input data.
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Broad reasons for thinking there is at least some kind of
connection between RG and DNNs:

The RG, e.g., allows one to extract information concerning
continuum scale (e.g., critical) behavior from all the (largely)
irrelevant gory details about the molecular makeup of different
fluids.

DNNs, e.g., apparently allow one to extract information
relevant to classifying an image as that of a dog from all of
the (largely) irrelevant gory details present in the pixels
making up the image.
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I want to suggest that these procedures are successful, to the
extent that they are, because there is genuine correlational
information hidden in the gory details.

I also think we can say something about the nature of the
correlational information and where it comes from.

These correlations reflect the fact that the world exhibits
various kinds of scale invariances.

The correlations inhabit a scale in between the microlevel and
the macro-level.

This may also help to explain the hierarchical nature—the
depth—of the DNNs.
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Ruderman and Bialek (1994) took a series of photographs in a
state park in New Jersey.

The photos were primarily of trees, rocks, and a stream. They
measured 256 by 256 pixels and corresponded to 15 degrees in
visual angle. The data they collected were the logarithm of
each pixel’s luminance. (Ruderman, 1997, p. 3386).
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The data showed scaling “in the power spectrum of the form:

S(k) =
A

k2−η
, (1)

with k being the spatial frequency, A is a constant
representing the overall contrast power in the images . . . .”

For their data the “anomalous” exponent η had a value of
0.19.
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How can we understand this power law scaling?

One could imagine forming blocks of pixels (in analogy with
block spins in a real-space renormalization scheme). We
would see the same statistical structure in the pixel-blocked
images after appropriate renormalization. Kadanoff (2013).

“CHAP04” — 2012/9/6 — 17:04 — PAGE 172 — #32

172 the oxford handbook of the philosophy of physics

Figure 4.10 Making blocks. In this illustration a two-dimensional Ising model containing
81 spins is broken into blocks, each containing 9 spins. Each one of those blocks is assigned
a new spin with a direction set by the average of the old ones. We imagine the model is

reanalyzed in terms of the new spin variables.

result of that calculation and one that might depend upon the exact way in which
we chose to define the new spin variable.

The equation for the new value of the new deviation from criticality, t =Kc −K ,
could be described in similar terms. It is reasonable to assume that if the original
system is at its critical point, so is the new description obtained after the block
transformation. Further it is reasonable to argue that the transformation should
engender no singularities, thus requiring that a new temperature-deviation from
criticality would have a linear dependence upon the old deviation. So the remaining
point is to calculate the coefficient in the linear relation and express it in the special
manner given in Eq. (18d).

7. The Wilson Revolution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1 Physical Space; Fourier Space

Before entering into Wilson’s construction of the renormalization group theory, I
should touch upon a point of technique.

The proportionality in Eq. (18d) and Eq. (18c) are representations of scaling,
and the coefficients in the linear relations define the scaling relations among the
variables. Note that here scaling is viewed as a change in the effective values of the

Figure: Blocking and averaging to yield a new (coarse-grained) effective
system (Kadanoff, 2013, p. 172)
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Ruderman and Bialek actually do this pixel blocking. They plot the
contrast, φ, of the images (normalized to unit variance) averaged
over NxN pixel blocks for (N = 1, 2, 4, . . . , 32). Each such plot
superposes on the same (non-Gaussian) distribution:

Figure: Distribution of Contrast.
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Another indication of the robustness of the statistical
structure in the natural images is shown by implementing
certain quite radical database recalibrations of the data.

Changing the gray scale images in the database to black and
white produces a new data set with virtually the same
statistics.



Introduction Natural Images: Objects and Scaling Deep (and Cheap) Learning Conclusions

That the process of geological formation of hillsides and
valleys, or the structure of forests due to the succession of
flora, can exhibit scaling through their images is perhaps
not altogether surprising. . . . It is striking, however, that
the natural image datasets in which scaling was found are
all quite different. No two sets of pictures were even from
the same environment. (Ruderman, 1997, pp. 3385–3386)
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The scaling result (1) is a function of the spatial frequency k .

Working in the frequency domain is not the best way to
understand what properties of natural images are responsible
for scaling. In the Fourier/frequency domain, objects are
spread out and superpose over many frequency bands.
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Ruderman reformulates the results in the spatial domain,
introducing a pixel “difference function” that will allow him to
“define” objects statistically.

D(x) = 〈〈〈 |φ(0)− φ(x)|2 〉〉〉, (2)

(x is measured in degrees of visual angle.)

This is a kind of expected variance. Pixels in different objects have
a larger mean squared difference in luminance than those that
belong to the same object.
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Expanding the square in the difference function (2), Ruderman
shows it takes the form

D(x) = D1 − D2x
−η.

The values for D1 and D2 were determined by randomly
selecting 105 pixel point pairs from the images and tabulating
their joint statistics.

This yielded a value η = 0.19 in accordance with the
anomalous dimension from the power spectrum.
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How can this be explained? That is, what is responsible for the
form of the pixel difference function D(x)? Specifically, what
explains the value of the scaling exponent η?

A simple but important observation: Each point pair of pixels
from an image can either belong to the same object or to two
different objects.

We need to determine the statistics—the probabilities that
such point pairs are in the same object or not.

Another important feature of natural images is that objects in
the images can occlude one another.

Ruderman constructs a simple model of image generation that
allows for this occlusion and that lets us identify statistically
independent image components as distinct “objects.” Thus,
objects are defined statistically and not semantically.
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The model:

Imagine walking on an infinite image plane. At a ran-
dom location you blindly select from a number of choices
an infinitesimally thin cardboard “cut-out” of some shape.
You paint it a gray tone chosen from a distribution, and
then drop it on the ground. This done, you continue to
another random location and repeat the process. (Ruder-
man, 1997, p. 3392)
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For this model the correlation function is:

C (x) = C0PSAME, (3)

where PSAME is the probability that a given point pair
separated by a distance x belong to the same object and C0 is
the constant correlation within objects. (Ruderman, 1997, p.
3392)

A power law in the correlation function means a power law in
the spectrum. To show this we need to show that PSAME is
itself a power law. (Ruderman, 1997, p. 3393)
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Figure: Randomly throw Line Segments of length x on a plane with
rectangular objects. (Ruderman, 1997, p. 3393)

(a) yields p0(x); (b) yields p1(x); (c) yields p2(x).
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We get

PSAME(x) =
p2(x)

p1(x) + p2(x)
, (4)

where p1(x) and p2(x) are determined by examining figure 4.

Ruderman concludes that
. . . the scaling of inter-object probability follows directly
from the scaling of apparent object sizes. In images of
the real world this apparent size (in degrees) depends on
an object’s actual size as well as its distance from the
observer. The overall distribution of apparent object size
is thus a function of the distributions of object sizes and
that of their distances. (Ruderman, 1997, p. 3393)
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Note that higher order (N-point) correlation functions can be
easily discovered as well. What is the probability that three pixels
in an image lie in the same object? Four pixels? . . .

Figure: Throwing Lines, Triangles and . . . . Batterman (2021)
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Ruderman’s scheme for determining two-point correlation functions
between pixels in the images is an instance of a widely applicable
multi-scale methodology for understanding the behavior of
many-body systems in condensed matter physics and materials
science.

This methodology was promoted by Leo Kadanoff and Paul
Martin, and is sometimes referred to as a set of hydrodynamic
or correlation functions methods.

In these many-body systems, some of the most important
quantities that appear at continuum scales are so-called
“order parameters” and “material parameters.”

Examples, respectively, include the net magnetization of a
ferromagnet and the viscosity of a fluid.
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I’ve argued that values for these parameters are actually coding for
correlational structures at mesoscales in between the microscopic
(atomic/molecular) and the continuum. Batterman (2021)

One can see this by noting, e.g., that the net magnetization
M is defined as the difference in the densities of up-spins (ρ↑)
and downspins (ρ↓).

M(r, t) = |ρ↑(r, t)− ρ↓(r, t)|,

at spatiotemporal points (r,t).

Thus, material and order parameters are defined at
mesoscales—one cannot “see” densities at atomic or lattice
scales.
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The key take-away is that the scaling structure in natural
images is a function of certain correlations between pixel
values.

The power law scale invariance in natural images is a function
of that correlational information.

As with many-body systems, this information is discoverable
at scales between that of pixels and the entire image.

It is also important that the scaling of inter-object probability
is a function of the actual distribution of object sizes and
their distances.

I am going to suggest that the effectiveness of DNNs in image
recognition (among other tasks) depends upon the existence
of that correlational information—correlational information
that reflects features of the real world.
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An influential paper by H. Lin, M. Tegmark, and D. Rolnick
entitled “Why Does Deep and Cheap Learning Work So Well?,”
aims to show how the success of deep learning depends not only on
the mathematics of neural networks but also on certain facts about
the world.

They raise a puzzle: “How can neural networks approximate
functions well in practice, when the set of possible functions is
exponentially larger than the set of practically possible
networks?”. (Lin et al., 2017, p. 1225)
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This question arises because even networks with only one
hidden layer are known to be universal function approximators.

Given a sufficient number of hidden units any smooth function
can be approximated to any accuracy with just a single hidden
layer.

Lin et al., give a quick estimate that demonstrates that
networks of “feasible size” however cannot do this. “There
are 22

n
different Boolean functions of n variables, so a

network implementing a generic function in this class requires
at least 2n bits to describe, i.e., more bits that there are
atoms in our universe if n > 260. (Lin et al., 2017, p. 1228)
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The space of all functions is enormous.

Despite this, neural networks of “feasible size” (read “actually
implementable) have been extremely successful.

Lin et al. argue that for “physics reasons” scientists/physicists
typically only care about a very small subset of the space of
functions.

These, they say, are functions (Hamiltonians) that have low
polynomial order, that exhibit certain symmetries, and that
involve local interactions.

The kind of functions we want to approximate are extremely
far from being random. In effect, they argue that one reason
DNNs work well is because the space of functions we actually
care about is extremely small in the space of all functions.
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There is something right about this. But, it cannot be the
whole story: It isn’t much of an explanation.

Our interests can (should) only be part of the reason DNNs
work.

Not all Deep Learning is aimed at problems in physics. What
is the Hamiltonian for an image of a dog?

Of real interest is how DNNs actually find the functions that
work—the functions that correctly recognize objects at the
scale of dogs—given input at the scale of pixels.

The explanation for this must appeal to actual facts about the
world—the scale invariances—and to the means by which the
DNNs find functions that detect the correlations that yield
those invariances.
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Datasets

It is well-known that the training of DNNs takes place using a
variety of datasets. In the context of image recognition these
include:

1 MNIST—A large database of handwritten numbers
2 FMNIST—An MNIST-like database of labeled fashion images.
3 CIFAR10—A very large database of labeled images from 10

classes representing airplanes, birds, cars, cats, deer, dogs,
frogs, horses, ships, and trucks.

4 IMAGENET—A huge database containing more than 14
million labeled images from more than 20,000 classes or
categories.

5 And many others.
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Datasets

There have been empirical studies of the statistics of these
datasets using the theory of Random Matrices (RMT).

These involve the study of eigenvalue spectra of matrices
representing samples from the datasets

ΣM =
1

M
XTX ,

where X ∈ RdxM and d is the dimension of the image vectors
and M is the number of samples. Levi and Oz (2024)

ΣM is an empirical covariance (Gram) matrix.
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Datasets

Empirical investigation shows that the bulk of the eigenvalues
for various datasets represent “the correlational structure of
different features amongst themselves, . . . ” and that these
“decay as a power law λi ∝ i−1−α.” (Levi and Oz, 2024, p. 2)

Levi and Oz explicitly reference Ruderman’s scaling law in this
context.

Remarkably, the various datasets mentioned earlier all exhibit
the same power law behavior.
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Datasets

Figure: Scree Plots: Scaling Behavior of ΣM for Various Datasets (Levi
and Oz, 2024, p. 4)

Eigenvalue bulk λi ∝ i−1−α.

All real-world datasets have α ≤ 1/2.

The value of α reflects the strength of the correlations in the
covariance matrices.
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Explanation

The fact that images of the world present with certain statistical
structure is critical to understanding how DNNs are actually able
to generalize.

Here I want to present results of empirical studies on actual
DNNs that have been trained on various datasets:

“Implicit Self-Regularization in Deep Neural Networks:
Evidence from Random Matrix Theory and Implications for
Learning” Martin and Mahoney (2018)
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Explanation

Martin and Mahoney give evidence that the Empirical
Spectral Density (ESD), ρN(λ) of the correlation matrices
exhibits statistics from an RMT universality class of
Heavy-Tailed distributions.

These are power-law distributions and they often are the mark
of complex systems.
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Explanation

Martin and Mahoney represent the energy landscape (or
optimization function) of a “typical” DNN having L layers with
activation functions hl(·), weight matrices per layer W l , and biases
bl as:

EDNN = hL(W L × hL−1(W L−1 × hL−2(· · · ) + bL−1) + bL).

They study the weight matrices W l before, during, and
after training on various databases and for a wide range of
actual DNN models.

Specifically, they analyze the Empirical Spectral Density,
ρN(λ), of the correlation matrix X = W TW associated with
the layer weight matrix W .



Introduction Natural Images: Objects and Scaling Deep (and Cheap) Learning Conclusions

Explanation

Random Matrix theory provides Law of Large Numbers-like
and Central Limit Theorem-like results for matrices.

RMT yields unique results for both square and rectangular
matrices.

However, in DNNs square weight matrices are rare. Typically
the number of parameters (N) is greater than the number of
examples (M).

Much work in RMT has focused on a class of matrices that
are members of the universality class of Gaussian
distributions.
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Explanation

Correlation matrices in this class have Spectral Density
functions

ρN(λ) :=
1

N

M∑
i=1

δ(λ− λi )

that in the limit N →∞ (with aspect ratio Q = N/M ≥ 1
fixed), takes the form of the Marčhenko-Pastur (MP)
distribution:

lim
N→∞

ρN(λ) =

 Q
2πσ2

mp

√
(λ+−λ)(λ−λ−)

λ , if λ ∈ [λ−, λ+]

0, otherwise.
(5)
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Explanation

Figure: Left: Different Aspect Ratios. Right: Different Variance
Parameters.(Martin and Mahoney, 2018, p. 14)

These, in effect, are the RMT analogs of various
Gaussian/normal distributions in ordinary probability theory.
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Explanation

Martin and Mahoney empirically investigate the statistics of
weight matrices for fully connected layers in a number of trained
of state-of-the-art DNNs.

They observe “profound deviations from traditional
[MP-based] RMT.” And they find that these DNNs “are
reminiscent of strongly-correlated disordered systems that
exhibit Heavy-Tailed behavior.”

Most importantly, they argue that the training process for
these DNNs “itself engineers a form of implicit Self
Regularization into the trained model.” (Martin and
Mahoney, 2018, p. 29)
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Explanation

Figure: Taxonomy of Trained Models. Changing RMT statistics for
Weight Matrix Spectral Densities (Martin and Mahoney, 2018, p.32)
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Explanation

The figure exhibits the evolution of the statistics of the
Empirical Spectral Density (ρN(λ)) of the correlation matrices
X = W TW associated with the layer weight matrix W .

These ESDs evolve under training using Stochastic Gradient
Descent (SGD) from random-like distributions (with good
Marčhenko-Pastur fit) associated with random
initialization at the start of training, to Heavy-Tailed
distributions that correspond to strong correlations in Wl for
layers l at the end of training.

The idea is that one can model the ESDs of trained DNNs
with Heavy-Tailed distributions using RMT.
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Explanation

Martin and Mahoney note that “[f]or DNNs, these correlations
arise in the weight matrices during Backprop training [SGD] (at
least when training on data of reasonable quality). That is, the
weight matrices “learn” the correlations in the data.” (Martin and
Mahoney, 2018, p.29)

This, if true, and given the robust statistical power law
behavior of various datasets, may help to explain (some of)
the remarkable successes of DNNs.



Introduction Natural Images: Objects and Scaling Deep (and Cheap) Learning Conclusions

Universality

I hope to have motivated the idea that the success of DNNs
at certain tasks can be understood in terms of their ability to
discover correlational structures that are present in real world
data.

It is remarkable (at least to me) that the various datasets
used to train DNNs all exhibit scaling behavior similar to one
another, and similar to the behavior Ruderman’s
investigations uncovered.

One way to think about this is in analogy with the universal
behavior of critical phenomena.
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Universality

Figure: Universality of Critical Phenomena (Guggenheim, 1945)
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Universality

Just as in the figure from Guggenheim, the different datasets
upon which DNNs get trained all exhibit the same scaling law
behavior.

This is true despite having widely differing details at
“fundamental” pixel scales. That is, despite being datasets of
very different images.
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Understanding Objects

Much of the literature on DNNS (specifically DCNNs) focus
on their ability to serve as feature detectors—features present
in the images they receive as input.

They are said to detect low level features like edges at early
levels in their architectures.

Then in deeper layers they supposedly manage to combine the
lower level features into more “abstract” features that enable
them to “recognize/learn” that certain images are images of
dogs.

I think that this talk of “feature detection” is somewhat
misleading in that it seems to imply that the DNNs are
recognizing certain aspects of semantic categories.
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Understanding Objects

Recall that Ruderman’s analysis explicitly avoided a semantic
understanding of objects appearing in images.

Rather than identifying objects in images semantically, as the
term “feature detection” suggests, Ruderman argued that we
should think of objects as statistically defined.

In doing this, he was led to determine the probabilities that
two pixels separated by some angular distance x belong to the
same “object.”

As he says, “[t]he notion of statistically correlated and
uncorrelated regions within images corresponding to objects
provides a simple, robust path to scale invariance, as long as
those objects appear in all sizes according to a power-law
distribution.” (Ruderman, 1997, p. 3386)
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Understanding Objects

Ruderman’s conclusion was that
the scaling of inter-object probability follows directly from
the scaling of apparent object sizes. In images of the real
world this apparent size (in degrees) depends on an object’s
actual size as well as its distance from the observer. The
overall distribution of apparent object size is thus a
function of the distributions of object sizes and that
of their distances.

Thus, real-world mesoscale structure determines the correlational
structure among pixels in images. And this is what ultimately
allows the DNNs to correctly characterize the images.
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Higher Order Correlations

As Ruderman’s argument demonstrates, one can determine
the image scaling laws by constructing/finding 2-point
correlation functions.

But this is clearly not sufficient for “deciding” whether or not
the image is that of a dog.

I conjecture that higher order (N-point) correlation functions
are required for image recognition.

It is here that invoking a strong analogy between the RG and
DNNs may be fruitful.
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Higher Order Correlations

A paper by Mehta and Schwab (2014) suggests that there is an
exact mapping between RG and deep learning based on stacked
restricted Boltzmann machines.
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Higher Order Correlations

Figure: RG Decimation (Mehta and Schwab, 2014, p. 5)

Consider a one-dimensional Ising chain—spins on in a line
with a fixed spacing between them. There is a coupling
between neighboring spins denoted by J.

Decimating (killing off) every other spin yields a crude
coarse-graining analogous to the block spin formation
considered earlier.

As before, there are new couplings, J(i)s, between the
remaining spins.
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Higher Order Correlations

Figure: DNN Analog and “Hidden” Spins (Mehta and Schwab, 2014, p.
5)

In this figure the J(i)s are so-called “hidden” spins. (Mehta
and Schwab, 2014, p. 5)

They code for correlations between the spins (or neuron
weights) in the previous layer of the neural net.
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Higher Order Correlations

I suggest that we think of the blocking/decimation RG
scheme as actively creating block spins, thereby eliminating
microscopic degrees of freedom that are irrelevant for upper,
continuum scale physics.

The DNN, on the other hand, passively reveals correlations
that are hidden in the microscopic details but that only
emerge or become visible at higher scales.

My suggestion is that the higher layers in the DNNs can be
seen as revealing or finding 3-point, 4-point . . . correlation
functions present in the pixelated input.

If this is correct, then it does indeed seem that DNNs are, in
effect, reconstructing a “continuum level field” that is the
image of a dog.
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Retraining

Finally, there is evidence that DNNs that have been trained on one
dataset require considerably less training to become successful
image classifiers on other datasets that they have not seen. Why?
After all, the datasets are of different images.

Possibly because they have already achieved a kind of
alignment with the ground truth function (read robust power
law scaling) that is present in all of the datasets. Wei et al.
(2022)

So it shouldn’t be surprising that the DNNs port well to other
datasets.

They already have the weight parameter structure
corresponding to the (same) statistics in the new datasets.
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Thank You!

And, thanks to Katie Creel, Conny Knieling, Sameera Singh, Porter
Williams, and Jim Woodward.
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