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Outline

1. Algorithms from the fruit fly

(a) An expand-and-sparsify representation
(b) Continual learning without catastrophic forgetting

2. Hyperdimensional computing for embedded devices

Common theme: algorithmic benefits of sparse, randomized, high-dimensional
representations.



Algorithms from neuroscience

Study neural circuitry of simple organisms from an algorithmic perspective.

Has yielded algorithms for:
Saket Navlakha e Similarity search (Science 17)
(lead) e Novelty detection (PNAS 18)
Habituation (PNAS 20)
¢ Approximate counting (Nat Comm 22)

Continual learning (Neur Comp 23)
Chuck Stevens ¢ Bipartite matching (PNAS 24)




The fly’s sense of smell
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Reproduced without permission from: Masse, Turner, Jefferis. Olfactory information processing

in Drosophila. Current Biology, 2009.



Step 1: Linearly map to higher dimension
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receptor (d = 50) cells
neurons (m = 2000)

The expansive map:
Multiplication by a sparse binary
random matrix (of size 2000 x 50).



Step 2: Sparsify
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Result: a sparse binary vector,
marking the locations of the k
largest entries.

This is the tag used for:
® similarity search

® subsequent learning
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Result: a sparse binary vector,
marking the locations of the k
largest entries.

This is the tag used for:
® similarity search

® subsequent learning

@ How to model the random
expansive map?

® What is the geometry of
tag space?

©® What are beneficial
properties of the tag?
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Reprinted without permission from:
Caron, Ruta, Abbott, Axel.

Random convergence of olfactory inputs in the Drosophila

mushroom body. Nature, 2013.
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Effect of sparse coding: Boolean case

Data space: X = {x € {0,1}9 : ||x|1 = b}

©)

random
projection

sparsify

z € R?

0000000000000

y €R™
m>d

0000000000 eo

N
M
—~
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Expansive map given by m x d random
binary matrix ©, with ¢ ones per row.

Given an input x:
* y=0x
e z; =1 if y; is one of the k largest
entries of y

For any x,x’ € X, we have

ol(z. )~k (H21)




Algorithmic benefits of sparse code

@ It is a locality-sensitive map.

@ It facilitates many types of downstream computations.

® A simple novelty detector in the next layer (MBONS).
® A simple mechanism for approximately counting similar items.

© Universal approximation.
Pick any continuous function of x, say f : X — R. Then f is almost-linear in the
sparse tag z (that is, f(x) =~ w - z(x) + b), if the tag size is large enough. This
holds even for fixed sparsity level (# of nonzero entries).
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Catastrophic forgetting

French (1993): Catastrophic forgetting is the inability of a neural network to retain old
information in the presence of the new. New information destroys old unless the old
information is continually relearned by the net.
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Continual learning without catastrophic forgetting

Shen, Dasgupta, Navlakha (2023). Reducing catastrophic forgetting with associative
learning: a lesson from fruit flies.

(a) Catastrophic forgetting and the Perceptron algorithm

(b) A fly-inspired associative variant of Perceptron



The multiclass Perceptron
Setting: X =R9 and Y = {1,2,...,k}

Model: Each class j has a linear function w; - x 4 b;

Prediction: On instance x, predict label arg max;(w; - x + b))

J

® Repeat forever:

® Get next point x, predict label y = argma
® Get correct label y. If y # y:

for correct label y:  w, = w, + x

b, =b,+1
for predicted label y:  wy = wy — x
by = by — 1

X

® |nitializew; =---=wy=0and by =---=b, =0

(wj - x + bj)

Mistake bound: 2k/v? when data is linearly separable with margin ~




Catastrophic forgetting and the Perceptron

Say dimension d is a power of two. Pick xi,...,x4_1 € {0,1}9 so that:
® Each x; has exactly d/2 ones
® Any pair of vectors has dot product exactly d/4

(E.g. start from d x d Hadamard matrix.)

Consider k = d — 1 classes, with class j supported entirely on x;.
Ideal classifiers: w; = x;.

Introduce classes one at a time, in order:
® Class 1 introduced: wy = x1
® (Class 2 introduced: wr = x» but w; = x; — x» corrupted

® (Class 3 introduced: w3 = x3 but wy = xo — x3 corrupted



Associative variant of the Perceptron — 1

Setting: X =R% and Y = {1,2,...,k}

Model: wy,...,w, € R™

® Repeat forever:

® Update:

® |nitialize wy = - - -

=w,=0

® Get next point x, predict label y = arg max; w; - ¢(x)
® Get correct label y

wy = wy + ¢(x)




Associative variant of the Perceptron — 2

Setting: X =R% and Y = {1,2,...,k}
Model: wy,...,w, € R™
® |nitialize wy = - - =w, =0

® Update:

® Repeat forever:
® Get next point x, predict label y = arg max; w; - ¢(x)
® Get correct label y

wy = (1 — a)wy + So(x)




Analyzing the associative Perceptron

Definition

Let 71, ..., m be distributions over RY, corresponding to k classes of data points. We
say the classes are (7, d)-separated, for some ~,8 > 0, if for any pair of classes j # ',
at least 1 — 0 fraction of the points x, from class j satisfy

Exm[d(x0) - #(X)] = 7 + Exrum, [6(%60) - $(X)].

Theorem
Suppose there are k classes that are (v, d)-separated and that each ||¢(x)|| < R. Let
[1, - .., ftk denote the class means, and suppose their empirical estimates [i; satisfy

|1ij — cjl| < 5 for ¢ > 0. Then the classification rule

X — arg max i - ¢(x)
J

has error < (k — 1)0 on each class individually.



Some open problems: expand-and-sparsify representations

O O
o @ @ .
@ 0O @ Feedback connections may allow the
o 'e) O fly's representation ¢(x) to change
O O over time.
g @ If this representation changes over
O prgg}gggglon 0 sparsify 8 time, what happens to previously
learned linear functions of it?
o o O
O O
@ O ® Formalize regularities in data, beyond
@) 8 8 clusters and manifolds, that might be
s e RY — e {0,1}m captured by sparse expansive maps.

m>d
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Hyperdimensional computing
Two trends in computer architecture:

@ Massive amounts of compute needed for training and running deep learning
models.

® Pushing increasing computation onto tiny low-power embedded devices.

One approach to the latter: hyperdimensional computing or vector-space architectures.

Tajana Rosing Anthony Thomas



Hyperdimensional computing

e All data is mapped into a space of very high dimension.

® In that space, only simple operations are allowed: bundling (elementwise
addition, @), binding (elementwise multiplication, ®), and scalar multiplication.

Input Data: HD Encoding:
reX o: X —>H

Entirely in H-space
Mixed in H, X-space

Noise/Corruption:
AcH

|

Memory and
Data Structures € H

| ] J

HD Algorithms:
Learning/Reasoning

—— HD Decoding

Output



Examples

@ Set membership. To store a set of items S = {x1,...,xm} C X use

m

n=EP o(x).

i=1

To test if x € S, use (1, #(x)) > 6.
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Examples

@ Set membership. To store a set of items S = {x1,...,xm} C X use

m

p= @ B(xi).

i=1

To test if x € S, use (1, #(x)) > 6.

® Classification. Given k classes with examples S; C X of each, use:

1 )
HJ:?@QZ)(X), J:1,2,...,k.
|J|X€Sj

To classify x, use arg max;(u;, ¢(x)).

Q: Under what kinds of encodings ¢(-) do these (and a host of other basic data
processing routines) provably behave correctly?



Encodings with good properties

Discrete data A
Various guarantees (e.g. unique decoding)
for encodings that are incoherent:

max((a), ¢(2)) < cmin(l¢(a)l|?, lla(a)1%)-

Can be achieved, e.g., by choosing each
#(a) €g {—1,+1}9 uniformly at random.
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Clarkson et al (2024): Formalizes close
connection to linear sketching.



Encodings with good properties

Discrete data A
Various guarantees (e.g. unique decoding)
for encodings that are incoherent:

max(¢(a), ¢(a")) < cmin(|[6(a)|? lo(a)]%).

a#a’
Can be achieved, e.g., by choosing each

#(a) €g {—1,+1}9 uniformly at random.

Clarkson et al (2024): Formalizes close
connection to linear sketching.

Continuous vector data X
Various guarantees for thresholded linear
maps:

¢(x) = sign(Ax) € {~1,+1}¢

E.g. creates sparse linear separability for
smooth classification problems, if d is
sufficiently large.

Similar to work on expand-and-sparsify
representations.



Encodings with good properties

Continuous vector data X
Various guarantees for thresholded linear
maps:

Discrete data A
Various guarantees (e.g. unique decoding)
for encodings that are incoherent:

max(6(a). 6() < cmin([6(@)? o)) ¢0) = sign(A) € {1417
E.g. creates sparse linear separability for

smooth classification problems, if d is
sufficiently large.

Can be achieved, e.g., by choosing each
#(a) €g {—1,+1}9 uniformly at random.

Clarkson et al (2024): Formalizes close
connection to linear sketching.

Similar to work on expand-and-sparsify
representations.

These applications and results use only bundling (elementwise addition, &) and scalar
multiplication.



Understanding the binding operator

Binding (elementwise multiplication, ®) can create more complex data structures.
E.g. Sanjoy: (City: San Diego), (Sign: Taurus)

#(Sanjoy) ® ((¢(City) ® ¢(San Diego)) @ (¢(Sign) ® ¢(Taurus)))

Questions:
® How far does this go beyond linear sketching?

® How can this be used for simple reasoning?
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Thanks to my collaborators

Saket Navlakha Chuck Stevens Tajana Rosing Anthony Thomas



