Neural machines: From fruit flies to embedded devices

Sanjoy Dasgupta

University of California, San Diego

Neural machines

Memory @

|

Tt

Biological or human-made
machines for lifelong learning:
® Handle an endless stream
of input demanding
constant-time responses.

® | earn from experience.

Neural machines

Memory @

|

Tt

Biological or human-made
machines for lifelong learning:
® Handle an endless stream
of input demanding
constant-time responses.

® |earn from experience.

Finite-state automaton
Recurrent neural net
Hopfield net
Spiking neural net
Liquid state machine
Hyperdimensional computer

Similarity search
Density estimation
Pattern completion

Clustering

Neural

Machine
models from
the literature

Worm
Fly

machine

Algorithmic and
learning tasks

formalism

Streaming
Online learning
Memory-limited computation
Low precision computing

Mouse

Biological
examples

Minimalistic
computational
paradigms

Outline

1. Algorithms from the fruit fly

(a) An expand-and-sparsify representation
(b) Continual learning without catastrophic forgetting

2. Hyperdimensional computing for embedded devices

Common theme: algorithmic benefits of sparse, randomized, high-dimensional
representations.

Algorithms from neuroscience

Study neural circuitry of simple organisms from an algorithmic perspective.

Has yielded algorithms for:
Saket Navlakha e Similarity search (Science 17)
(lead) e Novelty detection (PNAS 18)
Habituation (PNAS 20)
¢ Approximate counting (Nat Comm 22)

Continual learning (Neur Comp 23)
Chuck Stevens ¢ Bipartite matching (PNAS 24)

The fly’s sense of smell

Kenyon cells
0000

Projection
neurons

Olfactory
receptor
neurons

L]
/

/

Local /"
neuron <«

Lateral horn
neurons

—0]
—~
—0]
—0
—0

%
R
L
XSRS

L m)
Antennal lobe Mushroom body Lateral horn
Current Biology

Antenna

Reproduced without permission from: Masse, Turner, Jefferis. Olfactory information processing

in Drosophila. Current Biology, 2009.

Step 1: Linearly map to higher dimension

e indegree O

/’ O O\\ about 6
i

/O
O
000000000000

olfactory glomeruli Kenyon
receptor (d = 50) cells
neurons (m = 2000)

The expansive map:
Multiplication by a sparse binary
random matrix (of size 2000 x 50).

Step 2: Sparsify

GO O O
ooy ® ®
e @ O
OO, O O
NeJe¥; O O
T @ @
Y9 —=0 O o \O
\‘9__9// O top 5% O
OO O O
NeJo¥ une 8 8
OO, O O
Nejer O/o O
olfactory glomeruli Kenyon
receptor (d = 50) cells

neurons (m = 2000)

Result: a sparse binary vector,
marking the locations of the k
largest entries.

This is the tag used for:
® similarity search

® subsequent learning

Step 2: Sparsify

GO O O
ooy ® ®
e @ O
OO O O
NeJe¥; O O
@ @
Y9 —=0 O o \O
' Q__Q/l O top 5% O
OO O O
NeJo¥ une O O
S @ O
OO Q O
Nejer O/o O
olfactory glomeruli Kenyon
receptor (d = 50) cells
neurons (m = 2000)

Result: a sparse binary vector,
marking the locations of the k
largest entries.

This is the tag used for:
® similarity search

® subsequent learning

@ How to model the random
expansive map?

® What is the geometry of
tag space?

©® What are beneficial
properties of the tag?

in?

in the brai

inear mappings in

Random |

Reprinted without permission from:
Caron, Ruta, Abbott, Axel.

Random convergence of olfactory inputs in the Drosophila

mushroom body. Nature, 2013.

] I
o B
SUOOBULOD JO JuBD

0%

sod

S
8

Siio0 uoAusy|

Effect of sparse coding: Boolean case

Data space: X = {x € {0,1}9 : ||x|1 = b}

©)

random
projection

sparsify

z € R?

0000000000000

y €R™
m>d

0000000000 eo

N
M
—~
=

Expansive map given by m x d random
binary matrix ©, with ¢ ones per row.

Given an input x:
* y=0x
e z; =1 if y; is one of the k largest
entries of y

For any x,x’ € X, we have

ol(z.)~k (H21)

Algorithmic benefits of sparse code

@ It is a locality-sensitive map.

@ It facilitates many types of downstream computations.

® A simple novelty detector in the next layer (MBONS).
® A simple mechanism for approximately counting similar items.

© Universal approximation.
Pick any continuous function of x, say f : X — R. Then f is almost-linear in the
sparse tag z (that is, f(x) =~ w - z(x) + b), if the tag size is large enough. This
holds even for fixed sparsity level (# of nonzero entries).

Outline

1. Algorithms from the fruit fly

(a) An expand-and-sparsify representation
(b) Continual learning without catastrophic forgetting

2. Hyperdimensional computing for embedded devices

Common theme: algorithmic benefits of sparse, randomized, high-dimensional
representations.

Catastrophic forgetting

French (1993): Catastrophic forgetting is the inability of a neural network to retain old
information in the presence of the new. New information destroys old unless the old
information is continually relearned by the net.

Input Units Hidden Units Qutput Units

SN

First Number:

6
Tens

[X J:ToZeX JoI] To}

Experiment of McCloskey and
Cohen (1989):

Second Number:

1 Ones

Qe0000080®

000800000000 eee0000eee000000
0008800000000 0000000Ceee

Operation:
Addition

Continual learning without catastrophic forgetting

Shen, Dasgupta, Navlakha (2023). Reducing catastrophic forgetting with associative
learning: a lesson from fruit flies.

(a) Catastrophic forgetting and the Perceptron algorithm

(b) A fly-inspired associative variant of Perceptron

The multiclass Perceptron
Setting: X =R9 and Y = {1,2,...,k}

Model: Each class j has a linear function w; - x 4 b;

Prediction: On instance x, predict label arg max;(w; - x + b))

J

® Repeat forever:

® Get next point x, predict label y = argma
® Get correct label y. If y # y:

for correct label y: w, = w, + x

b, =b,+1
for predicted label y: wy = wy — x
by = by — 1

X

® |nitializew; =---=wy=0and by =---=b, =0

(wj - x + bj)

Mistake bound: 2k/v? when data is linearly separable with margin ~

Catastrophic forgetting and the Perceptron

Say dimension d is a power of two. Pick xi,...,x4_1 € {0,1}9 so that:
® Each x; has exactly d/2 ones
® Any pair of vectors has dot product exactly d/4

(E.g. start from d x d Hadamard matrix.)

Consider k = d — 1 classes, with class j supported entirely on x;.
Ideal classifiers: w; = x;.

Introduce classes one at a time, in order:
® Class 1 introduced: wy = x1
® (Class 2 introduced: wr = x» but w; = x; — x» corrupted

® (Class 3 introduced: w3 = x3 but wy = xo — x3 corrupted

Associative variant of the Perceptron — 1

Setting: X =R% and Y = {1,2,...,k}

Model: wy,...,w, € R™

® Repeat forever:

® Update:

® |nitialize wy = - - -

=w,=0

® Get next point x, predict label y = arg max; w; - ¢(x)
® Get correct label y

wy = wy + ¢(x)

Associative variant of the Perceptron — 2

Setting: X =R% and Y = {1,2,...,k}
Model: wy,...,w, € R™
® |nitialize wy = - - =w, =0

® Update:

® Repeat forever:
® Get next point x, predict label y = arg max; w; - ¢(x)
® Get correct label y

wy = (1 — a)wy + So(x)

Analyzing the associative Perceptron

Definition

Let 71, ..., m be distributions over RY, corresponding to k classes of data points. We
say the classes are (7, d)-separated, for some ~,8 > 0, if for any pair of classes j # ',
at least 1 — 0 fraction of the points x, from class j satisfy

Exm[d(x0) - #(X)] = 7 + Exrum, [6(%60) - $(X)].

Theorem
Suppose there are k classes that are (v, d)-separated and that each ||¢(x)|| < R. Let
[1, - .., ftk denote the class means, and suppose their empirical estimates [i; satisfy

|1ij — cjl| < 5 for ¢ > 0. Then the classification rule

X — arg max i - ¢(x)
J

has error < (k — 1)0 on each class individually.

Some open problems: expand-and-sparsify representations

O O
o @ @ .
@ 0O @ Feedback connections may allow the
o 'e) O fly's representation ¢(x) to change
O O over time.
g @ If this representation changes over
O prgg}gggglon 0 sparsify 8 time, what happens to previously
learned linear functions of it?
o o O
O O
@ O ® Formalize regularities in data, beyond
@) 8 8 clusters and manifolds, that might be
s e RY — e {0,1}m captured by sparse expansive maps.

m>d

Outline

1. Algorithms from the fruit fly

(a) An expand-and-sparsify representation
(b) Continual learning without catastrophic forgetting

2. Hyperdimensional computing for embedded devices

Common theme: algorithmic benefits of sparse, randomized, high-dimensional
representations.

Hyperdimensional computing
Two trends in computer architecture:

@ Massive amounts of compute needed for training and running deep learning
models.

® Pushing increasing computation onto tiny low-power embedded devices.

One approach to the latter: hyperdimensional computing or vector-space architectures.

Tajana Rosing Anthony Thomas

Hyperdimensional computing

e All data is mapped into a space of very high dimension.

® In that space, only simple operations are allowed: bundling (elementwise
addition, @), binding (elementwise multiplication, ®), and scalar multiplication.

Input Data: HD Encoding:
reX o: X —>H

Entirely in H-space
Mixed in H, X-space

Noise/Corruption:
AcH

|

Memory and
Data Structures € H

|] J

HD Algorithms:
Learning/Reasoning

—— HD Decoding

Output

Examples

@ Set membership. To store a set of items S = {x1,...,xm} C X use

m

n=EP o(x).

i=1

To test if x € S, use (1, #(x)) > 6.

Examples

@ Set membership. To store a set of items S = {x1,...,xm} C X use

m

p= @ B(xi).

i=1

To test if x € S, use (1, #(x)) > 6.

® Classification. Given k classes with examples S; C X of each, use:

1)
szm@gﬁ(x), J:1,2,...,k.
J

XESj

To classify x, use arg max;(u;, ¢(x)).

Examples

@ Set membership. To store a set of items S = {x1,...,xm} C X use

m

p= @ B(xi).

i=1

To test if x € S, use (1, #(x)) > 6.

® Classification. Given k classes with examples S; C X of each, use:

1)
HJ:?@QZ)(X), J:1,2,...,k.
|J|X€Sj

To classify x, use arg max;(u;, ¢(x)).

Q: Under what kinds of encodings ¢(-) do these (and a host of other basic data
processing routines) provably behave correctly?

Encodings with good properties

Discrete data A
Various guarantees (e.g. unique decoding)
for encodings that are incoherent:

max((a), ¢(2)) < cmin(l¢(a)l|?, lla(a)1%)-

Can be achieved, e.g., by choosing each
#(a) €g {—1,+1}9 uniformly at random.

Encodings with good properties

Discrete data A
Various guarantees (e.g. unique decoding)
for encodings that are incoherent:

max(¢(a), ¢(2)) < cmin([lo(a)[1%, lle(a")1%)-

Can be achieved, e.g., by choosing each

#(a) €g {—1,+1}9 uniformly at random.

Clarkson et al (2024): Formalizes close
connection to linear sketching.

Encodings with good properties

Discrete data A
Various guarantees (e.g. unique decoding)
for encodings that are incoherent:

max(¢(a), ¢(a")) < cmin(|[6(a)|? lo(a)]%).

a#a’
Can be achieved, e.g., by choosing each

#(a) €g {—1,+1}9 uniformly at random.

Clarkson et al (2024): Formalizes close
connection to linear sketching.

Continuous vector data X
Various guarantees for thresholded linear
maps:

¢(x) = sign(Ax) € {~1,+1}¢

E.g. creates sparse linear separability for
smooth classification problems, if d is
sufficiently large.

Similar to work on expand-and-sparsify
representations.

Encodings with good properties

Continuous vector data X
Various guarantees for thresholded linear
maps:

Discrete data A
Various guarantees (e.g. unique decoding)
for encodings that are incoherent:

max(6(a). 6() < cmin([6(@)? o)) ¢0) = sign(A) € {1417
E.g. creates sparse linear separability for

smooth classification problems, if d is
sufficiently large.

Can be achieved, e.g., by choosing each
#(a) €g {—1,+1}9 uniformly at random.

Clarkson et al (2024): Formalizes close
connection to linear sketching.

Similar to work on expand-and-sparsify
representations.

These applications and results use only bundling (elementwise addition, &) and scalar
multiplication.

Understanding the binding operator

Binding (elementwise multiplication, ®) can create more complex data structures.
E.g. Sanjoy: (City: San Diego), (Sign: Taurus)

#(Sanjoy) ® ((¢(City) ® ¢(San Diego)) @ (¢(Sign) ® ¢(Taurus)))

Questions:
® How far does this go beyond linear sketching?

® How can this be used for simple reasoning?

Neural machines

Memory @

|

Tt

Biological or human-made
machines for lifelong learning:
® Handle an endless stream
of input demanding
constant-time responses.

® |earn from experience.

Finite-state automaton
Recurrent neural net
Hopfield net
Spiking neural net
Liquid state machine
Hyperdimensional computer

Similarity search
Density estimation
Pattern completion

Clustering

Neural

Machine
models from
the literature

Worm
Fly

machine

Algorithmic and
learning tasks

formalism

Streaming
Online learning
Memory-limited computation
Low precision computing

Mouse

Biological
examples

Minimalistic
computational
paradigms

Thanks to my collaborators

Saket Navlakha Chuck Stevens Tajana Rosing Anthony Thomas

