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What you’ll learn in this talk

1. Computational models of human few-shot learning

2. How to make LLMs better at forming hypotheses and doing experiments



Part 1:

Human Few-Shot Learning



Data Hypothesis

Goal: Generalization to unseen test data , aiming for

human-like efficiency and flexibility *

*Few examples; Low-dimensional inputs



Data Hypothesis

Efficient: few examples needed

Flexible: infinite, diverse concepts

Efficient (v2): little time/energy

Human-like prior

Compositional hypothesis space

Tension with flexibility……



Tractability vs Expressivity

data

hypothesis argmax    p(hypothesis) ✕ p(data | hypothesis)
hypothesis



Tiny Subset of What Humans Learn



Spelke [2022]

“possession of the infinitely many concepts that are 
expressible in an innate language of thought would 
be a curse: the curse of a compositional mind.”

Popular Idea: Compositional Hypothesis Space
Recursive + Expressive



Languages for Composition

Composed subparts: vector algebra ops



Dissecting the Curse of Compositionality

Data Inference



Dissecting the Curse of Compositionality

Data Inference

Set of all equations ∞
Equations fitting the data:
Tiny sliver

∞



Dissecting the Curse of Compositionality

Data Inference



Dissecting the Curse of Compositionality

Data Inference

Curse #1: 
Most hypotheses don’t work

Curse #2:
Infinitely many hypotheses work



Part 1, Human part of talk:

Taming the Curse of Compositionality, using
 Bayes and Natural Language



“Salamander with feathers”

Data Hypothesis

“Axolotl”



Model

P(hypothesis | data) ∝ P(data | hypothesis) ⨉ P(hypothesis)

Reverend Bayes

prior likelihood
hypothesis space

Data Hypothesis
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Model

P(hypothesis | data) ∝ P(data | hypothesis) ⨉ P(hypothesis)

Reverend Bayes

Data Hypothesis
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hypothesis space:
natural language

See Latent Language: 
Andreas et al. 2018



Tractable Approximate Inference:

Top-down + Bottom-up



Tractable Approximate Inference
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Candidate Hypotheses 

Bottom-up Proposals:
  Imprecise, learned, data-driven



Tractable Approximate Inference

Bo
tto

m
-u

p
Top-dow

n

Candidate Hypotheses 

Bottom-up Proposals:
  Imprecise, learned, data-driven

Top-down Reasoning:
  Probabilistic inference

Reverend Bayes

Data

LLM



Bayesian Network

Data

Natural 
Language



Bayesian Network:
Learnable Prior

Data

Natural 
Language

Prior: LLM.
Autoregressive ⇒ Occam’s
Tune prior to human data



Bayesian Network:
Data-Driven Proposal Distribution

Data

Natural 
Language

proposal/inference network
~importance sampling

Prior: LLM.
Autoregressive ⇒ Occam’s
Tune prior to human data



Bayesian Network:
Likelihood via Python Code Generation

Data

Natural 
Language

Python proposal/inference network
~importance sampling

Likelihood:
Convert NL to Python

Prior: LLM.
Autoregressive ⇒ Occam’s
Tune prior to human data



Likelihood filters out bad proposals

Data
image, input-outputs, …

inference network/
proposal distribution

prog 1

prog 2

prog N

…
…

Data
Likelihood



Model vs Humans:
Logical Concepts



Logical Concepts

“Valedictorian” 

“Bachelor”

Task+Data From Piantadosi et al. 2016: 112 concepts, >1k human participants



Example 1: No shapes in concept

Task from:
Piantadosi et al. 2016



Example 1: No shapes in concept

Example 2

Task from:
Piantadosi et al. 2016



Example 1: No shapes in concept

Example 2: Only middle shape in concept

Task from:
Piantadosi et al. 2016



Example 1: No shapes in concept

Example 2: Only middle shape in concept

Example 3: Which shapes are in the concept?

Task from:
Piantadosi et al. 2016

?















Model

Bayes, 
learnable neural prior

Hypothesis Space

NL code

LLM Proposal distribution



Model Predicts Human Learning Dynamics

model and humans
fail at same point

Hidden logical rule

Hypothesized 
  Natural language



Model is Good but Not Perfect



Efficient: Learns from few examples



Efficient: Learns from few examples



Efficient: Requires modest compute



Efficient: Requires modest compute



Flexibility test:
Replicating to new subjects on out-of-distribution concepts



Flexibility test:
Replicating to new subjects on out-of-distribution concepts

Symbolic synthesizer 
hand designed for 
original dataset



Lessons

LLMs and the Curse of Compositionality:

Tractably index an infinite concept space w/ finite compute

Neural prior gives good inductive bias



Adding Experimentation
and Active Learning

Piriyakulkij et al. NeurIPS ‘24



Data Hypotheses

inference experiment

Everyday experiments in adulthood:
learning to use new devices, webpages, tools, fixing technical problems

Active learning during childhood development: 
exploratory play; active inference during early visual learning

Piriyakulkij et al. NeurIPS ‘24



Probabilistic beliefs are important for active learning

H1

Piriyakulkij et al. NeurIPS ‘24



Probabilistic beliefs are important for active learning

H1 H2 H3
p(

H
 |

 d
at

a)

experiment 1

experiment 2

Piriyakulkij et al. NeurIPS ‘24



Online inference is important for active learning

Batch inference

All the data Many Hypotheses

Online inference

New Data Revised Hypotheses

Piriyakulkij et al. NeurIPS ‘24



Active Learning Model
Bayes

Online LLM-guided SMC

Hypothesis Space

NL code

+fuzzy/noisy hypotheses
 don’t immediately “kill” partly correct proposals

Max InfoGain experiments

Piriyakulkij et al. NeurIPS ‘24



Basic Active Learning Domain:
“Blicket Detectors”

Piriyakulkij et al. NeurIPS ‘24



Piriyakulkij et al. NeurIPS ‘24



Piriyakulkij et al. NeurIPS ‘24



Piriyakulkij et al. NeurIPS ‘24



Piriyakulkij et al. NeurIPS ‘24



The Original Blicket Detector

https://www.nytimes.com/video/science/100000002187112/buckets-of-blickets-children-and-logic.html



Zendo: harder Blicket-style task



Zendo: harder Blicket-style task

Task & Human Data from Bramley et al. 2018



Zendo: performance

Piriyakulkij et al. NeurIPS ‘24



<Human Level with just prompting an LLM

Piriyakulkij et al. NeurIPS ‘24



~Human Level with Fuzzy Probabilistic Rules

Piriyakulkij et al. NeurIPS ‘24



>Human Level with Deterministic Rules

Piriyakulkij et al. NeurIPS ‘24



Online Inference beats Batch Inference

Piriyakulkij et al. NeurIPS ‘24



Human-level, Not quite Human-like, but
Online + fuzzy rules best predicts human responses



Human-level, Not quite Human-like, but
Online + fuzzy rules best predicts human responses



Human-level, Not quite Human-like, but
Online + fuzzy rules best predicts human responses



Bounded Rationality:
Human-Model fit degrades with enough compute budget

*responses binned by 
problem and ground-truth label

Piriyakulkij et al. NeurIPS ‘24



Lessons

Probability important for picking good experiments

Online inference is more effective, and more humanlike

See Top Piriyakulkij & Cassidy Lagenfeld’s NeurIPS ‘24 paper



Why are these models human-like?

Because they approximate rational inference over 
expressive, flexible representations

NOT because of LLMs: they’re just proposal distributions

LLMs “just” give you tractable inference in
 expressive symbolic representations



Part 2:

Engineering Program Learners:

 Program Induction in New Domains



What if your pretrained model
can’t propose good programs?

Li & Ellis, NeurIPS ‘24



Finetune for program induction?

Where does the data come from?



Finetune on Synthetic Data

# a 9-pointed star

for i in range(9):

   forward(16)

   left(180.0 - 40.0)

# 4 concentric squares

for i in range(5):

   with fork_state():

       for j in range(4):

           forward(2*i)

           left(90.0)

# <dozens of examples>

# 5 rectangle perimeter 

with a long dash and a 

small background color 

rectangle

for i in range(5):

   forward(2)

   left(90.0)

penup()

forward(2)

left(0.0)

pendown()

for i in range(2):

   forward(4)

   left(90.0)

   forward(16)

   left(90.0)

Human-Written Code LLM-Written Remix

Code 
Output

Li & Ellis, NeurIPS ‘24



Finetune on Synthetic Data

# a 9-pointed star

for i in range(9):

   forward(16)

   left(180.0 - 40.0)

# 4 concentric squares

for i in range(5):

   with fork_state():

       for j in range(4):

           forward(2*i)

           left(90.0)

# <dozens of examples>

# a spiral staircase

for i in range(7):

   forward(2)

   left(90.0)

   forward(2)

   left(90.0)

   forward(2)

   left(180.0)

Human-Written Code LLM-Written Remix

Code 
Output

Li & Ellis, NeurIPS ‘24



Finetune on Synthetic Data

# 5 sided snowflake with a 

medium line and a small 

semicircle as arms

for j in range(5):

  forward(10)

  for i in range(HALF_INF):

       forward(EPS_DIST*1)

       left(EPS_ANGLE)

   forward(0)

   left(72.0)

Human-Written Code LLM-Written Remix

Code 
Output

# a 9-pointed star

for i in range(9):

   forward(16)

   left(180.0 - 40.0)

# 4 concentric squares

for i in range(5):

   with fork_state():

       for j in range(4):

           forward(2*i)

           left(90.0)

# <dozens of examples>

Li & Ellis, NeurIPS ‘24



Finetune on Synthetic Data

# series of increasingly 

rotated hexagonal shapes

for i in range(1, 8):

   for j in range(6):

       forward(4-i)

       left(60.0)

   penup()

   forward(2)

   pendown()

Human-Written Code LLM-Written Remix
Code 

Output
# a 9-pointed star

for i in range(9):

   forward(16)

   left(180.0 - 40.0)

# 4 concentric squares

for i in range(5):

   with fork_state():

       for j in range(4):

           forward(2*i)

           left(90.0)

# <dozens of examples>

Li & Ellis, NeurIPS ‘24



# 5 rectangle perimeter with 

a long dash and a small 

background color rectangle

for i in range(5):

   forward(2)

   left(90.0)

penup()

forward(2)

left(0.0)

pendown()

for i in range(2):

   forward(4)

   left(90.0)

   forward(16)

   left(90.0)

# 5 rectangle perimeter with 

a long dash and a small 

background color rectangle

for i in range(5):

   forward(2)

   left(90.0)

penup()

forward(2)

left(0.0)

pendown()

for i in range(2):

   forward(4)

   left(90.0)

   forward(16)

   left(90.0)

Finetune on Synthetic Data

Human-Written Code LLM-Written Remix
Code 

Outputs
# a 9-pointed star

for i in range(9):

   forward(16)

   left(180.0 - 40.0)

# 4 concentric squares

for i in range(5):

   with fork_state():

       for j in range(4):

           forward(2*i)

           left(90.0)

# <dozens of examples>

# 5 rectangle perimeter with 

a long dash and a small 

background color rectangle

for i in range(5):

   forward(2)

   left(90.0)

penup()

forward(2)

left(0.0)

pendown()

for i in range(2):

   forward(4)

   left(90.0)

   forward(16)

   left(90.0)

# 5 rectangle perimeter with 

a long dash and a small 

background color rectangle

for i in range(5):

   forward(2)

   left(90.0)

penup()

forward(2)

left(0.0)

pendown()

for i in range(2):

   forward(4)

   left(90.0)

   forward(16)

   left(90.0)

Li & Ellis, NeurIPS ‘24



Wake-Sleep

Natural Language 
and/or Code

Data:
Function 

Input/Outputs

inference network
(fine-tuned model)

generative network
(synthetic datagen)

Two models that train each other:

Generative path makes synthetic data

Inference network updates prompt for generative path



Wake-Sleep Fine-Tuning

Prior over Code

aka a prompt

Synthetic Data

aka Dreams

Inference Net

Fine-Tuned Model

Real Data

(Problem, Code)

add to

prompt



Data Efficient:

Needs relatively little non-synthetic data



But needs to be “warm started” with a good prompt / prior

Otherwise, might get no learning signal



Wake-Sleep Fine-Tuning 

1st wake phase
2nd sleep phase

Bad initial prior:
Only short programs

1st sleep phase

Li & Ellis, NeurIPS ‘24



Wake-Sleep Fine-Tuning 

1st wake phase

2nd wake phase

2nd sleep phase
Bad initial prior:
Only short programs

1st sleep phase

Li & Ellis, NeurIPS ‘24



Wake-Sleep Fine-Tuning 

1st wake phase

2nd wake phase

2nd sleep phase
Bad initial prior:
Only short programs

1st sleep phase



Why Wake-Sleep

Fine-tuning on synthetic data is conceptually simple [self-instruct]

Why make things complicated?

Might not know the distribution of programs we care about

Connections to biological learning

     Learning to be a good Bayesian over the timespan of an individual lifetime

     Cf. Tom Griffith’s talk: learning to be Bayesian via evolution

Li & Ellis, NeurIPS ‘24



Li & Ellis, NeurIPS ‘24



Really good at 
graphics 
programs!

Pretty good at 
list programs!

Abstraction and Reasoning Corpus (ARC)

Li & Ellis, NeurIPS ‘24



Caveat: Need to be about to check if an answer is correct

Data
image, input-outputs, …

inference network
prog 1

prog 2

prog N

…
…

Checker/
Likelihood



Caveat: Need to be about to check if an answer is correct



Caveat: Need to be about to check if an answer is correct



From programs that describe images,

to programs that describe how the world works



Picture credit:
Berkeley CS188



Picture credit:
Berkeley CS188

World Models allow imagining the future



Picture credit:
Berkeley CS188

World Models should be learned



WorldModel : (State, Action)→(NewState, Reward)

………………..

~20 actions

Hao Tang et al. NeurIPS ‘24



WorldModel : (State, Action)→(NewState, Reward)

~20 actions

Hao Tang et al. NeurIPS ‘24



Not in pretraining: Sokoban + Teleporter



Agent Architecture

# world_model.py
def env_step(state, action):
   ……………………………
   return new_state, reward

planner

action

LLM

world

state,
reward

Like EMPA: Tsividis et al. 2021

Hao Tang et al. NeurIPS ‘24



Learning is Program Synthesis => Sample/Data Efficient
…if you have successful trajectories to learn from

 Thousand steps to 
learn to unlock doors??

Hao Tang et al. NeurIPS ‘24



Learning is Program Synthesis => Sample/Data Efficient
…if you have successful trajectories to learn from

+optimism: inductive bias favoring optimistic world models



WorldCoder Lessons

A new prior over programs: OPTIMISM

Previously we’d favored simplicity

Online inference BUT no Bayesian framing

…but we’re finding those framings useful for harder world models

Hao Tang et al. NeurIPS ‘24



Learning Abstract World Models

Yichao Liang et al. arXiv ‘24



Not Abstract World Models

Going to college helps get a good job
Balance beams can tell if masses are equal
Raising prices lowers demand
Water expands when frozen
Trees can live a long time

genie: prompt->game

+ sora: prompt->video

+Model Based RL more generally:

Dreamer, PlaNet, MuZero, …

Unclear if pixel-learners understand that:

Going to college helps get a good job
Balance beams can tell if masses are equal
Raising prices lowers demand
Water expands when frozen
Trees can live a long timeYichao Liang et al. arXiv ‘24

http://www.youtube.com/watch?v=DSVsnCDTyfc&t=1018


Abstract World Models

Yichao Liang et al. arXiv ‘24

https://docs.google.com/file/d/1ReW1dqNcOClULPCUoGPjjRxhSSvSO15U/preview


Abstract World Models

raw pixels

is object A on top of 
object B?

how much stuff is each 
platter supporting?

is it balanced?

Yichao Liang et al. arXiv ‘24



Yichao Liang et al. arXiv ‘24

DirectlyOn(block3, block2)
...
GripperOpen()

Holding(block3)
...
DirectlyOnPlate(block0, plate2)

DistributedEvenly(plate1, plate2)
…
OnPlate(block3, plate1)

abstract state abstract state abstract state

…

# NeuroSymbolic Predicate

def DistributedEvenly(state, plate1, plate2):

 if plate1 == plate2: return False

 count1, count2 = 0, 0

 for obj in state.objects:

   if OnPlate(state, obj, plate1): count1 += 1

   if OnPlate(state, obj, plate2): count2 += 1

 return count1 == count2

learned state abstraction

def press_button(state, plate1, plate2):

   # Precondition

   assert distributed_evenly(state, plate1, plate2)

   # Postcondition

   new_state = state.copy()

   new_state['machine_on'] = True

   return new_state

learned abstract state dynamics



Yichao Liang et al. arXiv ‘24

HoldingJug(jug)
………

…

JugInMachine(jug, machine)
GripperOpen() ………

JugFilled(jug)     ……
HoldingJug(jug) ………

abstract state abstract state abstract state

def JugInMachine(state, jug, machine):

 # If the jug is held, it cannot be in the machine.

 if Holding(state, state.robot, jug):

   return False

 # Crop to focus on jug and coffee machine

 attention_img = state.crop_to_objects([jug,machine])

 return attention_img.query_VLM(

       f"{jug.name} is placed inside {machine.name}.")

learned state abstraction
def turn_on(state, coffee_machine, jug, robot):

   # Precondition

   assert JugInMachine(state, jug, coffee_machine)

   # Postcondition

   new_state = state.copy()

   new_state['jug_filled'][jug] = True

   return new_state

learned abstract state dynamics



# world_model.py
def env_step(state, action):
   ……………………………
   return new_state, reward

planner

action

LLM

world

state,
reward

Yichao Liang et al. arXiv ‘24



# world_model.py
def env_step(state, action):
   ……………………………
   return new_state, reward

planner

action

LLM

world

state,
reward

Yichao Liang et al. arXiv ‘24

# state_abstraction.py
import VLM
def abstract(state):
 ………………………
 return abstract_state



# world_model.py
def env_step(state, action):
   ……………………………
   return new_state, reward

planner

skill/
option

LLM

world

state,
reward

Yichao Liang et al. arXiv ‘24

# state_abstraction.py
import VLM
def abstract(state):
 ………………………
 return abstract_state

Assume pretrained temporally-extended high-level actions:
“Skills”/Option



GenAI World Model vs Abstract World Model

GenAI world models:

Precise model of the world

Requires big training data

Cannot adapt on-the-fly to new dynamics

Abstract world model:

Incomplete model of the world

Requires big pretraining data

Quickly learn new dynamics

Limitations of this work in particular: full observability, determinism, fixed skills

Hierarchical Abstraction

Yichao Liang et al. arXiv ‘24



Hierarchy:
   State abstractions
              recursively build 
                          on each other

def OnPlate(state, x, y):

 if DirectlyOnPlate(state,x,y): return True

 for other_block in state.other_blocks:

  if DirectlyOn(state, x, other_block) \

  and OnPlate(state, other_block, y):

   return True

 return False

def DirectlyOn(state, x, y):

 img = state.crop_to_objects([x,y])

 return img.query_VLM(

     f"{x.name} is on top of {y.name}.")

def DistributedEvenly(state,plate1,plate2):

 if plate1 == plate2: return False

 cnt1, cnt2 = 0, 0

 for obj in state.objects:

  if OnPlate(state, obj, plate1): cnt1 += 1

  if OnPlate(state, obj, plate2): cnt2 += 1

 return count1 == count2
Yichao Liang et al. arXiv ‘24



Hierarchy:
   State abstractions
              recursively build 
                          on each other

def OnPlate(state, x, y):

 if DirectlyOnPlate(state,x,y): return True

 for other_block in state.other_blocks:

  if DirectlyOn(state, x, other_block) \

  and OnPlate(state, other_block, y):

   return True

 return False

def DirectlyOn(state, x, y):

 img = state.crop_to_objects([x,y])

 return img.query_VLM(

     f"{x.name} is on top of {y.name}.")

def DistributedEvenly(state,plate1,plate2):

 if plate1 == plate2: return False

 cnt1, cnt2 = 0, 0

 for obj in state.objects:

  if OnPlate(state, obj, plate1): cnt1 += 1

  if OnPlate(state, obj, plate2): cnt2 += 1

 return count1 == count2

Note:
[+] OnPlate calls itself!

[-] Don’t actually learn
        DirectlyOn

Yichao Liang et al. arXiv ‘24



Lessons

Can’t actually model the whole world in code!

Build symbolic abstractions of the world, and model those instead

Beyond 2-level hierarchy:

Abstractions can recursively build on top of abstractions

Yichao Liang et al. arXiv ‘24



Last part:

How much of the world can/should we
 model in symbolic code? 

Wen-Ding Li & Keya Hu et al. arXiv ‘24



Abstraction and Reasoning Corpus [Chollet 2019]

Wen-Ding Li & Keya Hu et al. arXiv ‘24



Abstraction and Reasoning Corpus [Chollet 2019]

Wen-Ding Li & Keya Hu et al. arXiv ‘24



Frameworks for function learning

inputtrain,  
outputtrain

Hypothesis f(·)

Predict outputtest
for inputtest

f( input
test )
IN

DUCTI
ON

TRANSDUCTION
kernel methods,

in-context learning

Wen-Ding Li & Keya Hu et al. arXiv ‘24



Neural Networks for Induction and Transduction

inputtrain,  
outputtrain

Hypothesis f(·)

Predict outputtest
for inputtest

f( input
test )
IN

DUCTI
ON

TRANSDUCTION
kernel methods, 

in-context learning

python exec

Wen-Ding Li & Keya Hu et al. arXiv ‘24



Wen-Ding Li & Keya Hu et al. arXiv ‘24

Meta-Learning Induction and Transduction

Metalearning dataset: Tuples of

<inputtrain,  f(·) , inputtest>

400k synthetic problems, 100% explainable by Python code



Induction (Program Synthesis)
VS

Transduction (In-Context Learning)

It’s a tie!

But solve different problems

Weird!

- same training problems,

   all solvable with programs

- same neural architecture



Combining Induction and Transduction

Generate ONE dataset of few-shot learning problems

Fine-tune TWO models (induction&transduction)

Ensemble them

=> New SOTA on ARC, 54.4% on validation (human=60.2%)

Wen-Ding Li & Keya Hu et al. arXiv ‘24



What did we learn?

Generating symbolic hypotheses [Induction]

Imitating symbolic hypotheses [Transduction]

Complementary—even controlling for neural architecture and training problems!

Speculation: System 1/2 divide is normative-ish

Not an incidental consequence of architectural decisions

Wen-Ding Li: on industry
job market

Keya Hu: applying to 
PhD’s

Zenna Tavares: we’re 
hiring for
next steps



Induction can count, and pinpoint the center of an object
Transduction knows qualitative object relations/properties


