
Learning Concepts and Doing Experiments
with Language, Code, and Probability

Kevin Ellis

Work with:
Wen-Ding Li, Keya Hu,

Top Piriyakulkij, Yichao Liang,
Cassidy Langenfeld, Hao Tang,

Evan Pu, Zenna Tavares

What you’ll learn in this talk

1. Computational models of human few-shot learning

2. How to make LLMs better at forming hypotheses and doing experiments

Part 1:

Human Few-Shot Learning

Data Hypothesis

Goal: Generalization to unseen test data , aiming for

human-like efficiency and flexibility *

*Few examples; Low-dimensional inputs

Data Hypothesis

Efficient: few examples needed

Flexible: infinite, diverse concepts

Efficient (v2): little time/energy

Human-like prior

Compositional hypothesis space

Tension with flexibility……

Tractability vs Expressivity

data

hypothesis argmax p(hypothesis) ✕ p(data | hypothesis)
hypothesis

Tiny Subset of What Humans Learn

Spelke [2022]

“possession of the infinitely many concepts that are
expressible in an innate language of thought would
be a curse: the curse of a compositional mind.”

Popular Idea: Compositional Hypothesis Space
Recursive + Expressive

Languages for Composition

Composed subparts: vector algebra ops

Dissecting the Curse of Compositionality

Data Inference

Dissecting the Curse of Compositionality

Data Inference

Set of all equations ∞
Equations fitting the data:
Tiny sliver

∞

Dissecting the Curse of Compositionality

Data Inference

Dissecting the Curse of Compositionality

Data Inference

Curse #1:
Most hypotheses don’t work

Curse #2:
Infinitely many hypotheses work

Part 1, Human part of talk:

Taming the Curse of Compositionality, using
 Bayes and Natural Language

“Salamander with feathers”

Data Hypothesis

“Axolotl”

Model

P(hypothesis | data) ∝ P(data | hypothesis) ⨉ P(hypothesis)

Reverend Bayes

prior likelihood
hypothesis space

Data Hypothesis

sa
la

m
an

de
r

sa
la

m
an

de
r

+f
ea

th
er

s fi
sh

w
ei

rd
+p

in
k

Model

P(hypothesis | data) ∝ P(data | hypothesis) ⨉ P(hypothesis)

Reverend Bayes

Data Hypothesis

sa
la

m
an

de
r

sa
la

m
an

de
r

+f
ea

th
er

s fi
sh

prior likelihood w
ei

rd
+p

in
k

hypothesis space:
natural language

See Latent Language:
Andreas et al. 2018

Tractable Approximate Inference:

Top-down + Bottom-up

Tractable Approximate Inference

Data
B

ot
to

m
-u

p

Candidate Hypotheses

Bottom-up Proposals:
 Imprecise, learned, data-driven

Tractable Approximate Inference

Bo
tto

m
-u

p
Top-dow

n

Candidate Hypotheses

Bottom-up Proposals:
 Imprecise, learned, data-driven

Top-down Reasoning:
 Probabilistic inference

Reverend Bayes

Data

LLM

Bayesian Network

Data

Natural
Language

Bayesian Network:
Learnable Prior

Data

Natural
Language

Prior: LLM.
Autoregressive ⇒ Occam’s
Tune prior to human data

Bayesian Network:
Data-Driven Proposal Distribution

Data

Natural
Language

proposal/inference network
~importance sampling

Prior: LLM.
Autoregressive ⇒ Occam’s
Tune prior to human data

Bayesian Network:
Likelihood via Python Code Generation

Data

Natural
Language

Python proposal/inference network
~importance sampling

Likelihood:
Convert NL to Python

Prior: LLM.
Autoregressive ⇒ Occam’s
Tune prior to human data

Likelihood filters out bad proposals

Data
image, input-outputs, …

inference network/
proposal distribution

prog 1

prog 2

prog N

…
…

Data
Likelihood

Model vs Humans:
Logical Concepts

Logical Concepts

“Valedictorian”

“Bachelor”

Task+Data From Piantadosi et al. 2016: 112 concepts, >1k human participants

Example 1: No shapes in concept

Task from:
Piantadosi et al. 2016

Example 1: No shapes in concept

Example 2

Task from:
Piantadosi et al. 2016

Example 1: No shapes in concept

Example 2: Only middle shape in concept

Task from:
Piantadosi et al. 2016

Example 1: No shapes in concept

Example 2: Only middle shape in concept

Example 3: Which shapes are in the concept?

Task from:
Piantadosi et al. 2016

?

Model

Bayes,
learnable neural prior

Hypothesis Space

NL code

LLM Proposal distribution

Model Predicts Human Learning Dynamics

model and humans
fail at same point

Hidden logical rule

Hypothesized
 Natural language

Model is Good but Not Perfect

Efficient: Learns from few examples

Efficient: Learns from few examples

Efficient: Requires modest compute

Efficient: Requires modest compute

Flexibility test:
Replicating to new subjects on out-of-distribution concepts

Flexibility test:
Replicating to new subjects on out-of-distribution concepts

Symbolic synthesizer
hand designed for
original dataset

Lessons

LLMs and the Curse of Compositionality:

Tractably index an infinite concept space w/ finite compute

Neural prior gives good inductive bias

Adding Experimentation
and Active Learning

Piriyakulkij et al. NeurIPS ‘24

Data Hypotheses

inference experiment

Everyday experiments in adulthood:
learning to use new devices, webpages, tools, fixing technical problems

Active learning during childhood development:
exploratory play; active inference during early visual learning

Piriyakulkij et al. NeurIPS ‘24

Probabilistic beliefs are important for active learning

H1

Piriyakulkij et al. NeurIPS ‘24

Probabilistic beliefs are important for active learning

H1 H2 H3
p(

H
 |

 d
at

a)

experiment 1

experiment 2

Piriyakulkij et al. NeurIPS ‘24

Online inference is important for active learning

Batch inference

All the data Many Hypotheses

Online inference

New Data Revised Hypotheses

Piriyakulkij et al. NeurIPS ‘24

Active Learning Model
Bayes

Online LLM-guided SMC

Hypothesis Space

NL code

+fuzzy/noisy hypotheses
 don’t immediately “kill” partly correct proposals

Max InfoGain experiments

Piriyakulkij et al. NeurIPS ‘24

Basic Active Learning Domain:
“Blicket Detectors”

Piriyakulkij et al. NeurIPS ‘24

Piriyakulkij et al. NeurIPS ‘24

Piriyakulkij et al. NeurIPS ‘24

Piriyakulkij et al. NeurIPS ‘24

Piriyakulkij et al. NeurIPS ‘24

The Original Blicket Detector

https://www.nytimes.com/video/science/100000002187112/buckets-of-blickets-children-and-logic.html

Zendo: harder Blicket-style task

Zendo: harder Blicket-style task

Task & Human Data from Bramley et al. 2018

Zendo: performance

Piriyakulkij et al. NeurIPS ‘24

<Human Level with just prompting an LLM

Piriyakulkij et al. NeurIPS ‘24

~Human Level with Fuzzy Probabilistic Rules

Piriyakulkij et al. NeurIPS ‘24

>Human Level with Deterministic Rules

Piriyakulkij et al. NeurIPS ‘24

Online Inference beats Batch Inference

Piriyakulkij et al. NeurIPS ‘24

Human-level, Not quite Human-like, but
Online + fuzzy rules best predicts human responses

Human-level, Not quite Human-like, but
Online + fuzzy rules best predicts human responses

Human-level, Not quite Human-like, but
Online + fuzzy rules best predicts human responses

Bounded Rationality:
Human-Model fit degrades with enough compute budget

*responses binned by
problem and ground-truth label

Piriyakulkij et al. NeurIPS ‘24

Lessons

Probability important for picking good experiments

Online inference is more effective, and more humanlike

See Top Piriyakulkij & Cassidy Lagenfeld’s NeurIPS ‘24 paper

Why are these models human-like?

Because they approximate rational inference over
expressive, flexible representations

NOT because of LLMs: they’re just proposal distributions

LLMs “just” give you tractable inference in
 expressive symbolic representations

Part 2:

Engineering Program Learners:

 Program Induction in New Domains

What if your pretrained model
can’t propose good programs?

Li & Ellis, NeurIPS ‘24

Finetune for program induction?

Where does the data come from?

Finetune on Synthetic Data

a 9-pointed star

for i in range(9):

 forward(16)

 left(180.0 - 40.0)

4 concentric squares

for i in range(5):

 with fork_state():

 for j in range(4):

 forward(2*i)

 left(90.0)

<dozens of examples>

5 rectangle perimeter

with a long dash and a

small background color

rectangle

for i in range(5):

 forward(2)

 left(90.0)

penup()

forward(2)

left(0.0)

pendown()

for i in range(2):

 forward(4)

 left(90.0)

 forward(16)

 left(90.0)

Human-Written Code LLM-Written Remix

Code
Output

Li & Ellis, NeurIPS ‘24

Finetune on Synthetic Data

a 9-pointed star

for i in range(9):

 forward(16)

 left(180.0 - 40.0)

4 concentric squares

for i in range(5):

 with fork_state():

 for j in range(4):

 forward(2*i)

 left(90.0)

<dozens of examples>

a spiral staircase

for i in range(7):

 forward(2)

 left(90.0)

 forward(2)

 left(90.0)

 forward(2)

 left(180.0)

Human-Written Code LLM-Written Remix

Code
Output

Li & Ellis, NeurIPS ‘24

Finetune on Synthetic Data

5 sided snowflake with a

medium line and a small

semicircle as arms

for j in range(5):

 forward(10)

 for i in range(HALF_INF):

 forward(EPS_DIST*1)

 left(EPS_ANGLE)

 forward(0)

 left(72.0)

Human-Written Code LLM-Written Remix

Code
Output

a 9-pointed star

for i in range(9):

 forward(16)

 left(180.0 - 40.0)

4 concentric squares

for i in range(5):

 with fork_state():

 for j in range(4):

 forward(2*i)

 left(90.0)

<dozens of examples>

Li & Ellis, NeurIPS ‘24

Finetune on Synthetic Data

series of increasingly

rotated hexagonal shapes

for i in range(1, 8):

 for j in range(6):

 forward(4-i)

 left(60.0)

 penup()

 forward(2)

 pendown()

Human-Written Code LLM-Written Remix
Code

Output
a 9-pointed star

for i in range(9):

 forward(16)

 left(180.0 - 40.0)

4 concentric squares

for i in range(5):

 with fork_state():

 for j in range(4):

 forward(2*i)

 left(90.0)

<dozens of examples>

Li & Ellis, NeurIPS ‘24

5 rectangle perimeter with

a long dash and a small

background color rectangle

for i in range(5):

 forward(2)

 left(90.0)

penup()

forward(2)

left(0.0)

pendown()

for i in range(2):

 forward(4)

 left(90.0)

 forward(16)

 left(90.0)

5 rectangle perimeter with

a long dash and a small

background color rectangle

for i in range(5):

 forward(2)

 left(90.0)

penup()

forward(2)

left(0.0)

pendown()

for i in range(2):

 forward(4)

 left(90.0)

 forward(16)

 left(90.0)

Finetune on Synthetic Data

Human-Written Code LLM-Written Remix
Code

Outputs
a 9-pointed star

for i in range(9):

 forward(16)

 left(180.0 - 40.0)

4 concentric squares

for i in range(5):

 with fork_state():

 for j in range(4):

 forward(2*i)

 left(90.0)

<dozens of examples>

5 rectangle perimeter with

a long dash and a small

background color rectangle

for i in range(5):

 forward(2)

 left(90.0)

penup()

forward(2)

left(0.0)

pendown()

for i in range(2):

 forward(4)

 left(90.0)

 forward(16)

 left(90.0)

5 rectangle perimeter with

a long dash and a small

background color rectangle

for i in range(5):

 forward(2)

 left(90.0)

penup()

forward(2)

left(0.0)

pendown()

for i in range(2):

 forward(4)

 left(90.0)

 forward(16)

 left(90.0)

Li & Ellis, NeurIPS ‘24

Wake-Sleep

Natural Language
and/or Code

Data:
Function

Input/Outputs

inference network
(fine-tuned model)

generative network
(synthetic datagen)

Two models that train each other:

Generative path makes synthetic data

Inference network updates prompt for generative path

Wake-Sleep Fine-Tuning

Prior over Code

aka a prompt

Synthetic Data

aka Dreams

Inference Net

Fine-Tuned Model

Real Data

(Problem, Code)

add to

prompt

Data Efficient:

Needs relatively little non-synthetic data

But needs to be “warm started” with a good prompt / prior

Otherwise, might get no learning signal

Wake-Sleep Fine-Tuning

1st wake phase
2nd sleep phase

Bad initial prior:
Only short programs

1st sleep phase

Li & Ellis, NeurIPS ‘24

Wake-Sleep Fine-Tuning

1st wake phase

2nd wake phase

2nd sleep phase
Bad initial prior:
Only short programs

1st sleep phase

Li & Ellis, NeurIPS ‘24

Wake-Sleep Fine-Tuning

1st wake phase

2nd wake phase

2nd sleep phase
Bad initial prior:
Only short programs

1st sleep phase

Why Wake-Sleep

Fine-tuning on synthetic data is conceptually simple [self-instruct]

Why make things complicated?

Might not know the distribution of programs we care about

Connections to biological learning

 Learning to be a good Bayesian over the timespan of an individual lifetime

 Cf. Tom Griffith’s talk: learning to be Bayesian via evolution

Li & Ellis, NeurIPS ‘24

Li & Ellis, NeurIPS ‘24

Really good at
graphics
programs!

Pretty good at
list programs!

Abstraction and Reasoning Corpus (ARC)

Li & Ellis, NeurIPS ‘24

Caveat: Need to be about to check if an answer is correct

Data
image, input-outputs, …

inference network
prog 1

prog 2

prog N

…
…

Checker/
Likelihood

Caveat: Need to be about to check if an answer is correct

Caveat: Need to be about to check if an answer is correct

From programs that describe images,

to programs that describe how the world works

Picture credit:
Berkeley CS188

Picture credit:
Berkeley CS188

World Models allow imagining the future

Picture credit:
Berkeley CS188

World Models should be learned

WorldModel : (State, Action)→(NewState, Reward)

………………..

~20 actions

Hao Tang et al. NeurIPS ‘24

WorldModel : (State, Action)→(NewState, Reward)

~20 actions

Hao Tang et al. NeurIPS ‘24

Not in pretraining: Sokoban + Teleporter

Agent Architecture

world_model.py
def env_step(state, action):
 ……………………………
 return new_state, reward

planner

action

LLM

world

state,
reward

Like EMPA: Tsividis et al. 2021

Hao Tang et al. NeurIPS ‘24

Learning is Program Synthesis => Sample/Data Efficient
…if you have successful trajectories to learn from

 Thousand steps to
learn to unlock doors??

Hao Tang et al. NeurIPS ‘24

Learning is Program Synthesis => Sample/Data Efficient
…if you have successful trajectories to learn from

+optimism: inductive bias favoring optimistic world models

WorldCoder Lessons

A new prior over programs: OPTIMISM

Previously we’d favored simplicity

Online inference BUT no Bayesian framing

…but we’re finding those framings useful for harder world models

Hao Tang et al. NeurIPS ‘24

Learning Abstract World Models

Yichao Liang et al. arXiv ‘24

Not Abstract World Models

Going to college helps get a good job
Balance beams can tell if masses are equal
Raising prices lowers demand
Water expands when frozen
Trees can live a long time

genie: prompt->game

+ sora: prompt->video

+Model Based RL more generally:

Dreamer, PlaNet, MuZero, …

Unclear if pixel-learners understand that:

Going to college helps get a good job
Balance beams can tell if masses are equal
Raising prices lowers demand
Water expands when frozen
Trees can live a long timeYichao Liang et al. arXiv ‘24

http://www.youtube.com/watch?v=DSVsnCDTyfc&t=1018

Abstract World Models

Yichao Liang et al. arXiv ‘24

https://docs.google.com/file/d/1ReW1dqNcOClULPCUoGPjjRxhSSvSO15U/preview

Abstract World Models

raw pixels

is object A on top of
object B?

how much stuff is each
platter supporting?

is it balanced?

Yichao Liang et al. arXiv ‘24

Yichao Liang et al. arXiv ‘24

DirectlyOn(block3, block2)
...
GripperOpen()

Holding(block3)
...
DirectlyOnPlate(block0, plate2)

DistributedEvenly(plate1, plate2)
…
OnPlate(block3, plate1)

abstract state abstract state abstract state

…

NeuroSymbolic Predicate

def DistributedEvenly(state, plate1, plate2):

 if plate1 == plate2: return False

 count1, count2 = 0, 0

 for obj in state.objects:

 if OnPlate(state, obj, plate1): count1 += 1

 if OnPlate(state, obj, plate2): count2 += 1

 return count1 == count2

learned state abstraction

def press_button(state, plate1, plate2):

 # Precondition

 assert distributed_evenly(state, plate1, plate2)

 # Postcondition

 new_state = state.copy()

 new_state['machine_on'] = True

 return new_state

learned abstract state dynamics

Yichao Liang et al. arXiv ‘24

HoldingJug(jug)
………

…

JugInMachine(jug, machine)
GripperOpen() ………

JugFilled(jug) ……
HoldingJug(jug) ………

abstract state abstract state abstract state

def JugInMachine(state, jug, machine):

 # If the jug is held, it cannot be in the machine.

 if Holding(state, state.robot, jug):

 return False

 # Crop to focus on jug and coffee machine

 attention_img = state.crop_to_objects([jug,machine])

 return attention_img.query_VLM(

 f"{jug.name} is placed inside {machine.name}.")

learned state abstraction
def turn_on(state, coffee_machine, jug, robot):

 # Precondition

 assert JugInMachine(state, jug, coffee_machine)

 # Postcondition

 new_state = state.copy()

 new_state['jug_filled'][jug] = True

 return new_state

learned abstract state dynamics

world_model.py
def env_step(state, action):
 ……………………………
 return new_state, reward

planner

action

LLM

world

state,
reward

Yichao Liang et al. arXiv ‘24

world_model.py
def env_step(state, action):
 ……………………………
 return new_state, reward

planner

action

LLM

world

state,
reward

Yichao Liang et al. arXiv ‘24

state_abstraction.py
import VLM
def abstract(state):
 ………………………
 return abstract_state

world_model.py
def env_step(state, action):
 ……………………………
 return new_state, reward

planner

skill/
option

LLM

world

state,
reward

Yichao Liang et al. arXiv ‘24

state_abstraction.py
import VLM
def abstract(state):
 ………………………
 return abstract_state

Assume pretrained temporally-extended high-level actions:
“Skills”/Option

GenAI World Model vs Abstract World Model

GenAI world models:

Precise model of the world

Requires big training data

Cannot adapt on-the-fly to new dynamics

Abstract world model:

Incomplete model of the world

Requires big pretraining data

Quickly learn new dynamics

Limitations of this work in particular: full observability, determinism, fixed skills

Hierarchical Abstraction

Yichao Liang et al. arXiv ‘24

Hierarchy:
 State abstractions
 recursively build
 on each other

def OnPlate(state, x, y):

 if DirectlyOnPlate(state,x,y): return True

 for other_block in state.other_blocks:

 if DirectlyOn(state, x, other_block) \

 and OnPlate(state, other_block, y):

 return True

 return False

def DirectlyOn(state, x, y):

 img = state.crop_to_objects([x,y])

 return img.query_VLM(

 f"{x.name} is on top of {y.name}.")

def DistributedEvenly(state,plate1,plate2):

 if plate1 == plate2: return False

 cnt1, cnt2 = 0, 0

 for obj in state.objects:

 if OnPlate(state, obj, plate1): cnt1 += 1

 if OnPlate(state, obj, plate2): cnt2 += 1

 return count1 == count2
Yichao Liang et al. arXiv ‘24

Hierarchy:
 State abstractions
 recursively build
 on each other

def OnPlate(state, x, y):

 if DirectlyOnPlate(state,x,y): return True

 for other_block in state.other_blocks:

 if DirectlyOn(state, x, other_block) \

 and OnPlate(state, other_block, y):

 return True

 return False

def DirectlyOn(state, x, y):

 img = state.crop_to_objects([x,y])

 return img.query_VLM(

 f"{x.name} is on top of {y.name}.")

def DistributedEvenly(state,plate1,plate2):

 if plate1 == plate2: return False

 cnt1, cnt2 = 0, 0

 for obj in state.objects:

 if OnPlate(state, obj, plate1): cnt1 += 1

 if OnPlate(state, obj, plate2): cnt2 += 1

 return count1 == count2

Note:
[+] OnPlate calls itself!

[-] Don’t actually learn
 DirectlyOn

Yichao Liang et al. arXiv ‘24

Lessons

Can’t actually model the whole world in code!

Build symbolic abstractions of the world, and model those instead

Beyond 2-level hierarchy:

Abstractions can recursively build on top of abstractions

Yichao Liang et al. arXiv ‘24

Last part:

How much of the world can/should we
 model in symbolic code?

Wen-Ding Li & Keya Hu et al. arXiv ‘24

Abstraction and Reasoning Corpus [Chollet 2019]

Wen-Ding Li & Keya Hu et al. arXiv ‘24

Abstraction and Reasoning Corpus [Chollet 2019]

Wen-Ding Li & Keya Hu et al. arXiv ‘24

Frameworks for function learning

inputtrain,
outputtrain

Hypothesis f(·)

Predict outputtest
for inputtest

f(input
test)
IN

DUCTI
ON

TRANSDUCTION
kernel methods,

in-context learning

Wen-Ding Li & Keya Hu et al. arXiv ‘24

Neural Networks for Induction and Transduction

inputtrain,
outputtrain

Hypothesis f(·)

Predict outputtest
for inputtest

f(input
test)
IN

DUCTI
ON

TRANSDUCTION
kernel methods,

in-context learning

python exec

Wen-Ding Li & Keya Hu et al. arXiv ‘24

Wen-Ding Li & Keya Hu et al. arXiv ‘24

Meta-Learning Induction and Transduction

Metalearning dataset: Tuples of

<inputtrain, f(·) , inputtest>

400k synthetic problems, 100% explainable by Python code

Induction (Program Synthesis)
VS

Transduction (In-Context Learning)

It’s a tie!

But solve different problems

Weird!

- same training problems,

 all solvable with programs

- same neural architecture

Combining Induction and Transduction

Generate ONE dataset of few-shot learning problems

Fine-tune TWO models (induction&transduction)

Ensemble them

=> New SOTA on ARC, 54.4% on validation (human=60.2%)

Wen-Ding Li & Keya Hu et al. arXiv ‘24

What did we learn?

Generating symbolic hypotheses [Induction]

Imitating symbolic hypotheses [Transduction]

Complementary—even controlling for neural architecture and training problems!

Speculation: System 1/2 divide is normative-ish

Not an incidental consequence of architectural decisions

Wen-Ding Li: on industry
job market

Keya Hu: applying to
PhD’s

Zenna Tavares: we’re
hiring for
next steps

Induction can count, and pinpoint the center of an object
Transduction knows qualitative object relations/properties

