
FROM SMITH’S INVISIBLE HAND TO DISTRIBUTED
OPTIMIZATION AND CONTROL

David H. Wolpert (Santa Fe Institute)

with

Brendan Tracey (Deep Mind), Stefan Bieniawski (Boeing),

Dev Rajnarayan (Atomic Machines)

ROADMAP

• ”The invisible hand”, ”the market is the computer”, etc.

• This concept can be adapted for distributed control of MAS:
 - Have each agent run a reinforcement algorithm
 (emulating individual humans in an economy)
 - Design reward functions of each agent so a Nash
 equilibrium optimizes behavior of entire system.

ROADMAP

• These distributed control techniques can also be used for
distributed optimization.

• The cross-entropy method, genetic algorithms, simulated
annealing, etc. are just special cases.

Relax requirement that the implementation be distributed

• Then can exploit a formal correspondence
between optimization and machine learning to improve these
distributed optimization algorithms,

 - Results in (better than) state of the art performance.

The GOLDEN RULE FOR
AGENTS In AN Economy

Find a value of a variable x
that optimizes a function G(x).

DO NOT:

Find a distribution q(x)
that optimizes expected G

INSTEAD:

• Monte Carlo Optimization (MCO) is a set of
 transform techniques:
 Maps an optimization problem over x
 into an optimization problem over q(x).

• Solves for that optimal q(x) from given data set

• To invert q(x) ® x, just sample q(x).

Phrased Differently – RUN MCO

• Example 1: Genetic algorithm (GA)

• Example 2: Simulated annealing (SA)

MCO examples for single agents

- Produce q(x) from data at iteration t, Dt,
by minimizing

 Eq (G | Dt) - Tt+1S(q(x))

 where S(.) is Shannon entropy.

 - Sample this q

 - Add those samples to Dt to produce Dt+1

 - Repeat

1) A set of N agents: Joint move x = (x1, x2, ..., xN)

2) Since they are distributed, their joint probability is a product
distribution:

 • Same definition of distributed agents as in
 (iterated) noncooperative game theory.

3) This suggests each agent modifies q(x) to optimize 𝔼q(G),
rather than try to directly optimize x ... a type of MCO!

4) An iterated exact potential (“team”) game. (“Invisible hand”)

WHAT IS DISTRIBUTED OPTIMIZATION?

q(x) = ∏i qi(xi)

• Example 3: Probability Collectives (PC)

 - Define q*(x) := argmin [Eq (G | Dt) - Tt+1S(q(x))]
 - SA (tries to) construct q*

MCO examples for multiple agents

• Example 3: Probability Collectives (PC)

 - Define q*(x) := argmin [Eq (G | Dt) - Tt+1S(q(x))]
 - Instead, try to find product distribution qΘt+1 that minimizes
 [EqΘt+1(G | Dt) - Tt+1S(qΘt+1(x))]
 -
 [EqΘ*(G | Dt) - Tt+1S(qΘ* (x))]

 - That would be the product distribution that is

 “closest” to SA’s goal distribution, q*

MCO examples

• Example 3: Probability Collectives (PC)

 - Define q*(x) := argmin [Eq (G | Dt) - Tt+1S(q(x))]
 - Instead, try to find product distribution qΘt+1 that minimizes
 [EqΘt+1(G | Dt) - Tt+1S(qΘt+1(x))]
 -
 [EqΘ*(G | Dt) - Tt+1S(qΘ* (x))]

 - The solution, for coordinate i, is the marginal

 of the Boltzmann distribution:
 q𝜃it+1(xi) ∝ exp[-Tt+1G(x)]i

 - A mean field approximation:
 q𝜃it+1(xi) ∝ exp[-Tt+1E(G | x i)]

MCO examples

Best-rearViewHighSpeed.mov

Best-rearViewHighSpeed.mov

• Example 3: Probability Collectives (PC)
 - The solution, for coordinate i, is the marginal
 of the Boltzmann distribution:

 q𝜃it+1(xi) ∝ exp[-Tt+1G(x)]i

 - A mean field approximation:
 q𝜃it+1(xi) ∝ exp[-Tt+1E(G | x i)]

• Must estimate E(G | xi)] from data - how?
 - Hack: Just histogram historical data set.
• But older data points in dataset produced using different
 distribution than recent data points – how address that?

 - Hack: Data-aging, i.e., exponentially weight data points
 in the histogram

PROBLEM...

BETTER – MCO AND MACHINE LEARNING

1) Want q minimizing

• Hard. E.g., gradient descent would require evaluating a
gradient – which is another difficult integral

2) Importance sample:

 where hx(x) is the distribution used to create the sample x

3) Find q minimizing RHS

• Easier. E.g., estimating gradient is just calculating a sum

€

dxdG∫ P(G | x)qθ (x)G

<latexit sha1_base64="/eYhEdySWDBgMVhg/IxuWnvKpMs=">AAACYnicbVHPa9swFJa9duuyrU3XY3cQDYMURrDH6HoZFHbITiWDpS3EiZFluVEq2a70XBI0/5O79dTL/pC+JIatPx4Ife9735P0PiWlkhaC4NbzX2xsvny19br15u277Z327vszW1SGiyEvVGEuEmaFkrkYggQlLkojmE6UOE+uvi/r5zfCWFnkv2BRirFml7nMJGeAVNxeRDIHms7TPo0+0Wk8784P6aC7zH4jgUmUGcbddRzBVADDcr92a11NIyu1uMat0rGbfQvryWmj709m9F/PZHZYu1M83iGs13nc7gS9YBX0KQgb0CFNDOL2nygteKVFDlwxa0dhUMLYMQOSK1G3osqKkvErdilGCHOmhR27lUU1/YhMSrPC4MKBV+z/HY5paxc6QaVmMLWPa0vyudqogux47GReViByvr4oqxSFgi79pqk0goNaIGDcSHwr5VOGFgH+SgtNCB+P/BScfe6FR72jn186J0FjxxbZJwekS0LylZyQH2RAhoSTO2/T2/Z2vL9+y9/199ZS32t69siD8D/cA6HntIA=</latexit>Z
dxdGhx(x)P (G |x)q✓(x)G

hx(x)
'

NX

j=1

Gjq✓(xj)

Nhxj (xj)

SUPERVISED MACHINE LEARNING

1) Conditional distribution P(Y | X). Loss function L : Y × Y ® R.

2) Want function fq(x) that minimizes associated expected loss,

 i.e., want q that minimizes

3) “Training set” D : N samples of P(x) P(y | x), {(xj, yj) : j = 1, ... N}

 i.e., a set of N functions {q ® L(yj, fq(xj)) : j = 1, ... N}

Eθ (L) ≡ dxdy P(x)P(y | x)∫ L(y, fθ (x))

MCO = Machine Learning (!)

MCO Machine Learning

 x x

 G y

 hx(x) P(x)

€

L(y, f
θ
(x))

€

G jqθ (x
j)

Nh(x j)j=1

N

∑ vs. L(y j , fθ (x
j))

Nj=1

N

∑

<latexit sha1_base64="zoqliu7LSPY+2j5veXuo1T4y4lM=">AAACEXicbZDLSgMxFIYz9VbrrerSTbAIdVNmRKrLggtdSQV7gc50yKSZNm3mYnJGLENfwY2v4saFIm7dufNtTC8Lbf0h8OU/55Cc34sFV2Ca30ZmaXlldS27ntvY3Nreye/u1VWUSMpqNBKRbHpEMcFDVgMOgjVjyUjgCdbwBhfjeuOeScWj8BaGMXMC0g25zykBbbn5ou1LQtPLdh/fuTb0GJDiQ7t/PEqvcc9NNY6mdzdfMEvmRHgRrBkU0ExVN/9ldyKaBCwEKohSLcuMwUmJBE4FG+XsRLGY0AHpspbGkARMOelkoxE+0k4H+5HUJwQ8cX9PpCRQahh4ujMg0FPztbH5X62VgH/upDyME2AhnT7kJwJDhMfx4A6XjIIYaiBUcv1XTHtERwQ6xJwOwZpfeRHqJyWrXCrfnBYq5iyOLDpAh6iILHSGKugKVVENUfSIntErejOejBfj3fiYtmaM2cw++iPj8wcLDJ0c</latexit>

Gjq✓(xj)

Nhxj (xj)

IMPLICATIONS OF THE EQUALITY

MCO problem Machine Learning solution

How shrink bias of qq*(x)? Expand model class

How shrink variance of qq(x)? Bag / regularize

How set temperature? Cross-validation

How set proposal dist., h(x)? Active Learning

How weight samples? Boosting

How combine q’s? Stacking

More expressive q’s? Kernel machines

IMPLICATIONS OF THE EQUALITY

MCO problem Machine Learning solution

How shrink bias of qq(x)? Expand model class

How shrink variance of qq(x)? Bag / regularize

How set temperature? Cross-validation

How set proposal dist., h(x)? Active Learning

How weight samples? Boosting

How combine q’s? Stacking

More expressive q’s? Kernel machines

IMPLICATIONS OF THE EQUALITY

MCO problem Machine Learning solution

How shrink variance of qq(x)? Bag / regularize

In the context of MCO, we can regularize with entropy of qq

- That gives us

- Just like PC – but with distribution that generated xj used!

<latexit sha1_base64="Zfb+fMm9b3oRpGe4vHGunCqJbBk=">AAACcnicbVHLbtNAFB2bVwmvUMQGJBiIkBK1imxUFTZIlViEVRVE01aKE2s8HjeTztjuzDVKNPgD+D12fAUbPoCbxAhoudLI555z7jyOk1JJC0Hw3fOvXb9x89bW7dadu/fuP2g/3D62RWW4GPFCFeY0YVYomYsRSFDitDSC6USJk+T8/Uo/+SyMlUV+BMtSTDQ7y2UmOQOk4vbXSOZA00U6oNEuncWL7qJHh91V9wUJbKLMMO4u4ghmAhjKg9ptfDWNrNTiAj+Vjt38XVhPDxv/YDqnf2am817tDnF7h7De9HSHHtFP3d+mXtzuBP1gXfQqCBvQIU0N4/a3KC14pUUOXDFrx2FQwsQxA5IrUbeiyoqS8XN2JsYIc6aFnbh1ZDV9hUxKs8LgwgDW7N8TjmlrlzpBp2Yws5e1Ffk/bVxB9nbiZF5WIHK+OSirFIWCrvKnqTSCg1oiYNxIvCvlM4aRAf6lFoYQXn7yVXD8uh/u9/c/7nUOgiaOLfKUvCRdEpI35IB8IEMyIpz88B57z7zn3k//if/Cb7LzvWbmEfmn/N1f/XS55Q==</latexit>Z
dxdGhx(x)P (G |x)q✓(x)G

hx(x)
'

NX

j=1

Gjq✓(xj)

Nhxj (xj)
+ TS(q✓)

MCO = Machine Learning

MCO problem Machine Learning solution

How shrink bias of qq(x)? Expand model class

How shrink variance of qq(x)? Bag / regularize

How set temperature T in PC? Cross-validation

How set proposal dist., h(x)? Active Learning

How weight samples? Boosting

How combine q’s? Stacking

More expressive q’s? Kernel machines

MCO = Machine Learning

MCO problem Machine Learning solution

How set temperature T in Cross-validation
MCO with entropy regularizer
and single Gaussian qq(x)?

• No new samples (like would be required in SA)

• Can update T continually – keep changing T to optimize
cross-validation, as data set grows

• In other words, auto-annealing, rather than following a pre-fixed
annealing schedule

MCO = Machine Learning

MCO problem Machine Learning solution

How set number of components Cross-validation
in a mixture model qq(x)?

• No new samples (like would be required in SA)

• Can update number of components continually – keep changing
number to optimize cross-validation, as data set grows

• In other words, automatically set number of political parties,
with each mixing component a different “party”.

pc2.mp4

pc2.mp4

FUTURE WORK

• Combine (machine-learning-augmented) MCO

 with PC, to get

with a a product distribution qq(x)

• Requires each agent to broadcast its sampling

distribution to all others after using it

<latexit sha1_base64="Zfb+fMm9b3oRpGe4vHGunCqJbBk=">AAACcnicbVHLbtNAFB2bVwmvUMQGJBiIkBK1imxUFTZIlViEVRVE01aKE2s8HjeTztjuzDVKNPgD+D12fAUbPoCbxAhoudLI555z7jyOk1JJC0Hw3fOvXb9x89bW7dadu/fuP2g/3D62RWW4GPFCFeY0YVYomYsRSFDitDSC6USJk+T8/Uo/+SyMlUV+BMtSTDQ7y2UmOQOk4vbXSOZA00U6oNEuncWL7qJHh91V9wUJbKLMMO4u4ghmAhjKg9ptfDWNrNTiAj+Vjt38XVhPDxv/YDqnf2am817tDnF7h7De9HSHHtFP3d+mXtzuBP1gXfQqCBvQIU0N4/a3KC14pUUOXDFrx2FQwsQxA5IrUbeiyoqS8XN2JsYIc6aFnbh1ZDV9hUxKs8LgwgDW7N8TjmlrlzpBp2Yws5e1Ffk/bVxB9nbiZF5WIHK+OSirFIWCrvKnqTSCg1oiYNxIvCvlM4aRAf6lFoYQXn7yVXD8uh/u9/c/7nUOgiaOLfKUvCRdEpI35IB8IEMyIpz88B57z7zn3k//if/Cb7LzvWbmEfmn/N1f/XS55Q==</latexit>Z
dxdGhx(x)P (G |x)q✓(x)G

hx(x)
'

NX

j=1

Gjq✓(xj)

Nhxj (xj)
+ TS(q✓)

