Learning Concepts and Doing Experiments
with Language, Code, and Probability

Kevin Ellis

Work with:
Wen-Ding Li, Keya Hu,
Top Piriyakulkij, Yichao Liang,

The Cassidy Langenfeld, Hao Tang,
‘earnin_g | Evan Pu, Zenna Tavares

Recursion
Lab

What you'll learn in this talk

1. Computational models of human few-shot learning

2. How to make LLMs better at forming hypotheses and doing experiments

Part 1:

Human Few-Shot Learning

Data = » Hypothesis

Goal: Generalization to unseen test data, aiming for
human-like efficiency and flexibility *

*Few examples; Low-dimensional inputs

Data = » Hypothesis

Efficient: few examples needed E> Human-like prior

Flexible: infinite, diverse concepts E> Compositional hypothesis space

Efficient (v2): little time/energy E> Tension with flexibility......

Tractability vs Expressivity

@ argmax p(hypothesis) X p(data | hypothesis)
hypothesis

Tiny Subset of What Humans Learn

SCience Curren t Issue First release papers Archi

HOME > SCIENCE > VOL. 283 NO.5398 > RULELEARNING BY SEVEN-MONTH-OLD INFANTS

a REPORTS

Rule Learning by Seven-Month-0ld Infants

IJAYAN, S. BANDI RAQ, AND P. M. VISHTON Authors Info & Affiliations

Popular Idea: Compositional Hypothesis Space
Recursive + Expressive

“possession of the infinitely many concepts that are
expressible in an innate language of thought would
be a curse: the curse of a compositional mind.”

Spelke [2022]

Languages for Composition

Coulomb’s Law

= d1 42 pe—
FOC — _*27‘1—7‘2
Ty — 13|

Composed subparts: vector algebra ops

Dissecting the Curse of Compositionality

Data > » Inference

> d1 42 E—
Tt
Ty — 13|

Dissecting the Curse of Compositionality

Data >

Set of all equations ©0O

» Inference

Equations fitting the data:
Tiny sliver
e @)

Dissecting the Curse of Compositionality

Data > » Inference

Set of all equations OO

Equations fitting the data:
Tiny sliver
o0

Dissecting the Curse of Compositionality

Data = » Inference
Curse #1:
Most hypotheses don't work
Set of ol equations 00 Curse #2:

o0

YE‘L‘;E‘;%’;?“”““”M Infinitely many hypotheses work

Part 1, Human part of talk:

Taming the Curse of Compositionality, using
Bayes and Natural Language

Data = » Hypothesis

“Salamander with feathers”

/)
“Axolot!”

Reverend Bayes

Model

P(hypothesis | data) ec P(data | hypothesis) x P(hypothesis)

hypothesis space

= » Hypothesis
prior likelihood 'r% = =
=

salamander
+feathers

Reverend Bayes

Model

P(hypothesis | data) ec P(data | hypothesis) x P(hypothesis)

hypothesis space:
natural language

= » Hypothesis
prior likelihood 'r% = =
=

salamander
+feathers

See Latent Language:
Andreas et al. 2018

Tractable Approximate Inference:

Top-down + Bottom-up

Tractable Approximate Inference

Candidate Hypotheses

RN

Bottom-up Proposals:
Imprecise, learned, data-driven

Bottom-up

Data

Tractable Approximate Inference

Candidate Hypotheses

Bottom-up Proposals:
Imprecise, learned, data-driven

> Top-down Reasoning:

Q ° e e

7 5 Probabilistic inference

IS o

5e) Z

E)
Qg Reverend Bayes
LLM

Bayesian Network

Natural
Language

Bayesian Network:
Learnable Prior

Prior: LLM. Natural
Autoregressive = Occam's Language
Tune prior to human data

Bayesian Network:
Data-Driven Proposal Distribution

Prior: LLM. Natural
Autoregressive = Occam's Language
Tune prior to human data

proposal/inference network
~importance sampling

Data

Bayesian Network:
Likelihood via Python Code Generation

Prior: LLM. Natural
Autoregressive = Occam's Language
Tune prior to human data

Likelihood:
Convert NL to Python

proposal/inference network
~importance sampling

Likelihood filters out bad proposals

inference network/ prog 1
proposal distribution prog 2

Data : _ Data
image, input-outputs, ... % : Likelihood

prog N T

Model vs Humans:
Logical Concepts

Logical Concepts

“Bachelor”

(Male A —Married)

“Valedictorian”
Valedictorian(x) <= (Vy : School(z) = School(y) = GPA(z) > GPA(y))

Task+Data From Piantadosi et al. 2016: 112 concepts, >1k human participants

Example 1: No shapes in concept

Task from:
Piantadosi et al. 2016

Example 1: No shapes in concept
| e

Example 2

A O

Task from:
Piantadosi et al. 2016

Example 1: No shapes in concept
| e

Example 2: Only middle shape in concept

Task from:
Piantadosi et al. 2016

A

Example 1: No shapes in concept
I
Example 2: Only middle shape in concept

A O

Example 3: Which shapes are in the concept?

® A o O

Task from:
Piantadosi et al. 2016

™\
_/

Yes

./

No

—~ 7~
() L)

Yes Yes Yes Yes Yes Yes

No No No No No No

Yes Yes Yes Yes Yes

No No No No No

Hypothesis Space

NL

Model

Bayes,
learnable neural prior

LLM Proposal distribution

Model Predicts Human Learning Dynamics

Hidden logical rule

Hypothesized
Natural language

accuracy

e
o

o
o)

&
o

X.color = blue A VyES. x.sizex=y.size

it is the largest blue object in

LA

the example

10 20 30
response number

40

model and humans
fail at same point

| —— human

- this work

Model is Good but Not Perfect

- tuned prior, 100 samples

0.5

human response

0.0
0.0 0.5 1.0

model response

average accuracy
© © o o o o ¥
EnN Ul (@) ~ (0] O o

Efficient: Learns from few examples

— human - this work

chance level

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14
num training batches

average accuracy
o o e o Qo o =
EnN Ul (@) ~ (0] O =

Efficient: Learns from few examples

—— human —— this work — GPT-4

0

_

—

— ——

chance level

1 2 3 4 5 6 7 8 9 10 11 12 13 14
num training batches

o o ©
Hn (o)} (0]

model-human response R?2

o
N

Efficient: Requires modest compute

—4— this work
- = GPT-4

10° 10! 102
num samples

model-human response R?2

o
o

o
o

109

Efficient: Requires modest compute

—}— this work
—{— top-down proposals
——- GPT-4

10! 102
num samples

Flexibility test:
Replicating to new subjects on out-of-distribution concepts

Majority color Minority color

Flexibility test:
Replicating to new subjects on out-of-distribution concepts

Majority color Minority color

1.0
as — human
g 0.5 — this work .
8 — program synthesis
m /

0.0 RN Frrrr e symbolic synthesizer

0 20 40 60 80 0 20 40 60 go handdesigned for

original dataset
response number response number

Lessons

LLMs and the Curse of Compositionality:

Tractably index an infinite concept space w/ finite compute

Neural prior gives good inductive bias

Adding Experimentation
and Active Learning

Piriyvakulkij et al. NeurIPS 24

inference experiment

Data —» @ —— Hypotheses —» é

Everyday experiments in adulthood:
learning to use new devices, webpages, tools, fixing technical problems

Active learning during childhood development:
exploratory play; active inference during early visual learning

Piriyakulkij et al. NeurIPS 24

Probabilistic beliefs are important for active learning

Piriyakulkij et al. NeurIPS 24

Probabilistic beliefs are important for active learning

II-
H1T H2 H3

experiment 1 I]
experiment 2 [I

p(H | data)

Piriyakulkij et al. NeurIPS 24

Online infer

Batch inference

ence is important for active learning

All the data —» @ —» Many Hypotheses

Online inference

/
NewTData —{ é

o
Ej;;’ —» Revised Hypotheses —>éE
|

Piriyakulkij et al. NeurIPS 24

Active Learning Model

Hypothesis Space

I @

Bayes

Online LLM-guided SMC Max InfoGain experiments
00® | XX Qe 0
g prop . weigh . resample . .
| 00 ®o 0

+fuzzy/noisy hypotheses
don’'t immediately “kill” partly correct proposals

Piriyakulkij et al. NeurIPS 24

p(H | data)

I —
HI Hz H3

experiment 1 I
experiment2 [I

Basic Active Learning Domain:
“Blicket Detectors”

Piriyakulkij et al. NeurIPS 24

Experimentation A!

Piriyakulkij et al. NeurIPS 24

, _ Hypothesis
Experimentation Ai ‘o
Revilsion

The machine makes sound when
Hypothesis 1: at least one of them is a yellow object
Hypothesis 2: more than three objects are present

Piriyakulkij et al. NeurIPS 24

_ _ Hypothesis
Experimentation & ‘o
Revilsion

The machine makes sound when
Hypothesis 1: at least one of them is a yellow object
Hypothesis 2: more than three objects are present

Time

Piriyakulkij et al. NeurIPS 24

Experimentation &

Hypothesis g
Revision

The machine makes sound when
Hypothesis 1: at least one of them is a yellow object
"”' Hypothesis 2: more than three objects are present
(0)] =
=] iz \
éj | The machine makes sound when
Hypothesis 1: at least one of them is a yellow object
® & or a cylinder
s EE “’f’ Hypothesis 2: there are at least two objects
\ 4 | \ & The machine makes sound when
Hypothesis 1: at least one of them is a yellow object
or a cylinder that is not red

Piriyakulkij et al. NeurIPS 24

The Original Blicket Detector

https://www.nytimes.com/video/science/100000002187112/buckets-of-blickets-children-and-logic.html

Zendo: harder Blicket-style task

Zendo: harder Blicket-style task

-Block 4: -Block 1:
Color —red, Color —green,
Size —large, Size — medium,
Orientation — left, Orientation — upright,
Groundedness — grounded, Groundedness — grounded,
Touching — none Touching — Block 3

) e

P
&5
&
&
S
.
&
V4

A AL AT AT AT A s

A
A

=

Task & Human Data from Bramley et al. 2018

performance

Zendo

Piriyakulkij et al. NeurIPS 24

™~ O Tg]
(g J0 1n0) Adeunddy

<

pieH ‘auljuQ

Azzn4 ‘auluQ

pleH ‘yojeg

Azzn4 ‘yojeg

(3ovad) W11

uewny

asuey)

<Human Level with just prompting an LLM

pieH ‘auljuQ

Azzn4 ‘auluQ

pleH ‘yojeg

Azzn4 ‘yojeg

(3ovad) W11

uewny

o0)

r~ te} Te)
(g J0 1n0) Adeunddy

Piriyakulkij et al. NeurIPS 24

<

ajuey)

~Human Level with Fuzzy Probabilistic Rules

pieH ‘auljuQ

Azzn4 ‘auluQ

pleH ‘yojeg

Azzn4 ‘yojeg

(3ovad) W11

uewny

o0)

r~ te} Te)
(g J0 1n0) Adeunddy

Piriyakulkij et al. NeurIPS 24

<

ajuey)

>Human Level with Deterministic Rules

pieH ‘auljuQ

Azzn4 ‘auluQ

pleH ‘yojeg

Azzn4 ‘yojeg

(3ovad) W11

uewny

™~ O Tg]
(g J0 1n0) Adeunddy

Piriyakulkij et al. NeurIPS 24

<

asuey)

Online Inference beats Batch Inference

pieH ‘auljuQ

Azzn4 ‘auluQ

pleH ‘yojeg

Azzn4 ‘yojeg

™~ O Tg]
(g J0 1n0) Adeunddy

Piriyakulkij et al. NeurIPS 24

<

(3ovad) W11

uewny

asuey)

Human-level, Not quite Human-like

Human-level, Not quite Human-like, but
Online + fuzzy rules best predicts human responses

Human Accuracy

Human-level, Not quite Human-like, but
Online + fuzzy rules best predicts human responses

LLM vs Human - Batch, Fuzzy Model vs Human Online, Fuzzy Model vs Human

0.9 Y 0.9
Rz =0.25 ¥ Rz = 0.05 ¢ : R2=0.57
() & P
0.8 = 0.8 m= 0.8
o 5 L ..
0.7 L 0.7 / 0.7
. . 0.6 p .
0.6 . B ’,. 0.6
05 0.5
. 0.5
04 0.4
s 0.4
0.0 0.2 0.4 0.6 0.8 1.0 03 S

Average Model Predicted Probabilty 0.3 0.4 0.5 0.6 0.7 0.5 0.6 0.7 0.8

Bounded Rationality:
Human-Model fit degrades with enough compute budget

0.0 *responses binned by
1 5 10 problem and ground-truth label

Number of LLM Calls per lteration
Piriyakulkij et al. NeurIPS 24

Lessons

Probability important for picking good experiments

Online inference is more effective, and more humanlike

See Top Piriyakulkij & Cassidy Lagenfeld’'s NeurIPS ‘24 paper

Why are these models human-like?

Because they approximate rational inference over
expressive, flexible representations

NOT because of LLMs: they're just proposal distributions

LLMs “just” give you tractable inference in
expressive symbolic representations

Part 2:
Engineering Program Learners:

Program Induction in New Domains

What if your pretrained model
can't propose good programs?

provided example generated program

in range(7):

with fork_state():

for j in range(4):
forward(2*1i)

left (90.0)

Li & Ellis, NeurIPS ‘24

Finetune for program induction?

Where does the data come from?

Finetune on Synthetic Data
Human-Written Code LLM-Written Remix

Code
Output

for i in range(9):
forward(16)
left(180.0 - 40.0)

for i in range(5):

forward(2)
left(90.0)

penup()
forward(2)

left(0.0)
pendown ()

for i in range(5):
with fork_state():
for j in range(4):
forward(2*i)

left(90.0)

for i in range(2):
forward(4)
left(90.0)
forward(16)
left(90.0)

Li & Ellis, NeurIPS ‘24

Human-Written Code

for i in range(9):
forward(16)
left(180.0 - 40.0)

for i in range(5):
with fork_state():

for j in range(4):

forward(2*i)

left(90.0)

Li & Ellis, NeurIPS ‘24

Finetune on Synthetic Data

LLM-Written Remix

for i in range(7):
forward(2)
left(90.0)

forward(2)
left(90.0)

forward(2)
left(180.0)

Code
Output

|

Finetune on Synthetic Data

Human-Written Code LLM-Written Remix

Code

for i in range(9): Output
forward(16)
left(180.0 - 40.0)

for j in range(5):
forward(10)
for i in range(HALF_INF):
forward (EPS_DIST*1)

for i in range(5): left(EPS_ANGLE)

forward(9)
left(72.0)

with fork_state():
for j in range(4):
forward(2*i)

left(90.0)

Li & Ellis, NeurIPS ‘24

Finetune on Synthetic Data

Human-Written Code LLM-Written Remix

for i in range(9):
forward(16)
left(180.0 - 40.0)

for i in range(1, 8):

for j in range(6):
forward(4-1i)
left(60.0)

penup()

for i in range(5): forward(2)

with fork_state(): pendown()

for j in range(4):
forward(2*i)

left(90.0)

Li & Ellis, NeurIPS ‘24

Finetune on Synthetic Data

Code
Human-Written Code LLM-Written Remix Outputs

for i in range(9):
forward(16)
left(180.0 - 40.0)

for i in range(5):
forward(2)
left(90.0)

penup()

forward(2)

left(0.0)

pendown ()

for i in range(5):

with fork_state():
for j in range(4):
forward(2*i)

left(90.0)

for i in range(2):
forward(4)
left(90.0)
forward(16)
left(90.0)

Li & Ellis, NeurIPS ‘24

Wake-Sleep

generative network

Natural Language (synthetic datagen) Fanzi:tt?o)
and/or Code / Input/Outputs

inference network
(fine-tuned model)

Two models that train each other:
Generative path makes synthetic data

Inference network updates prompt for generative path

Wake-Sleep Fine-Tuning

Prior over Code

aka a prompt

add to

y

Synthetic Data

aka Dreams

prompt

Real Data
(Problem, Code)

A

Inference Net

Fine-Tuned Model

Needs relatively little non-synthetic data

Data Efficient:

& | Prior over Code

aka a prompt

add to

|

Synthetic Data

aka Dreams

prompt

Real Data
(Problem, Code)

|

Inference Net

Fine-Tuned Model

But needs to be “warm started” with a good prompt / prior

Otherwise, might get no learning signal

Prior over Code

aka a prompt

add to

|

Synthetic Data

aka Dreams

prompt

Real Data
(Problem, Code)

Inference Net

Fine-Tuned Model

Wake-Sleep Fine-Tuning

80
¢
g 60
1st wake phase £
2 ¥ 2nd sleep phase
Bad initial prior: 2 /

Only short programs

vﬁ

1st sleep phase

o

0 500 1000
Search Budget (Num Samples)

Li & Ellis, NeurIPS ‘24

Wake-Sleep Fine-Tuning

2nd wake phase

80

(o)}
o

1st wake phase

Problems Solved

2nd sleep phase

E:
\

Bad initial prior:
Only short programs

1st sleep phase

o

0 500 1000 1500 2000
Search Budget (Num Samples)

Li & Ellis, NeurIPS ‘24

Wake-Sleep Fine-Tuning

2nd wake phase
80

(o)}
o

1st wake phase

Problems Solved

BN
o

Bad initial prior:

/ 2nd sleep phase
Only short programs

N
o

1st sleep phase | - finetuned in-distribution

0

0 500 1000 1500 2000
Search Budget (Num Samples)

Why Wake-Sleep

Fine-tuning on synthetic data is conceptually simple [self-instruct]

Why make things complicated?
Might not know the distribution of programs we care about
Connections to biological learning
Learning to be a good Bayesian over the timespan of an individual lifetime

Cf. Tom Griffith's talk: learning to be Bayesian via evolution

Li & Ellis, NeurIPS ‘24

DOMAIN: lists DOMAIN: graphics

provided examples generated program provided example generated program

INPUT OUTPUT

1 range (7):

input list:
4,2,8 2,0,6 return input list

h fork_state ():

r j in range(4):
forward (2*1i)

left (90.0)

9:9:9,-9 OJQJQJQ min__num = min(input_llst)

-7,0,2 0,7,9 return [num - min_num

for num in input list]

DOMAIN: text editing macros

provided examples | generated program

INPUT OUTPUT original time = datetime.strptime (input_str,

hour = original time.hour

18:25:57 6PM to 8PM start_hour = hour - (hour % 2)

end hour = start hour + 2

21:44:40 8PM to 10PM start hour 12 = start hour % 12

end hour 12 = end hour % 12 12
07:00:20 6AM to 8AM start_ampm = "AM" if start hour < 12 e
end ampm = "AM" if end hour < 12 end hour == 24

23:34:17 10PM to 12AM returr start hour 12){start ampm end hour 12

Li & Ellis, NeurIPS ‘24

% Problems Solved

80

70

60

50

40

30

20

10

Sea

Pretty good at
list programs!

z

o/

90

| s &

80

Really good at
graphics
programs!

IAbstraction and Reasoning Corpus (ARC_i)jl

IF & -

!L st

oE- 7

=2

> Wiaiasarsin)
frain “train
-

P

def tra

infer

function th

N op_

_w ott

Python program, f{*)

sform|anput_grad)

—

run function

)
test

- ours-33b

}
- lest

30
0 200 400

ours-7b

________________________ A

Li & Ellis, NeurIPS ‘24

Search Budget (Num Samples)
(c) Graphics

Caveat: Need to be about to check if an answer is correct

. prog 1
inference network orog 2

Data Checker/
image, input-outputs, ... Likelihood

prog N T

Caveat: Need to be about to check if an answer is correct

provided drawing

&
®£ X

% &

Caveat: Need to be about to check if an answer is correct

provided drawing figures generated from graphics program samples

From programs that describe images,

to programs that describe how the world works

Picture credit:
Berkeley CS188

World Models allow imagining the future

Picture credit:
Berkeley CS188

World Models should be learned

Picture credit:
Berkeley CS188

WorldModel : (State, Action)—(NewState, Reward)

i reward il ol BSi reward SRl C S reward i
IR T o TR S <0 EEEEEESE——— 10 .

~20 actions

Hao Tang et al. NeurIPS 24

WorldModel : (State, Action)—(NewState, Reward)

reward
+1

reward §m I
+0 +10

~20 actions

def transition(state, action):

nun

Args:
state: a set of entities representing the state of the environment
action: the action can be "move right", "move left", "move up",
move down'

Returns:

next_state: the next state of the environment
here we define how the player coordinates change for each action
action_to_delta = {

"move right": (1, 0),

"move left": (-1, 0),

"move up": (0, -1),

"move down": (0, 1)

}

Here we get the player and the boxes 1in the current state
player = get_entities_by_name(state, ’Player’)[0]
boxes = get_entities_by_name(state, ’Box’)
walls = get_entities_by_name(state, ’Wall’)
Then, we calculate the new player position according to the action
delta_x, delta_y = action_to_delta[action]
new_player_x = player.x + delta_x
new_player_y = player.y + delta_y
We check if the new player position is a Wall
if get_entities_by_position(walls, new_player_x, new_player_y):
If so, the player does not move
pass
else:
If not, the player moves to the new position
pushed_box = get_entities_by_position(boxes, new_player_x,
new_player_y)

Hao Tang et al. NeurIPS 24

Not in pretraining: Sokoban + Teleporter

by enter
il teleporter

BBl teleporter NNISS

Agent Architecture

state,
reward
world /
world model.py

planner LLM

‘<r/////ﬁ\\\\\\\§‘§-‘return new_state, reward—‘—”//////’
M — action

Like EMPA: Tsividis et al. 2021

Hao Tang et al. NeurIPS 24

Learning is Program Synthesis => Sample/Data Efficient
...iIf you have successful trajectories to learn from

Thousand steps to
learn to unlock doors??

-

solve rate
o -
() Un o

“open the door”

Hao Tang et al. NeurIPS 24

Learning is Program Synthesis => Sample/Data Efficient
...iIf you have successful trajectories to learn from

1.0 |
O
o 0.5 —
2 | I
3 0.0 —
10 16* 10 14°
i n Steps
open the door —— no optimism ——— yes optimism

+optimism: inductive bias favoring optimistic world models

WorldCoder Lessons

A new prior over programs: OPTIMISM

Previously we'd favored simplicity

Online inference BUT no Bayesian framing

...but we're finding those framings useful for harder world models

Hao Tang et al. NeurIPS 24

Learning Abstract World Models

Yichao Liang et al. arXiv 24

Not Abstract World Models
genie: prompt->game

ey e sl
ICAML Servire Sarhes

+ sora: prompt->video

+Model Based RL more generally:

Jake Bruce & Google Deapt<ind

Genle:
Generative Interactive Environments

Dreamer, PlaNet, MuZero, ...

Unclear if pixel-learners understand that:

Going to college helps get a good job

Balance beams can tell if masses are equal
Raising prices lowers demand

Water expands when frozen

Trees can live a long time

Yichao Liang et al. arXiv 24

http://www.youtube.com/watch?v=DSVsnCDTyfc&t=1018

Abstract World Models

Yichao Liang et al. arXiv 24

https://docs.google.com/file/d/1ReW1dqNcOClULPCUoGPjjRxhSSvSO15U/preview

Abstract World Models

is it balanced?

}

how much stuff is each
platter supporting?

i

is object A on top of
object B?

*

raw pixels

Yichao Liang et al. arXiv 24

abstract state abstract state abstract state
DirectlyOn(block3, block?2) Holding(block3) DistributedEvenly(plate1, plate2)
GripperOpen() DirectlyOnPlate(blockO, plate2) OnPlate(block3, plate1)
learned state abstraction learned abstract state dynamics

def DistributedEvenly(state, platel, plate2):
if platel == plate2: return False

def press_button(state, platel, plate2):

countl, count2 = o, © assert distributed evenly(state, platel, plate2)

for obj in state.objects:

if OnPlate(state, obj, platel): countl +=
if OnPlate(state, obj, plate2): count2 +=

return countl == count2

new_state = state.copy()

new_state['machine_on'] = True

return new_state

abstract state abstract state abstract state

Holdingjug(jug) JugInMachine(jug, machine) JugFilled(jug)
......... GripperOpen() Holdingjug(jug)
learned state abstraction learned abstract state dynamics

def JugInMachine(state, jug, machine): def turn_on(state, coffee_machine, jug, robot):

if Holding(state, state.robot, jug): assert JugInMachine(state, jug, coffee_machine)

return False

attention_img = state.crop_to_objects([jug,machine]) new_state = state.copy()

return attention_img.query_VLM(new_state['jug_filled'][jug] = True

f"{jug.name} is placed inside {machine.name}.") return new_state

state,

reward
world

planner [*—

4/////\\\\\\\\\\\§_r‘etur‘n new state, rewar
action

Yichao Liang et al. arXiv 24

world model.py \

def env_step(state, action):

state _abstraction.py
import VLM

state, def abstract(state):

reWa rd
return abstract state

world
world model.py

def env_step(state, action):

planner [*—

4/////\\\\\\\\\\\§_r‘etur‘n new state, reward_”//////////f
action

Yichao Liang et al. arXiv 24

state _abstraction.py
import VLM

state, def abstract(state):

47
reWa rd
return abstract state
world
world model.py
def env_step(state, action):
planner [*—
4/////\\\\\\\\\\\§_r‘etur‘n new state, reward_”//////////f
skill/

option

Assume pretrained temporally-extended high-level actions:
“Skills”/Option

Yichao Liang et al. arXiv 24

GenAl World Model vs Abstract World Model

GenAl world models: Abstract world model:
Precise model of the world Incomplete model of the world
Requires big training data Requires big pretraining data
Cannot adapt on-the-fly to new dynamics Quickly learn new dynamics

Hierarchical Abstraction

Limitations of this work in particular: full observability, determinism, fixed skills

Yichao Liang et al. arXiv 24

def DirectlyOn(state, x, y):

img = state.crop_to_objects([x,y])

return img.query_VLM(

f"{x.name} is on top of {y.name}.")

def OnPlate(state, x, y):
if DirectlyOnPlate(state,x,y): return True

for other_block in state.other_blocks:
if DirectlyOn(state, x, other_block) \
and OnPlate(state, other_block, y):
return True

return False

H | e ra rC hy: def DistributedEvenly(state,platel,plate2):

1 if platel == plate2: return False
State abstrac.tlons | R
recu rS|Ve|y bU||d for obj in state.objects:
if OnPlate(state, obj, platel): cntl += 1
On eaCh Other if OnPlate(state, obj, plate2): cnt2 += 1

return countl == count2

Yichao Liang et al. arXiv 24

Note:
[+] OnPlate calls itself!

img = state.crop_to_objects([x,y]) [_] Don't actua”y learn
return img.query_VLM(DirectIyOn

f"{x.name} is on top of {y.name}.")

def DirectlyOn(state, x, y):

def OnPlate(state, x, y):
if DirectlyOnPlate(state,x,y): return True

for other_block in state.other_blocks:
if DirectlyOn(state, x, other_block) \
and OnPlate(state, other_block, y):
return True

return False

H | e ra rC hy: def DistributedEvenly(state,platel,plate2):

1 if platel == plate2: return False
State abstrac.tlons | R
recu rS|Ve|y bU||d for obj in state.objects:
if OnPlate(state, obj, platel): cntl += 1
On eaCh Other if OnPlate(state, obj, plate2): cnt2 += 1

return countl == count2

Yichao Liang et al. arXiv 24

Lessons

Can’t actually model the whole world in code!

Build symbolic abstractions of the world, and model those instead

Beyond 2-level hierarchy:

Abstractions can recursively build on top of abstractions

Yichao Liang et al. arXiv 24

Last part:

How much of the world can/should we
model in symbolic code?

Wen-Ding Li & Keya Hu et al. arXiv 24

Abstraction and Reasoning Corpus [Chollet 2019]

Wen-Ding Li & Keya Hu et al. arXiv 24

Abstraction and Reasoning Corpus [Chollet 2019]

bounung

pathfmdmg

|] B
5 5 5 1 N T 2

i I
II-IIIIII-I VS I T Y
(37 S M 3 NS T

object contact

Wen-Ding Li & Keya Hu et al. arXiv 24

Frameworks for function learning

Hypothesis f(-)

input

train’

A
S
S

N4

output

train

TRANSDUCTION
kernel methods,
in-context learning

Wen-Ding Li & Keya Hu et al. arXiv 24

for input

Predict output

test

test

Neural Networks for Induction and Transduction

Hypothesis f(-)

TRANSDUCTION
kernel methods,
in-context learning

Wen-Ding Li & Keya Hu et al. arXiv 24

Predict output

for input

test

test

Meta-Learning Induction and Transduction

Metalearning dataset: Tuples of

<input,_.. f("), input >

400k synthetic problems, 100% explainable by Python code

Induction (Program Synthesis)
VS
Transduction (In-Context Learning)

It's a tie! induction transduction

But solve different problems

Weird!
- same training problems,
all solvable with programs

- same neural architecture ® = 1 problem solved

Combining Induction and Transduction

Generate ONE dataset of few-shot learning problems

Fine-tune TWO models (induction&transduction)

Ensemble them

=> New SOTA on ARC, 54.4% on validation (human=60.2%)

Wen-Ding Li & Keya Hu et al. arXiv 24

What did we learn?

Generating symbolic hypotheses [Induction]

Imitating symbolic hypotheses [Transduction]

Complementary—even controlling for neural architecture and training problems!

Speculation: System 1/2 divide is normative-ish

Not an incidental consequence of architectural decisions

Zen na Tava res we're

Wen-Ding Li: on mdustry
job market

Accuracy (%)

Induction can count, and pinpoint the center of an object
Transduction knows qualitative object relations/properties

100

80

60 o

40 1

20 A

induction

0 Induction
m Transduction
I Ensemble
m GPT4

[IceCube

transduction

65.2

69.5

