Towards **Compositional Interpretability** for XAI

Naturalistic Approaches to Artificial Intelligence **IPAM, UCLA, 6 Nov 2024**

Sean Tull

QUANTINUUM

Motivation

Most AI models lack interpretability, a major concern in high-stakes areas e.g. health sector.

How does the model work?

Is it biased?

eXplainable (X)AI hopes to solve this, often via post-hoc explanations for outputs, but more formal work is needed.

- These often only provide limited explanations (Rudin 2019).
- No standard definition of interpretability.

Rudin, Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead, 2019.

Why was the output X and not Y?

Test Image	Evidence for Animal Being a Siberian Husky	Evidence for Animal Being a Transverse Flute

Intuition: A model is interpretable when it has meaningful compositional structure.

The mathematics of structure and composition is that of category theory and string diagrams.

Neural network

Decision tree

Towards Compositional Interpretability for XAI

Sean Tull, Robin Lorenz, Stephen Clark, Ilyas Khan, Bob Coecke {sean.tull,robin.lorenz,steve.clark,ilyas,bob.coecke}@quantinuum.com Quantinuum, 17 Beaumont Street, Oxford, UK

Applies to deterministic, probabilistic, and even quantum models

Categorical formalism for defining AI models and interpretability

Make precise how compositional structure can give explainable models

Category Theory and String Diagrams

Categories

A symmetric monoidal category C consists of a collection of objects A, B, C... and morphisms or processes $f: A \rightarrow B$ between them, depicted in string diagrams:

We can **compose** processes 'in sequence':

and 'in parallel':

Categories

Categories satisfies various equations that come 'for free' in the diagrams:

Categories

Processes can have multiple (or zero) inputs or outputs:

Many categories also come with processes for **copying** and **discarding**:

Formally the input to a state is the *unit object*, drawn as 'empty space'

NN : Objects are spaces \mathbb{R}^n , morphisms are functions $f: \mathbb{R}^n \to \mathbb{R}^m$. Diagrams capture neural networks.

Stoch: Objects are finite sets X, morphisms are probability channels P(Y | X).

Diagrams capture Bayesian networks.

Quant : Objects are finite-dimensional Hilbert spaces \mathcal{H} , morphisms are CP maps $f: L(\mathcal{H}) \to L(\mathcal{H})$.

Diagrams capture Quantum Circuits.

Examples

Compositional Models

Compositional Models

A signature G consists of sets of abstract 'objects' (variables) and 'morphisms' (generators) between them*.

A **compositional model** \mathbb{M} is then given by:

S = Free(G)

structure category of diagrams built from *G*

*Along with optional equations between morphisms.

Interpretations

e.g. $V \mapsto Brightness'$

Say variable V has...

an abstract interpretation when $I^A(V)$ is defined. a concrete interpretation when $I^{C}(v)$ is defined for every state v of [V] in C.

Formally $\mathcal{I}^A \quad \mathcal{I}^C$ are partial maps of signatures, and in \mathbb{C}_G objects are lists of variables and morphisms $(A_i)_{i=1}^n \rightarrow (B_j)_{j=1}^m$ are $f : \bigotimes_{i=1}^n A_i \rightarrow \bigotimes_{j=1}^m B_j$ in \mathbb{C} .

An interpretation consists of a signature \mathbb{H} of 'human-friendly' terms, along with two partial maps:

Analysing Al Models

Neural Networks

Observations

- Some forms of composition are common in ML.
- Compositional structure \Rightarrow interpretability.

Transformer

• Only inputs and outputs typically interpretable, so this is where XAI focuses.

Intrinsically Interpretable Models

Linear

Observation

Intrinsic interpretability of models is manifest diagrammatically, and fits our definition.

Compositionally Interpretable Models

We call a model M compositionally interpretable (CI) when it has a complete abstract interpretation.

Every intrinsically interpretable model is CI, but the following models provide further examples.

Recurrent Neural Networks (RNNs)

Any RNN forms a CI model in C = NN with one variable and a generator for each word, represented by a NN.

DisCoCirc Models

In **DisCoCirc** models, a text is represented as a **text circuit** acting on its relevant nouns, where each word forms either a process (e.g. verbs) or **higher-order** process (e.g. adverbs).

'Alice, who is sober, sees Bob, who is drunk, clumsily dance and laughs at him'.

Usual description

Causal models (causal Bayesian networks) form a well-known class of CI models, widely studied in Causal ML.

Network Diagram in Stoch.

The causal model **framework** provides further interpretability benefits:

Interventions

The causal model **framework** provides further interpretability benefits:

Interventions

The causal model **framework** provides further interpretability benefits:

Interventions

Counterfactuals

"Had Mary taken an aspirin last night, would she still have woken up with a headache today?"

The causal model **framework** provides further interpretability benefits:

Interventions

Counterfactuals

"Had Mary taken an aspirin last night, would she still have woken up with a headache today?"

Models from Cognitive Science

Bayesian + Active Inference

Conceptual Spaces

Interacting Conceptual Spaces I : Grammatical Composition of Concepts *

Bob Coecke Fabrizio Genovese Martha Lewis Joe Bolt Dan Marsden Robin Piedeleu

From Conceptual Spaces to Quantum Concepts: Formalising and Learning Structured Conceptual Models

Sean Tull, Razin A. Shaikh, Sara Sabrina Zemljič and Stephen Clark Quantinuum

q

q

S

Explanations from Diagrams

Explanations from Diagrams

How exactly does the compositional structure of a CI model yield **explanations** for its behaviour?

We propose three ways which are purely **diagrammatic**, and so in particular apply equally to e.g. classical or **quantum** models.

Influence Relations

For models based on (discard-preserving) **channels**, diagrams let us see which inputs can **influence** which outputs.

This is not possible for trivial compositional structure **e.g.** fully-connected NN layers.

Diagram Surgery

Each piece of an interpreted diagram forms a point where we may intervene by diagram surgery, to learn more about the process.

Diagram Surgery

Each piece of an interpreted diagram forms a point where we may *intervene* by **diagram surgery**, to learn more about the process.

This generalises causal interventions, as well as **Counterfactual Explanations** in which one varies inputs to produce a given output.

To count as an **explanation**, all diagrams involved must be interpreted.

A rewrite explanation of an equality of interpreted diagrams D = D' consists of a collection of further such equations $(D_i = D'_i)_{i=1}^n$ and a proof that these imply D = D'.

Suppose a bank uses an RNN model, which (almost) always grants an employed homeowner a loan. An explanation is given by approximate equalities:

and the proof:

Such an argument is not possible for a black-box NLP model (e.g transformer):

employed		hom

Consider a DisCoCirc model of text 'Alice is with Bob. Bob is in the garden. Where is Alice?'. An explanation for the answer 'garden' could consist of equations:

and proof:

Outlook

Categories provide a natural language for studying AI models and their interpretability.

Suggests broader class of interpretable models, those with meaningful compositional structure (CI).

Causal models are the CI models most widely studied in ML, but there are further examples e.g. DisCoCirc.

Quantum Models

A categorical treatment is natural for **quantum AI models**.

- Quantum models are defined compositionally, as **parameterised quantum circuits** (PQCs)
- Compositionally structured models (e.g. DisCoCirc) allow 'Train small, test big'

• Our definitions, and explanation techniques, are independent of semantics so cover both classical and quantum

Quantum NLP

Scalable and interpretable quantum natural language processing: an implementation on trapped ions

Tiffany Duneau^{1,2}, Saskia Bruhn^{1,*}, Gabriel Matos^{1,*}, Tuomas Laakkonen¹, Katerina Saiti³, Anna Pearson^{1,*}, Konstantinos Meichanetzidis¹, Bob Coecke¹

Quantum Algorithms for Compositional Text Processing

Tuomas Laakkonen, Konstantinos Meichanetzidis, Bob Coecke Quantinuum, 17 Beaumont Street, Oxford OX1 2NA, United Kingdom

ZX Calculus

ZX-calculus is Complete for Finite-Dimensional Hilbert Spaces

Boldizsár Poór¹

Razin A. Shaikh^{1,2} Quanlong Wang¹

¹Quantinuum, 17 Beaumont Street, Oxford, OX1 2NA, United Kingdom

²University of Oxford, United Kingdom

Fusion and flow: formal protocols to reliably build photonic graph states

Giovanni de Felice¹, Boldizsár Poór¹, Lia Yeh^{1,2}, and William Cashman²

Quantinuum, 17 Beaumont Street, Oxford, OX1 2NA, United Kingdom ²University of Oxford, United Kingdom

Compositional Intelligence at Quantinuum

Conceptual Spaces

+ Much more!

How can we learn compositional structure from raw data? cf causal representation learning

How can we **relate** low-level neural networks to a high-level CI model?

What benefits do quantum compositional models bring?

cf causal abstraction

Thanks!