Towards Compositional Interpretability for XAI

Sean Tull

QUANTINUUM

Naturalistic Approaches to Artificial Intelligence IPAM, UCLA, 6 Nov 2024

eXplainable (X)AI hopes to solve this, often via **post-hoc** explanations for outputs, but more formal work is needed.

Motivation

Most AI models lack **interpretability**, a major concern in high-stakes areas e.g. health sector.

How does the model work? Is it biased? Why was the output X and not Y?

- ‣ These often only provide **limited** explanations (Rudin 2019).
- ‣ No standard **definition of interpretability.**

Rudin, Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead, 2019.

Intuition: A model is **interpretable** when it has **meaningful compositional structure**.

The mathematics of structure and **composition** is that of **category theory** and **string diagrams**.

Neural network Decision tree

Towards Compositional Interpretability for XAI

Sean Tull, Robin Lorenz, Stephen Clark, Ilyas Khan, Bob Coecke $\{$ sean.tull,robin.lorenz,steve.clark,ilyas,bob.coecke $\}$ @quantinuum.com Quantinuum, 17 Beaumont Street, Oxford, UK

-
-

• Categorical formalism for **defining AI models and interpretability**

• Make precise how **compositional structure can give explainable models**

Applies to deterministic, probabilistic, and even **quantum** models

Category Theory and String Diagrams

A symmetric monoidal category C consists of a collection of objects $A, B, C...$ and morphisms or $\bf{processes} \ f \colon A \rightarrow B$ between them, depicted in string diagrams:

We can **compose** processes 'in sequence':

and 'in parallel':

Categories

Categories satisfies various equations that come 'for free' in the diagrams:

Formally the input to a state is the *unit object,* drawn as 'empty space'

Categories

Processes can have multiple (or zero) inputs or outputs:

Many categories also come with processes for **copying** and **discarding**:

‣ Diagrams capture **Quantum Circuits**.

Examples

NN : Objects are spaces \mathbb{R}^n , morphisms are functions $f: \mathbb{R}^n \to \mathbb{R}^m$. ‣ Diagrams capture **neural networks**.

 $\textbf{Stoch}:$ Objects are finite sets X, morphisms are probability channels $P(Y | X)$. ‣ Diagrams capture **Bayesian networks**.

Quant : Objects are finite-dimensional Hilbert spaces $\mathscr H$, morphisms are CP maps $f: L(\mathscr H) \to L(\mathscr K)$.

Compositional Models

Compositional Models

A signature G consists of sets of abstract 'objects' (variables) and 'morphisms' (generators) between them*.

A **compositional model** M is then given by:

 $\mathbb{S} = \text{Free}(G)$

*Along with optional equations between morphisms.

structure category of diagrams built from *G*

Interpretations

Say variable V has...

an abstract interpretation when $I^A(V)$ is defined. **a** concrete interpretation when $I^C(v)$ is defined for every state v of $[V]$ in C.

Formally \mathcal{I}^A \mathcal{I}^C are partial maps of signatures, and in \mathbf{C}_G objects are lists of variables and morphisms $(\mathsf{A}_i)_{i=1}^n\to (\mathsf{B}_j)_{j=1}^m$ are $f\colon \otimes_{i=1}^n A_i\to \otimes_{j=1}^m B_j$ in $\mathbf C$. *j*=1

An **interpretation** consists of a signature H of '**human-friendly**' terms, along with two partial maps:

Analysing AI Models

Neural Networks

- Some forms of composition are common in ML.
- Compositional structure \Rightarrow interpretability.
-

Transformer

Observations

• Only inputs and outputs typically interpretable, so this is where XAI focuses.

Observation

Intrinsic interpretability of models is manifest diagrammatically, and fits our definition.

Intrinsically Interpretable Models

We call a model M compositionally interpretable (CI) when it has a complete abstract interpretation.

Every intrinsically interpretable model is CI, but the following models provide further examples.

Compositionally Interpretable Models

=

Any RNN forms a CI model in $C = NN$ with one variable and a generator for each word, represented by a NN.

Recurrent Neural Networks (RNNs)

In **DisCoCirc** models, a text is represented as a **text circuit** acting on its relevant nouns, where each word forms either a process (e.g. verbs) or **higher-order** process (e.g. adverbs).

> *'Alice, who is sober, sees Bob, who is drunk, clumsily dance and laughs at him'.*

DisCoCirc Models

 \Longleftrightarrow

Network Diagram in **Stoch** .

Causal models (causal Bayesian networks) form a well-known class of CI models, widely studied in **Causal ML.**

Usual description

Interventions

The causal model **framework** provides further interpretability benefits:

Interventions

The causal model **framework** provides further interpretability benefits:

$\cal S$ \boldsymbol{A} $L \,$ $\, S \,$ $L \,$ \boldsymbol{A} c_L $\overline{\big\langle \mathcal{S} \right\rangle}$ c_L $\mathrm{do}(S=s)$ $\overline{\sqrt{S}}$ $|c_S|$ \mapsto $\big|c_B\big|$ $|c_B|$ $|c_A|$ $|c_A|$

Interventions Counterfactuals

"Had Mary taken an aspirin last night, would she still have woken up with a headache today?"

The causal model **framework** provides further interpretability benefits:

S \bm{A} L $\, S \,$ \bm{A} $L \,$ c_L $\overline{\sqrt{S}}$ c_L $\mathrm{do}(S=s)$ $\overline{\sqrt{S}}$ $|c_S|$ \mapsto $|c_B|$ $|c_B|$ $|c_A|$ $|c_A|$

Interventions Counterfactuals

"Had Mary taken an aspirin last night, would she still have woken up with a headache today?"

The causal model **framework** provides further interpretability benefits:

$\cal S$ \bm{A} L $\, S \,$ $L \,$ \boldsymbol{A} c_L $\overline{\big\langle \mathcal{S} \right\rangle}$ c_L $\mathrm{do}(S=s)$ $\overline{\sqrt{S}}$ $|c_S|$ \mapsto $\vert c_B\vert$ $|c_B|$ $|c_A|$ $|c_A|$

Models from Cognitive Science

Bayesian + Active Inference

Conceptual Spaces

Interacting Conceptual Spaces I: Grammatical Composition of Concepts *

Bob Coecke Fabrizio Genovese Martha Lewis Joe Bolt Dan Marsden Robin Piedeleu

From Conceptual Spaces to Quantum Concepts: Formalising and Learning Structured Conceptual Models

Sean Tull, Razin A. Shaikh, Sara Sabrina Zemljič and Stephen Clark Quantinuum

 \boxed{q}

 \boxed{q}

 \overline{S}

Explanations from Diagrams

Explanations from Diagrams

How exactly does the compositional structure of a CI model yield **explanations** for its behaviour?

We propose three ways which are purely **diagrammatic**, and so in particular apply equally to e.g. classical or **quantum** models.

Influence Relations

For models based on (discard-preserving) **channels**, diagrams let us see which inputs can **influence** which outputs.

This is not possible for trivial compositional structure **e.g.** fully-connected NN layers.

Diagram Surgery

Each piece of an interpreted diagram forms a point where we may *intervene* by **diagram surgery**, to learn more about the process.

 \longmapsto

Diagram Surgery

Each piece of an interpreted diagram forms a point where we may *intervene* by **diagram surgery**, to learn more about the process.

This generalises causal interventions, as well as **Counterfactual Explanations** in which one varies inputs to produce a given output.

Rewrite Explanations

collection of further such equations $(D_i = D'_i)_{i=1}^n$ and a proof that these imply

To count as an **explanation**, all diagrams involved must be interpreted.

A rewrite explanation of an equality of interpreted diagrams $D = D'$ consists of a $\binom{n}{i=1}$ and a proof that these imply $D = D'$.

Suppose a bank uses an RNN model, which (almost) always grants an employed homeowner a loan. An explanation is given by approximate equalities:

and the proof:

Rewrite Explanations

Such an argument is not possible for a black-box NLP model (e.g transformer):

Rewrite Explanations

Consider a DisCoCirc model of text '*Alice is with Bob. Bob is in the garden. Where is Alice?'*. An explanation for the answer *'garden'* could consist of equations:

and proof:

Rewrite Explanations

Outlook

Causal models are the CI models most widely studied in ML, but there are further examples e.g. DisCoCirc.

Categories provide a natural language for studying AI models and their **interpretability.**

Suggests broader class of interpretable models, those with **meaningful compositional structure** (CI).

Quantum Models

A categorical treatment is natural for **quantum AI models**.

- Quantum models are defined compositionally, as **parameterised quantum circuits** (PQCs)
-
- Compositionally structured models (e.g. DisCoCirc) allow **'Train small, test big'**

• Our definitions, and explanation techniques, are independent of semantics so cover both classical and quantum

Compositional Intelligence at Quantinuum

Quantum NLP

Scalable and interpretable quantum natural language processing: an implementation on trapped ions

Tiffany Duneau^{1,2}, Saskia Bruhn^{1,*}, Gabriel Matos^{1,*}, Tuomas Laakkonen¹, Katerina Saiti³, Anna Pearson^{1,*}, Konstantinos Meichanetzidis¹, Bob Coecke¹

Quantum Algorithms for Compositional Text Processing

Tuomas Laakkonen, Konstantinos Meichanetzidis, Bob Coecke Quantinuum, 17 Beaumont Street, Oxford OX1 2NA, United Kingdom

ZX Calculus

ZX-calculus is Complete for Finite-Dimensional **Hilbert Spaces**

Boldizsár Poór¹

Razin A. Shaikh^{1,2} $\qquad Q$ uanlong Wang¹

¹Quantinuum, 17 Beaumont Street, Oxford, OX1 2NA, United Kingdom ²University of Oxford, United Kingdom

Fusion and flow: formal protocols to reliably build photonic graph states

Giovanni de Felice¹, Boldizsár Poór¹, Lia Yeh^{1,2}, and William Cashman²

 1 Quantinuum, 17 Beaumont Street, Oxford, OX1 2NA, United Kingdom ²University of Oxford, United Kingdom

Conceptual Spaces

+ Much more!

How can we **relate** low-level neural networks to a high-level CI model?

How can we l**earn** compositional structure from raw data? cf causal representation learning

What benefits do **quantum** compositional models bring?

Thanks!

cf causal abstraction