
Neural machines: From fruit flies to embedded devices

Sanjoy Dasgupta

University of California, San Diego

Neural machines

Memory

<latexit sha1_base64="Jq3BWWIG0jlrEVn5D50GOdcRYoo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6c+9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfFsOZnQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1buqeneXlXotj6MIJ3AK5+DBNdThFhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP3Ayjd8=</latexit>xt

<latexit sha1_base64="63ecuaIhbSrJIC7aTtLluDYuNTI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48V7Qe0oWy2m3bpZhN2J0II/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmltfWNzq7xd2dnd2z+oHh51TJxqxtsslrHuBdRwKRRvo0DJe4nmNAok7wbTm7nffeTaiFg9YJZwP6JjJULBKFrpPhvisFpz6+4C5C/xClKDAq1h9XMwilkacYVMUmP6npugn1ONgkk+qwxSwxPKpnTM+5YqGnHj54tTZ+TMKiMSxtqWQrJQf07kNDImiwLbGVGcmFVvLv7n9VMMG34uVJIiV2y5KEwlwZjM/yYjoTlDmVlCmRb2VsImVFOGNp2KDcFbffkv6VzUvau6d3dZazaKOMpwAqdwDh5cQxNuoQVtYDCGJ3iBV0c6z86b875sLTnFzDH8gvPxDXG4jeA=</latexit>yt

<latexit sha1_base64="07JXHx5j6CCuf/2aS8sw56Unzhw=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxTZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+awVUzuL9stFplHFU4gVM4hwCuoQV30IYOEEjgGV7hzRPei/fufSxaK145cwx/4H3+AOQXjiM=</latexit>

�

Biological or human-made
machines for lifelong learning:

• Handle an endless stream
of input demanding
constant-time responses.

• Learn from experience.

Neural
machine

formalism

Worm
Fly

Mouse

Similarity search
Density estimation
Pattern completion

Clustering

Streaming
Online learning

Memory-limited computation
Low precision computing

Finite-state automaton
Recurrent neural net

Hopfield net
Spiking neural net

Liquid state machine
Hyperdimensional computer

Biological
examples

Algorithmic and
learning tasks

Machine
models from
the literature

Minimalistic
computational

paradigms

Neural machines

Memory

<latexit sha1_base64="Jq3BWWIG0jlrEVn5D50GOdcRYoo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6c+9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfFsOZnQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1buqeneXlXotj6MIJ3AK5+DBNdThFhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP3Ayjd8=</latexit>xt

<latexit sha1_base64="63ecuaIhbSrJIC7aTtLluDYuNTI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48V7Qe0oWy2m3bpZhN2J0II/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmltfWNzq7xd2dnd2z+oHh51TJxqxtsslrHuBdRwKRRvo0DJe4nmNAok7wbTm7nffeTaiFg9YJZwP6JjJULBKFrpPhvisFpz6+4C5C/xClKDAq1h9XMwilkacYVMUmP6npugn1ONgkk+qwxSwxPKpnTM+5YqGnHj54tTZ+TMKiMSxtqWQrJQf07kNDImiwLbGVGcmFVvLv7n9VMMG34uVJIiV2y5KEwlwZjM/yYjoTlDmVlCmRb2VsImVFOGNp2KDcFbffkv6VzUvau6d3dZazaKOMpwAqdwDh5cQxNuoQVtYDCGJ3iBV0c6z86b875sLTnFzDH8gvPxDXG4jeA=</latexit>yt

<latexit sha1_base64="07JXHx5j6CCuf/2aS8sw56Unzhw=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxTZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+awVUzuL9stFplHFU4gVM4hwCuoQV30IYOEEjgGV7hzRPei/fufSxaK145cwx/4H3+AOQXjiM=</latexit>

�

Biological or human-made
machines for lifelong learning:

• Handle an endless stream
of input demanding
constant-time responses.

• Learn from experience.

Neural
machine

formalism

Worm
Fly

Mouse

Similarity search
Density estimation
Pattern completion

Clustering

Streaming
Online learning

Memory-limited computation
Low precision computing

Finite-state automaton
Recurrent neural net

Hopfield net
Spiking neural net

Liquid state machine
Hyperdimensional computer

Biological
examples

Algorithmic and
learning tasks

Machine
models from
the literature

Minimalistic
computational

paradigms

Outline

1. Algorithms from the fruit fly

(a) An expand-and-sparsify representation
(b) Continual learning without catastrophic forgetting

2. Hyperdimensional computing for embedded devices

Common theme: algorithmic benefits of sparse, randomized, high-dimensional
representations.

Algorithms from neuroscience

Study neural circuitry of simple organisms from an algorithmic perspective.

Saket Navlakha
(lead)

Chuck Stevens

Has yielded algorithms for:

• Similarity search (Science 17)

• Novelty detection (PNAS 18)

• Habituation (PNAS 20)

• Approximate counting (Nat Comm 22)

• Continual learning (Neur Comp 23)

• Bipartite matching (PNAS 24)

The fly’s sense of smell

Olfactory
receptor
neurons

Antenna

Projection
neurons

Local
neuron

Kenyon cells

Lateral horn
neurons

Antennal lobe Lateral hornMushroom body
Current Biology

Figure 1. Summary of olfactory anatomy.

Schematic representation of the olfactory
system of Drosophila. Olfactory receptor
neurons in the antennae and maxillary palps
send axons to specific glomeruli in the
antennal lobe. All olfactory receptor neurons
expressing the same odorant receptor
complement (same colour) converge at the
same glomerulus. There they form synaptic
contacts with projection neurons and local
neurons. Projection neurons send axons
either directly to the lateral horn neuropile
(green projection neuron) or indirectly via
the calyx of the mushroom bodies (red and
blue projection neurons), where they form
synapses with Kenyon cells.

receptor neuron expresses one very
specific set of odorant receptors
(usually OR83b plus one receptor, but
occasionally two or three) [9,16]. Olfac-
tory receptor neurons expressing the
same receptor converge at the same
subregion of the antennal lobe, called
a glomerulus [17], and a complete projection map has been
generated for 37 olfactory receptor neuron classes covering
almost all the odorant receptor family [9,16]. In total, there
are about 50 classes of olfactory receptor neurons and
because each glomerulus receives information exclusively
from one class of olfactory receptor neuron there are about
50 such glomeruli [18].

Anatomical Features of the Antennal Lobe
A detailed description of information processing depends in
part on understanding the relevant circuit layout. We will
therefore review what is and is not known about the anatomy
of the antennal lobe (Figure 2) before discussing the compu-
tations that it performs. There are two broad types of neurons
in the antennal lobe: projection neurons and local neurons.
Projection neurons are the only neurons that send informa-
tion to higher centres, the lateral horn and the mushroom
body. In Drosophila, projection neuron dendrites usually
innervate single glomeruli [19] and therefore receive direct
input from olfactory receptor neurons expressing the same
odorant receptor. Most of these projection neurons are
cholinergic (like other excitatory neurons in the insect central
nervous system) and leave the antennal lobe via a large axon
bundle, the inner antennocerebral tract. A smaller number of
projection neuron axons take the middle antennocerebral
tract; these include both uniglomerular and multiglomerular
projection neurons [20,21] and at least some are known to
be GABAergic [22–24].

An important feature of the olfactory receptor neuron to
projection neuron connection is the convergence of many
olfactory receptor neuron axons on a much smaller number
of projection neurons. In Drosophila, each glomerulus
receives bilateral input from an average of 50 olfactory
receptor neurons (25 per antenna) expressing the same olfac-
tory receptor where they synapse with an average of three
projection neurons [17]. It seems that each olfactory receptor
neuron contacts all the projection neurons in a glomerulus
(H. Kazama and R. Wilson, personal communication).

Although projection neurons send axons into the mush-
room body and lateral horn, there is currently no evidence

that the antennal lobe receives feedback from these
areas. This contrasts with the vertebrate olfactory system,
where the olfactory bulb receives extensive feedback. This
does not imply that the insect olfactory system is purely
feedforward. For example, there are neuromodulatory
neurons that release neuropeptides such as dopamine,
octopamine and serotonin in the antennal lobe [25,26]; this
input is believed to be important in altering the response
properties of the antennal lobe during associative learning
[27,28].

Local neurons differ from projection neurons in that they
do not form connections outside the antennal lobe. They
can be inhibitory or excitatory, releasing GABA [29,30] or
probably acetylcholine [31], respectively. Local neurons
receive input from both olfactory receptor neurons and
projection neurons [22]. Both excitatory and inhibitory local
neurons form extensive connections throughout the
antennal lobe where they connect each glomerulus with
many, if not all, other glomeruli [19,22,31,32]. The strength
of excitatory interglomerular connections is non-uniform
but stereotyped across individual flies [32], and can be
sufficient to cause spiking responses to odours in projection
neurons that do not receive direct olfactory receptor neuron
input [31,32]. The connectivity of inhibitory lateral connec-
tions is known in more detail. A significant portion of interglo-
merular inhibition is directed at olfactory receptor neuron
terminals, although there is evidence that some interglomer-
ular inhibition is postsynaptic [22,33]. Current data suggest
that the strength of interglomerular presynaptic inhibition
scales with total olfactory receptor neuron output [33]
and acts non-uniformly at different glomeruli [34]. Finally,
there is evidence suggesting that inhibition can be intraglo-
merular [34].

Although the key components of the fly antennal lobe
circuitry have probably been described, there are still signif-
icant gaps in our knowledge, particularly at the synaptic
level. Electron microscopy data in cockroaches treating
olfactory receptor neurons, projection neurons and local
neurons as groups have indicated that essentially all
possible permutations of connectivity exist [35] (Figure 2).

Review
R701

Reproduced without permission from: Masse, Turner, Jefferis. Olfactory information processing

in Drosophila. Current Biology, 2009.

Step 1: Linearly map to higher dimension

The expansive map:
Multiplication by a sparse binary
random matrix (of size 2000× 50).

Step 2: Sparsify

Result: a sparse binary vector,
marking the locations of the k
largest entries.

This is the tag used for:

• similarity search

• subsequent learning

1 How to model the random
expansive map?

2 What is the geometry of
tag space?

3 What are beneficial
properties of the tag?

Step 2: Sparsify

Result: a sparse binary vector,
marking the locations of the k
largest entries.

This is the tag used for:

• similarity search

• subsequent learning

1 How to model the random
expansive map?

2 What is the geometry of
tag space?

3 What are beneficial
properties of the tag?

Random linear mappings in the brain?
Reprinted without permission from:
Caron, Ruta, Abbott, Axel. Random convergence of olfactory inputs in the Drosophila
mushroom body. Nature, 2013.

the same quartet of glomeruli (Fig. 3 and Supplementary Table 1).
However, the observed frequency with which the different pairs, trios
and quartets converge onto different KCs is consistent with expectations

from the shuffled data set (Fig. 4c and data not shown). Thus, the
identity of a glomerulus connected to a KC provides no predictive
information as to the identity of the remaining glomerular inputs onto
that neuron.

Glomeruli can be grouped based on biological properties shared by
their associated OSNs (sensilla type, odour specificity) and PNs (devel-
opmental origin and topography of their axonal projections). KCs
might receive preferential input from one or another of these glo-
merular categories. For example, the OSNs innervating the AL are
derived from three sensillar types (basiconic, coeloconic and trichoid
sensilla) that project to three classes of glomeruli tuned to different
odour categories20. If individual KCs were tuned to a particular class of
odours, they might preferentially integrate inputs from one type of
sensillum. Statistical analyses, however, reveal that KCs that receive an
input from one sensillar type are no more or less likely to receive
additional inputs from this or any other type of sensillum than is
predicted by chance (Fig. 4e–h). Sensillar type, however, provides only
a coarse correlate of odour tuning. Therefore, we also grouped glom-
eruli based on the similarity of their odour response profiles21 and
again observed no structure in the inputs to a KC that correlated with
odour tuning (Fig. 4d and Supplementary Fig. 4).

We also classified glomeruli on the basis of the properties of their
PNs. PN axons from different glomeruli project to broad but stereo-
typed domains in the lateral horn and calyx of the MB9. Input to an
individual KC could be shaped by the topography of PN projections.
Analysis of the distribution of inputs to a given KC, however, fails
to reveal any preferential PN connectivity that reflects the organiza-
tion of their projection in either the MB calyx (Fig. 4d and Supplemen-
tary Fig. 5) or lateral horn (Fig. 4d and Supplementary Fig. 6). KCs do
not preferentially integrate information from glomeruli innervated
by PNs sharing a developmental origin22 (Fig. 4d and Supplemen-
tary Fig. 7). In addition, KCs do not select their input on the basis of
topographical constraints as suggested by a previous study23 (Fig. 4d
and Supplementary Fig. 8). Finally, three glomeruli are innervated by
Fru-expressing OSNs and PNs16,17. We do not observe preferential
pairing of inputs from Fru1 PNs onto individual KCs (Fig. 4d and
Supplementary Fig. 9). Moreover, although most c KCs express Fru,
there is no preferential input from Fru1 glomeruli to c KCs (Sup-
plementary Fig. 2).

Next, we performed an unbiased search for structure by examining
correlations within the connectivity matrix between the 53 glomeruli
(51 AL glomeruli and 2 pseudoglomeruli) and the 200 KCs. Corre-
lations were extracted by performing a principal component analysis
of this matrix (Supplementary Figs 10, 11). This analysis failed to

electrode

Stimulating
electrode

Dye-filling
electrode

Antennal
lobe

Calyx

8015
ΔF/F

a e

b c d

Calyx

Stimulating

Figure 2 | Dye labelling identifies functional connections between PNs and
KCs. a, Schematic illustration of the strategy used to identify functional
connections between PNs and KCs. An AL glomerulus (here DL3) is stimulated
by local iontophoresis of acetylcholine (stimulating electrode). Optical
recordings of calcium-mediated changes in fluorescence (DF/F) are measured
in the MB calyx of a fly expressing GCaMP3 driven by the KC-specific
promoter OK107GAL4. A microglomerulus activated by the stimulation of DL3
is targeted for dye electroporation, identifying the pre-synaptic PN (red).
b, Stimulation of the DL3 glomerulus activates several microglomeruli
dispersed through the calyx. c, An electrode filled with Texas Red dextran is
positioned into the centre of an activated microglomerulus (arrow) highlighted
by the recorded DF/F. d, Electroporation of dye into the targeted
microglomerulus labels a single PN bouton (arrow). e, The labelled bouton
extends from a single dye-filled PN that innervates the stimulated DL3
glomerulus (n 5 10). Note that the stimulating electrode is visualized by
addition of Alexa-488 dextran dye to the acetylcholine. Scale bars are 10 mm.

6%

3%

0%

P
er

 c
en

t o
f c

on
ne

ct
io

ns
K

en
yo

n
ce

lls

VC
1

VC
2

VC
3

VC
4

VL1
VL2a
VL2p
VM

1
VM

2
VM

3
VM

4
VM

5d
VM

5v
VM

6
VM

7
C

old
H

eat
O

ther

D
L2v

D
L3

D
L4

D
L5

D
L6

D
M

1
D

M
2

D
M

3
D

M
4

D
M

5

D
L2d

D
A

3
D

A
4l

D
A

4m
D

C
1

D
C

2

1 D
A

1
D D

A
2

D
C

3
D

C
4

D
L1

D
M

6
D

P
1l

D
P

1m
V VA

1d
VA

1v
VA

2
VA

3
VA

4
VA

5
VA

6
VA

7l
VA

7m

1

150

200

50

100

Figure 3 | The connectivity matrix between AL
glomeruli and KCs. The 665 connections between
the AL glomeruli and KCs are represented in a
matrix in the lower panel. Each row corresponds to
one of the 200 photolabelled KCs whereas each
column refers to the 51 AL glomeruli, the two
thermosensing pseudoglomeruli and the other
uncharacterized brain regions. Glomeruli
connected once to a given KC are depicted as red
bars. Glomeruli connected twice to the same KC
are labelled as yellow bars. In the upper panel, the
connections to all glomeruli and other brain
regions are sorted according to their observed
frequency. The upper panel is a histogram of the
frequency of occurrence for each input source.

LETTER RESEARCH

2 M A Y 2 0 1 3 | V O L 4 9 7 | N A T U R E | 1 1 5

Macmillan Publishers Limited. All rights reserved©2013

Effect of sparse coding: Boolean case

Data space: X = {x ∈ {0, 1}d : ‖x‖1 = b}

sparsify

x 2 Rd y 2 Rm

m � d

z 2 {0, 1}m

random
projection

Expansive map given by m × d random
binary matrix Θ, with c ones per row.

Given an input x :

• y = Θx

• zi = 1 if yi is one of the k largest
entries of y

For any x , x ′ ∈ X , we have

EΘ[〈z , z ′〉] ≈ k

(〈x , x ′〉
b

)c

.

Algorithmic benefits of sparse code

1 It is a locality-sensitive map.

2 It facilitates many types of downstream computations.

• A simple novelty detector in the next layer (MBONs).
• A simple mechanism for approximately counting similar items.

3 Universal approximation.
Pick any continuous function of x , say f : X → R. Then f is almost-linear in the
sparse tag z (that is, f (x) ≈ w · z(x) + b), if the tag size is large enough. This
holds even for fixed sparsity level (# of nonzero entries).

Outline

1. Algorithms from the fruit fly

(a) An expand-and-sparsify representation
(b) Continual learning without catastrophic forgetting

2. Hyperdimensional computing for embedded devices

Common theme: algorithmic benefits of sparse, randomized, high-dimensional
representations.

Catastrophic forgetting

French (1993): Catastrophic forgetting is the inability of a neural network to retain old
information in the presence of the new. New information destroys old unless the old
information is continually relearned by the net.

Experiment of McCloskey and
Cohen (1989):

I I6 Michael McCloskey and Neal J. Cohen

First Number:

6

Input Units Hidden Units Output Units

Second Number:

1

Operation:

Addition

0
0
0
0
0
0
0
0
0 I_ 0

0
0
0 i 0

G

0
0
0
0
0
0
0
Q
0
0

0
0
0
0
0
0
0
0
0
0

f

Tens

0
0
0
0
0
0
0 n

Ones

7
0
0
0
0
0

Fig. 2. The arithmetic network.

TABLE I

COARSE-CODED REPRESENTATIONS FOR
NUMBERS IN THE ARITHMETIC NETWORK

Unit
~ ~~~~~~

Number 1 2 3 4 5 6 7 8 9 10 11 12

0
1
2
3
4
5
6
7
8
9

I I I 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 I 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 I 0 0 0
0 0 0 0 0 0 0 1 1 10 0
0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1 1 1

Continual learning without catastrophic forgetting

Shen, Dasgupta, Navlakha (2023). Reducing catastrophic forgetting with associative
learning: a lesson from fruit flies.

(a) Catastrophic forgetting and the Perceptron algorithm

(b) A fly-inspired associative variant of Perceptron

The multiclass Perceptron
Setting: X = Rd and Y = {1, 2, . . . , k}
Model: Each class j has a linear function wj · x + bj

Prediction: On instance x , predict label arg maxj(wj · x + bj)

• Initialize w1 = · · · = wk = 0 and b1 = · · · = bk = 0

• Repeat forever:

• Get next point x , predict label ŷ = arg maxj(wj · x + bj)
• Get correct label y . If y 6= ŷ :

for correct label y : wy = wy + x

by = by + 1

for predicted label ŷ : wŷ = wŷ − x

bŷ = bŷ − 1

Mistake bound: 2k/γ2 when data is linearly separable with margin γ

Catastrophic forgetting and the Perceptron

Say dimension d is a power of two. Pick x1, . . . , xd−1 ∈ {0, 1}d so that:

• Each xi has exactly d/2 ones

• Any pair of vectors has dot product exactly d/4

(E.g. start from d × d Hadamard matrix.)

Consider k = d − 1 classes, with class j supported entirely on xj .
Ideal classifiers: wj = xj .

Introduce classes one at a time, in order:

• Class 1 introduced: w1 = x1

• Class 2 introduced: w2 = x2 but w1 = x1 − x2 corrupted

• Class 3 introduced: w3 = x3 but w2 = x2 − x3 corrupted

• ...

Associative variant of the Perceptron – 1

Setting: X = Rd and Y = {1, 2, . . . , k}
Model: w1, . . . ,wk ∈ Rm

• Initialize w1 = · · · = wk = 0

• Repeat forever:

• Get next point x , predict label ŷ = arg maxj wj · φ(x)
• Get correct label y
• Update:

wy = wy + φ(x)

Associative variant of the Perceptron – 2

Setting: X = Rd and Y = {1, 2, . . . , k}
Model: w1, . . . ,wk ∈ Rm

• Initialize w1 = · · · = wk = 0

• Repeat forever:

• Get next point x , predict label ŷ = arg maxj wj · φ(x)
• Get correct label y
• Update:

wy = (1− α)wy + βφ(x)

Analyzing the associative Perceptron

Definition
Let π1, . . . , πk be distributions over Rd , corresponding to k classes of data points. We
say the classes are (γ, δ)-separated, for some γ, δ > 0, if for any pair of classes j 6= j ′,
at least 1− δ fraction of the points xo from class j satisfy

EX∼πj
[φ(xo) · φ(X)] ≥ γ + EX ′∼πj′

[φ(xo) · φ(X ′)].

Theorem
Suppose there are k classes that are (γ, δ)-separated and that each ‖φ(x)‖ ≤ R. Let
µ1, . . . , µk denote the class means, and suppose their empirical estimates µ̂j satisfy
‖µ̂j − cµj‖ < cγ

2R for c > 0. Then the classification rule

x 7→ arg max
j

µ̂j · φ(x)

has error ≤ (k − 1)δ on each class individually.

Some open problems: expand-and-sparsify representations

sparsify

x 2 Rd y 2 Rm

m � d

z 2 {0, 1}m

random
projection

1 Feedback connections may allow the
fly’s representation φ(x) to change
over time.
If this representation changes over
time, what happens to previously
learned linear functions of it?

2 Formalize regularities in data, beyond
clusters and manifolds, that might be
captured by sparse expansive maps.

Outline

1. Algorithms from the fruit fly

(a) An expand-and-sparsify representation
(b) Continual learning without catastrophic forgetting

2. Hyperdimensional computing for embedded devices

Common theme: algorithmic benefits of sparse, randomized, high-dimensional
representations.

Hyperdimensional computing
Two trends in computer architecture:

1 Massive amounts of compute needed for training and running deep learning
models.

2 Pushing increasing computation onto tiny low-power embedded devices.

One approach to the latter: hyperdimensional computing or vector-space architectures.

Tajana Rosing Anthony Thomas

Hyperdimensional computing

• All data is mapped into a space of very high dimension.

• In that space, only simple operations are allowed: bundling (elementwise
addition, ⊕), binding (elementwise multiplication, ⊗), and scalar multiplication.

A Theoretical Perspective on Hyperdimensional Computing

Input Data:
x ∈ X

HD Encoding:
φ : X → H

Memory and
Data Structures ∈ H HD Decoding

HD Algorithms:
Learning/Reasoning

Output

Noise/Corruption:
∆ ∈ H

Entirely in H-space

Mixed in H,X -space

Figure 1: The flow of data in HD computing. Data is mapped from the input space to HD-
space under an encoding function φ : X → H. HD representations of data are
stored in data structures and may be corrupted by noise or hardware failures. HD
representations can be used as input for learning algorithms or other information
processing tasks and may be decoded to recover the input data.

to much higher-dimensional sparse representations. These latter representations are then
used for subsequent tasks such as recall and learning. In the olfactory system of the fruit
fly (Masse et al., 2009; Turner et al., 2008; Wilson, 2013; Caron et al., 2013), the mapping
consists of two steps that can be roughly captured as follows:

1. An input x ∈ Rn is collected via a sensory organ and mapped under a random linear
transformation to a point φ(x) ∈ Rd (d # n) in a high-dimensional space.

2. The coordinates of φ(x) are “sparsified” by a thresholding operation which just retains
the locations of the largest k coordinates.

In the fly, the olfactory input is a roughly 50-dimensional vector (n = 50) corresponding
to different types of odor receptor neurons while the sparse representation to which it is
mapped is roughly 2,000-dimensional (d = 2000). A similar “expand-and-sparsify” template
is also found in other species, suggesting that this process somehow exposes the information
present in the input signal in a way that is amenable to learning by the brain (Stettler &
Axel, 2009; Olshausen & Field, 2004; Chacron et al., 2011). The precise mechanisms by
which this occurs are still not fully understood, but may have close connections to some of
the literature on the theory of neural networks and kernel methods (Cybenko, 1989; Barron,
1993; Rahimi & Recht, 2008).

2.2 HD Computing

The notion of high-dimensional, distributed, data representations has engendered a num-
ber of computational models that have collectively come to be known as vector symbolic
architectures (VSA) (Levy & Gayler, 2008). In general, VSAs provide a systematic way to
generate and manipulate high-dimensional representations of symbols so as to implement

3

Examples

1 Set membership. To store a set of items S = {x1, . . . , xm} ⊂ X : use

µ =
m⊕
i=1

φ(xi).

To test if x ∈ S , use 〈µ, φ(x)〉 ≥ θ.

2 Classification. Given k classes with examples Sj ⊂ X of each, use:

µj =
1

|Sj |
⊕
x∈Sj

φ(x), j = 1, 2, . . . , k .

To classify x , use arg maxj〈µj , φ(x)〉.

Q: Under what kinds of encodings φ(·) do these (and a host of other basic data
processing routines) provably behave correctly?

Examples

1 Set membership. To store a set of items S = {x1, . . . , xm} ⊂ X : use

µ =
m⊕
i=1

φ(xi).

To test if x ∈ S , use 〈µ, φ(x)〉 ≥ θ.

2 Classification. Given k classes with examples Sj ⊂ X of each, use:

µj =
1

|Sj |
⊕
x∈Sj

φ(x), j = 1, 2, . . . , k .

To classify x , use arg maxj〈µj , φ(x)〉.

Q: Under what kinds of encodings φ(·) do these (and a host of other basic data
processing routines) provably behave correctly?

Examples

1 Set membership. To store a set of items S = {x1, . . . , xm} ⊂ X : use

µ =
m⊕
i=1

φ(xi).

To test if x ∈ S , use 〈µ, φ(x)〉 ≥ θ.

2 Classification. Given k classes with examples Sj ⊂ X of each, use:

µj =
1

|Sj |
⊕
x∈Sj

φ(x), j = 1, 2, . . . , k .

To classify x , use arg maxj〈µj , φ(x)〉.

Q: Under what kinds of encodings φ(·) do these (and a host of other basic data
processing routines) provably behave correctly?

Encodings with good properties

Discrete data A
Various guarantees (e.g. unique decoding)
for encodings that are incoherent:

max
a 6=a′
〈φ(a), φ(a′)〉 ≤ c min(‖φ(a)‖2, ‖φ(a′)‖2).

Can be achieved, e.g., by choosing each
φ(a) ∈R {−1,+1}d uniformly at random.

Clarkson et al (2024): Formalizes close
connection to linear sketching.

Continuous vector data X
Various guarantees for thresholded linear
maps:

φ(x) = sign(Ax) ∈ {−1,+1}d

E.g. creates sparse linear separability for
smooth classification problems, if d is
sufficiently large.

Similar to work on expand-and-sparsify
representations.

These applications and results use only bundling (elementwise addition, ⊕) and scalar
multiplication.

Encodings with good properties

Discrete data A
Various guarantees (e.g. unique decoding)
for encodings that are incoherent:

max
a 6=a′
〈φ(a), φ(a′)〉 ≤ c min(‖φ(a)‖2, ‖φ(a′)‖2).

Can be achieved, e.g., by choosing each
φ(a) ∈R {−1,+1}d uniformly at random.

Clarkson et al (2024): Formalizes close
connection to linear sketching.

Continuous vector data X
Various guarantees for thresholded linear
maps:

φ(x) = sign(Ax) ∈ {−1,+1}d

E.g. creates sparse linear separability for
smooth classification problems, if d is
sufficiently large.

Similar to work on expand-and-sparsify
representations.

These applications and results use only bundling (elementwise addition, ⊕) and scalar
multiplication.

Encodings with good properties

Discrete data A
Various guarantees (e.g. unique decoding)
for encodings that are incoherent:

max
a 6=a′
〈φ(a), φ(a′)〉 ≤ c min(‖φ(a)‖2, ‖φ(a′)‖2).

Can be achieved, e.g., by choosing each
φ(a) ∈R {−1,+1}d uniformly at random.

Clarkson et al (2024): Formalizes close
connection to linear sketching.

Continuous vector data X
Various guarantees for thresholded linear
maps:

φ(x) = sign(Ax) ∈ {−1,+1}d

E.g. creates sparse linear separability for
smooth classification problems, if d is
sufficiently large.

Similar to work on expand-and-sparsify
representations.

These applications and results use only bundling (elementwise addition, ⊕) and scalar
multiplication.

Encodings with good properties

Discrete data A
Various guarantees (e.g. unique decoding)
for encodings that are incoherent:

max
a 6=a′
〈φ(a), φ(a′)〉 ≤ c min(‖φ(a)‖2, ‖φ(a′)‖2).

Can be achieved, e.g., by choosing each
φ(a) ∈R {−1,+1}d uniformly at random.

Clarkson et al (2024): Formalizes close
connection to linear sketching.

Continuous vector data X
Various guarantees for thresholded linear
maps:

φ(x) = sign(Ax) ∈ {−1,+1}d

E.g. creates sparse linear separability for
smooth classification problems, if d is
sufficiently large.

Similar to work on expand-and-sparsify
representations.

These applications and results use only bundling (elementwise addition, ⊕) and scalar
multiplication.

Understanding the binding operator

Binding (elementwise multiplication, ⊗) can create more complex data structures.

E.g. Sanjoy: (City: San Diego), (Sign: Taurus)

φ(Sanjoy)⊗ ((φ(City)⊗ φ(San Diego))⊕ (φ(Sign)⊗ φ(Taurus)))

Questions:

• How far does this go beyond linear sketching?

• How can this be used for simple reasoning?

Neural machines

Memory

<latexit sha1_base64="Jq3BWWIG0jlrEVn5D50GOdcRYoo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6c+9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfFsOZnQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1buqeneXlXotj6MIJ3AK5+DBNdThFhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP3Ayjd8=</latexit>xt

<latexit sha1_base64="63ecuaIhbSrJIC7aTtLluDYuNTI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48V7Qe0oWy2m3bpZhN2J0II/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmltfWNzq7xd2dnd2z+oHh51TJxqxtsslrHuBdRwKRRvo0DJe4nmNAok7wbTm7nffeTaiFg9YJZwP6JjJULBKFrpPhvisFpz6+4C5C/xClKDAq1h9XMwilkacYVMUmP6npugn1ONgkk+qwxSwxPKpnTM+5YqGnHj54tTZ+TMKiMSxtqWQrJQf07kNDImiwLbGVGcmFVvLv7n9VMMG34uVJIiV2y5KEwlwZjM/yYjoTlDmVlCmRb2VsImVFOGNp2KDcFbffkv6VzUvau6d3dZazaKOMpwAqdwDh5cQxNuoQVtYDCGJ3iBV0c6z86b875sLTnFzDH8gvPxDXG4jeA=</latexit>yt

<latexit sha1_base64="07JXHx5j6CCuf/2aS8sw56Unzhw=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxTZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+awVUzuL9stFplHFU4gVM4hwCuoQV30IYOEEjgGV7hzRPei/fufSxaK145cwx/4H3+AOQXjiM=</latexit>

�

Biological or human-made
machines for lifelong learning:

• Handle an endless stream
of input demanding
constant-time responses.

• Learn from experience.

Neural
machine

formalism

Worm
Fly

Mouse

Similarity search
Density estimation
Pattern completion

Clustering

Streaming
Online learning

Memory-limited computation
Low precision computing

Finite-state automaton
Recurrent neural net

Hopfield net
Spiking neural net

Liquid state machine
Hyperdimensional computer

Biological
examples

Algorithmic and
learning tasks

Machine
models from
the literature

Minimalistic
computational

paradigms

Thanks to my collaborators

Saket Navlakha Chuck Stevens Tajana Rosing Anthony Thomas

