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ROADMAP

• ”The invisible hand”, ”the market is the computer”, etc.

• This concept can be adapted for distributed control of MAS:
      - Have each agent run a reinforcement algorithm
  (emulating individual humans in an economy)
 - Design reward functions of each agent so a Nash 
    equilibrium optimizes  behavior of entire system. 



ROADMAP

• These distributed control techniques can also be used for 
distributed optimization. 

• The cross-entropy method, genetic algorithms, simulated 
annealing, etc. are just special cases. 

Relax requirement that the implementation be distributed

• Then can exploit a formal correspondence 
between optimization and machine learning to improve these 
distributed optimization algorithms, 

 - Results in (better than) state of the art performance.



The GOLDEN RULE FOR 
AGENTS In AN Economy

Find a value of a variable x
that optimizes a function G(x).

DO NOT:

Find a distribution q(x)
that optimizes expected G

INSTEAD:



• Monte Carlo Optimization (MCO) is a set of
 transform techniques: 
  Maps an optimization problem over x 
  into an optimization problem over q(x).

• Solves for that optimal q(x) from given data set

• To invert q(x) ® x, just sample q(x).

Phrased Differently – RUN MCO



• Example 1: Genetic algorithm (GA)

• Example 2: Simulated annealing (SA)

MCO examples for single agents

- Produce q(x) from data at iteration t, Dt,          
by minimizing

  Eq (G | Dt)  -  Tt+1S(q(x))

 where S(.) is Shannon entropy.

     -   Sample this q

     -   Add those samples to Dt to produce Dt+1

       -   Repeat



1) A set of N agents:   Joint move x = (x1, x2, ..., xN)

2) Since they are distributed, their joint probability is a product 
distribution:

 
 • Same definition of distributed agents as in   
   (iterated) noncooperative game theory. 

3) This suggests each agent modifies q(x) to optimize 𝔼q(G), 
rather than try to directly optimize x ... a type of MCO!

4)  An iterated exact potential (“team”) game. (“Invisible hand”)

WHAT IS DISTRIBUTED OPTIMIZATION?

q(x)  =  ∏i qi(xi)



• Example 3: Probability Collectives (PC)

   -    Define q*(x) := argmin [Eq (G | Dt)  -  Tt+1S(q(x))]
   -    SA (tries to) construct q*

MCO examples for multiple agents



• Example 3: Probability Collectives (PC)

   -    Define q*(x) := argmin [Eq (G | Dt)  -  Tt+1S(q(x))]
   -    Instead, try to find product distribution qΘt+1 that minimizes
  [EqΘt+1(G | Dt)  -  Tt+1S(qΘt+1(x))]
    -
  [EqΘ*(G | Dt)  -  Tt+1S(qΘ* (x))]

     -    That would be the product distribution that is 

          “closest” to SA’s goal distribution, q*

MCO examples



• Example 3: Probability Collectives (PC)

   -    Define q*(x) := argmin [Eq (G | Dt)  -  Tt+1S(q(x))]
   -    Instead, try to find product distribution qΘt+1 that minimizes
  [EqΘt+1(G | Dt)  -  Tt+1S(qΘt+1(x))]
    -
  [EqΘ*(G | Dt)  -  Tt+1S(qΘ* (x))]

     -    The solution, for coordinate i, is the marginal 

          of the Boltzmann distribution:
   q𝜃it+1(xi)  ∝  exp[-Tt+1G(x)]i

     -     A mean field approximation:
   q𝜃it+1(xi)  ∝ exp[-Tt+1E(G | x i)]

MCO examples
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• Example 3: Probability Collectives (PC)
   -     The solution, for coordinate i, is the marginal 
   of the Boltzmann distribution:

   q𝜃it+1(xi)  ∝  exp[-Tt+1G(x)]i

     -     A mean field approximation:
   q𝜃it+1(xi)  ∝ exp[-Tt+1E(G | x i)]

•   Must estimate E(G | xi)] from data - how?
 -  Hack: Just histogram historical data set.
•   But older data points in dataset produced using different   
      distribution than recent data points –  how address that?

 - Hack: Data-aging, i.e., exponentially weight data points
             in the histogram

PROBLEM...



BETTER – MCO AND MACHINE LEARNING

1) Want q minimizing

•  Hard. E.g., gradient descent would require evaluating a 
gradient – which is another difficult integral

2) Importance sample:

    where hx(x) is the distribution used to create the sample x

3) Find q  minimizing RHS

•  Easier. E.g., estimating gradient is just calculating a sum
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SUPERVISED MACHINE LEARNING

1) Conditional distribution P(Y | X). Loss function L : Y × Y ® R. 

2) Want function fq(x) that minimizes associated expected loss,

 i.e., want q that minimizes

3) “Training set” D : N samples of P(x) P(y | x), {(xj, yj) : j = 1, ... N}

 i.e., a set of N functions {q ® L(yj, fq(xj)) : j = 1, ... N}

Eθ (L) ≡ dxdy P(x)P(y | x)∫ L(y, fθ (x))



MCO = Machine Learning (!)

MCO              Machine Learning

    x      x

    G      y

    hx(x)      P(x)
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IMPLICATIONS OF THE EQUALITY

MCO problem                      Machine Learning solution

How shrink bias of qq*(x)?      Expand model class

How shrink variance of qq(x)?      Bag / regularize

How set temperature?       Cross-validation

How set proposal dist., h(x)?      Active Learning

How weight samples?       Boosting

How combine q’s?       Stacking

More expressive q’s?       Kernel machines
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IMPLICATIONS OF THE EQUALITY

MCO problem                      Machine Learning solution

How shrink variance of qq(x)?      Bag / regularize

In the context of MCO, we can regularize with entropy of qq

- That gives us 

- Just like PC – but with distribution that generated xj used!
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MCO = Machine Learning

MCO problem                      Machine Learning solution

How shrink bias of qq(x)?       Expand model class

How shrink variance of qq(x)?      Bag / regularize

How set temperature T in PC?      Cross-validation

How set proposal dist., h(x)?      Active Learning

How weight samples?       Boosting

How combine q’s?           Stacking

More expressive q’s?       Kernel machines



MCO = Machine Learning

MCO problem                      Machine Learning solution

How set temperature T in       Cross-validation
MCO with entropy regularizer
and single Gaussian qq(x)?

• No new samples (like would be required in SA)

• Can update T continually – keep changing T to optimize      
cross-validation, as data set grows

• In other words, auto-annealing, rather than following a pre-fixed 
annealing schedule







MCO = Machine Learning

MCO problem                      Machine Learning solution

How set number of components      Cross-validation
in a mixture model qq(x)?

• No new samples (like would be required in SA)

• Can update number of components continually – keep changing 
number to optimize cross-validation, as data set grows

• In other words, automatically set number of political parties, 
with each mixing component a different “party”. 
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FUTURE WORK

• Combine (machine-learning-augmented) MCO

 with PC, to get

with a a product distribution qq(x)

• Requires each agent to broadcast its sampling

distribution to all others after using it
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