SandboxAQ / The Master's University / Nov. 5, 2024

An Enriched Category Theory of Language Tai-Danae Bradley

category theory

Why? It allows us to bring in *few* assumptions.

category theory

Why? It allows us to bring in *few* assumptions.

language

It's a little different than fitting a model to language. Instead, we're just seeing "what's there."

AN ENRICHED CATEGORY THEORY OF LANGUAGE: FROM **SYNTAX TO SEMANTICS**

TAI-DANAE BRADLEY¹, JOHN TERILLA², AND YIANNIS VLASSOPOULOS³

category theory

Why? It allows us to bring in *few* assumptions.

enriched

The statistics of texts can be captured neatly using a "richer" version of category theory.

It's a little different than fitting a model to language. Instead, we're just seeing "what's there."

La Matematica, vol. 1, pp. 551-580 (2022)

language

1. introduce category theory 2. describe language as a category 3. see what we can do

Z

sets

sets

ℝ*^m*

vector spaces

vector spaces

real numbers in [0,1]

- objects X, Y, \ldots
- **morphisms** (i.e. arrows) between them
- a **composition rule**

A Category
 A category C consists of
 A category C consists of
 • objects *X*, *Y*, …
 • a composition rule

that satisfy some reasonable axioms. **Loose De finition**

A **category** C consists of

OBJECTS

OBJECTS

STRINGS

OBJECTS

STRINGS

A SET

OBJECTS

STRINGS

A SET

A SET

OBJECTS

STRINGS

A SET

 $C(X, Y)$

A SET

OBJECTS

STRINGS

A SET A NUMBER

OBJECTS

A SET

 $C(X, Y)$ $\pi(y|x)$

A NUMBER

STRINGS

OBJECTS

A SET

 $C(X, Y)$

A COMPOSITION RULE

 $C(X, Y) \times C(Y, Z) \rightarrow C(X, Z)$

STRINGS

π(*y* | *x*)

A NUMBER

OBJECTS

A SET

 $C(X, Y)$

 $C(X, Y) \times C(Y, Z) \rightarrow C(X, Z)$

STRINGS

A NUMBER

π(*y* | *x*)

Consider all strings $x, y, ...$ from a finite set of atomic symbols. (*Think: expressions in a language.)*

Write $x \rightarrow y$ to indicate substring **containment**.

Summary so far… Language as a Category,

• Arrows compose:

if $x \to y \to z$, then $x \to z$

• Each string contains itself:

$$
x \to x
$$

1. introduce category theory 2. describe language as a category 3. see what we can do

3. Incorporate **Probabilities**

2. Operate on Representations

1. Represent **Meanings**

4. Represent Enriched Meanings

5. Operate on Enriched Representations

6. Adopt a Geometric Perspective

2. Operate on **Representations**

3. Incorporate **Probabilities**

1. Represent **Meanings**

4. Represent Enriched Meanings

5. Operate on Enriched Representations

6. Adopt a Geometric Perspective

$C(X, -)$

 $C(X, -)$

 $C(X, -)$

Set

functor

$X \cong Y$ $-$) \cong $C(Y, -)$ iff **Yoneda Lemma**

functor

(or rather, a corollary of it)

(*X*, −)

category L.

Idea: Given a "prompt" (i.e. expression) x, consider the network of ways it fits into the language

Idea: Given a "prompt" (i.e. expression) x, consider the network of ways it fits into the language category L.

Ask: "Is x is contained in a given expression y ?"

• If so, there is one arrow $x \rightarrow y$. Otherwise, there is no arrow.

Idea: Given a "prompt" (i.e. expression) x, consider the network of ways it fits into the language category L.

Ask: "Is x is contained in a given expression y ?"

• If so, there is one arrow $x \rightarrow y$. Otherwise, there is no arrow.

L(blue, curiosity killed the cat) = \varnothing

 $x \mapsto L(x, -)$

 $L(blue, blue marble) = \{ \rightarrow \}$

Idea: Given a "prompt" (i.e. expression) x, consider the network of ways it fits into the language category L.

Ask: "Is x is contained in a given expression y ?"

• If so, there is one arrow $x \rightarrow y$. Otherwise, there is no arrow.

which "represents" (or is a rough approximation to) the meaning of x . **Example**:

 $L(blue, y) =$ <

-
- $L(x, -)$: L \rightarrow Set
	-

Upshot: The Yoneda Lemma motivates us to consider the functor

$$
\begin{cases} \{ \rightarrow \} & \text{if blue } \leq y \\ \varnothing & \text{otherwise} \end{cases}
$$

∅ * * ∅ * ∅ $\ddot{\bullet}$

deep red Bing cherries small **blue** marble beautiful **blue** ocean did you put the kettle on red and **blue** fireworks Sencha green tea $\ddot{\bullet}$

4. Represent Enriched Meanings

1. Represent **Meanings**

intersections, products, direct sums, meets, greatest common divisors, kernels,…

unions, coproducts, direct sums, joins, least common multiples, cokernels,…

AND

IMPLIES

All functors $\mathsf{L} \to \mathsf{Set}$ form a new category Set^L that has *lots* of structure, which it inherits from the category of sets. Just as we can combine sets in many ways (intersections, unions, etc.) we can now combine *functors* in many ways. $\overline{}$

Practically speaking, this means we have notions of conjunction, **disjunction**, and implication. (Formally speaking, Set^L has "all limits, colimits, and is Cartesian closed.") $\overline{}$

(**red**, −) ⊔ (**blue**, −) =

All functors $\mathsf{L} \to \mathsf{Set}$ form a new category Set^L that has *lots* of structure, which it inherits from the category of sets. Just as we can combine sets in many ways (intersections, unions, etc.) we can now combine *functors* in many ways. $\overline{}$

Practically speaking, this means we have notions of conjunction, **disjunction**, and implication. (Formally speaking, Set^L has "all limits, colimits, and is Cartesian closed.") $\overline{}$

1. Represent **Meanings**

2. Operate on **Representations**

3. Incorporate Probabilities

4. Represent Enriched Meanings

5. Operate on Enriched Representations

6. Adopt a Geometric Perspective

deep red Bing cherries small **blue** marble beautiful **blue** ocean did you put the kettle on red and **blue** fireworks Sencha green tea

 $\ddot{\bullet}$

In (ordinary) **category theory**, each pair of objects has an associated **set**

 $C(X, Y)$

In (ordinary) **category theory**, each pair of objects has an associated **set**

 $C(X, Y)$

In **enriched category theory**, each pair of objects has an associated **object**

$\mathscr{C}(X, Y)$

in some sufficiently nice category

In (ordinary) **category theory**, each pair of objects has an associated **set**

 $C(X, Y)$

In **enriched category theory**, each pair of objects has an associated **object**

$\mathscr{C}(X, Y)$

in some sufficiently nice category

like $[0,1]$, as hinted earlier

- **objects** *X*, *Y*,…
- an object $\mathscr{C}(X, Y)$ in \mathscr{V}
- a "**composition rule**"

 $\mathscr{C}(X, Y) \otimes \mathscr{C}(Y, Z) \rightarrow \mathscr{C}(X, Z)$

that satisfy reasonable axioms.

An Enriched Category Very Loose Definition

Given a sufficiently nice category $\mathscr{V},$ a \mathcal{V} **− enriched category** \mathcal{C} **has**

We are interested in the case when the base category is the unit interval $[0,1]$.

We want:

An Enriched Category Very Loose Definition

- strings *x*, *y*, …
- a probability of continuation $\pi(y|x)$
- But do we have this inequality?

 $\pi(y|x) \cdot \pi(z|y) \leq \pi(z|x)$

For any prompt x, the LLM gives a probability distribution $p(-|x)$ on the set of tokens. These probabilities multiply in the following sense:

Yes, suppose we have an LLM.

These probabilities multiply in the following sense:

 $p(x_1x_2 | x_1)$

Yes, suppose we have an LLM.

For any prompt x, the LLM gives a probability distribution $p(-|x)$ on the set of tokens.

These probabilities multiply in the following sense:

Yes, suppose we have an LLM.

For any prompt x, the LLM gives a probability distribution $p(-|x)$ on the set of tokens.

For any prompt x, the LLM gives a probability distribution $p(-|x)$ on the set of tokens. These probabilities multiply in the following sense:

Yes, suppose we have an LLM.

These probabilities multiply in the following sense:

Yes, suppose we have an LLM.

For any prompt x, the LLM gives a probability distribution $p(-|x)$ on the set of tokens.

(so we get an *equality,* in fact)

Given an LLM and strings $x \rightarrow y$, define^{*} the m umber $\pi(y | x)$ as a product of the successive probabilities used to obtain y from x one token at a time:

Language as an Enriched Category, ℒ **Over the Unit Interval**

$$
\pi(y \mid x) := \begin{cases}\n1 & \text{if } x = y \\
0 & \text{if } x \to y \\
\prod_{i=1}^{k(y)} p(x_{t+i} \mid x_{< t+i}) & \text{if } x \to y\n\end{cases}
$$

 * Thanks to Juan Pablo Vigneaux for this observation. In this definition, we write $x \rightarrow y$ whenever y extends x on the right.

Language as an Enriched Category, ℒ **Over the Unit Interval**

This number is an object in the category , and it satisfies the "**composition** [0,1] **rule**"

$$
\pi(y \mid x) \cdot \pi(z \mid y) = \pi(z \mid x).
$$

for all strings x, y, z .

So, we view language as a category $\mathscr L$ enriched over [0,1].

Given an LLM and strings $x \rightarrow y$, define^{*} the m umber $\pi(y | x)$ as a product of the successive probabilities used to obtain y from x one token at a time:

$$
\pi(y \mid x) := \begin{cases}\n1 & \text{if } x = y \\
0 & \text{if } x \to y \\
\prod_{i=1}^{k(y)} p(x_{t+i} \mid x_{< t+i}) & \text{if } x \to y\n\end{cases}
$$

 * Thanks to Juan Pablo Vigneaux for this observation. In this definition, we write $x \rightarrow y$ whenever y extends x on the right.

OBJECTS

A SET

 $\mathcal{T}(X, Y)$ $\pi(y|x)$

A COMPOSITION RULE A COMPOSITION RULE

 $C(X, Y) \times C(Y, Z) \rightarrow C(X, Z)$

x, *y*, . . .

STRINGS

A NUMBER

 $\pi(y | x) \cdot \pi(z | y) = \pi(z | x)$

1. Represent **Meanings** 2. Operate on **Representations** 3. Incorporate **Probabilities** 4. Represent Enriched Meanings 5. Operate on Enriched Representations 6. Adopt a Geometric Perspective

4. Represent Enriched Meanings

π(Sencha green tea | blue)

Consider enriched functors $\mathscr{L} \to [0,1]$ associated to expressions. These contain the same information as before, plus probabilities.

Ex: The functor $\mathscr{L}(\mathsf{blue}, -)$ is supported on all texts that contain "blue."

5. Operate on Enriched Representations

The enriched functor category $[0,1]^{\mathscr{L}}$ has rich structure, including the *enriched* versions of limits, colimits, and Cartesian closure.

So, we can again make sense of logical operations like conjunction, disjunction, and implication.

Consider enriched functors $\mathscr{L} \to [0,1]$ associated to expressions. These contain the same information as before, plus probabilities.

4. Represent Enriched Meanings

Ex: The functor $\mathscr{L}(\mathsf{blue}, -)$ is supported on all texts that contain "blue."

π(Sencha green tea | blue)

1. Represent **Meanings**

2. Operate on **Representations**

3. **Incorporate Probabilities**

4. Represent Enriched Meanings

5. Operate on Enriched Representations

6. Adopt a Geometric Perspective

We can work with *distances* instead of *probabilities by* considering the function

- $-\ln : [0,1] \to [0,\infty]$.
- The distance between expressions x and y is defined by

 $d(x, y) = -\ln \pi(y | x).$

We can work with *distances* instead of *probabilities by* considering the function

The distance between expressions x and y is defined by

Likely continuations of a text x are close to it. Other texts that are not continuations are **infinitely far away**.

-
- $-\ln : [0,1] \rightarrow [0,\infty]$.
	-
- $d(x, y) = -\ln \pi(y | x).$
	-

Repeat the story all over again.

Distances satisfy a "**composition rule**." In fact, it is enriched category theory all over again!

 $d(x, y) + d(y, z) \ge d(x, z)$

A $[0,\infty]$ -enriched category is also called a **generalized metric space**, and we can compute the versions of the previous constructions:

- **represent** meanings as "vectors" (i.e. enriched functors)
- **combine** those representations using enriched categorical operations

Repeat the story all over again.

What *else* do we gain from a geometric perspective?

• Stéphane Gaubert (INRIA) and Yiannis Vlassopoulos (IHES, ARC) recently interpreted this generalized metric space through the lens of **tropical geometry.**

 $The [0,∞]$ -category of language can be viewed as a *polyhedron, with a geometric interpretation of the "meaning" of texts as generating this polyhedron.*

DIRECTED METRIC STRUCTURES ARISING IN LARGE **LANGUAGE MODELS**

STÉPHANE GAUBERT AND YIANNIS VLASSOPOULOS

A $[0,\infty]$ -enriched category is also called a **generalized metric space**, and we can compute the versions of the previous constructions:

arXiv: 2405.12264

Distances satisfy a "**composition rule**." In fact, it is enriched category theory all over again!

 $d(x, y) + d(y, z) \ge d(x, z)$

- **represent** meanings as "vectors" (i.e. enriched functors)
- **combine** those representations using enriched categorical operations

Repeat the story all over again.

What *else* do we gain from a geometric perspective?

• Juan Pablo Vigneaux (Caltech) recently computed the **magnitude** of (a finite version of) this generalized metric space.

 $For our [0,∞]$ -enriched category of language, the magnitude *function is a sum over prompts of Tsallis entropies:*

Magnitude is a numerical invariant for finite enriched categories.

You can rescale via a parameter to obtain a magnitude t function, which is even more interesting.

A $[0,\infty]$ -enriched category is also called a **generalized metric space**, and we can compute the versions of the previous constructions:

$$
|t\mathcal{L}| = (t-1) \sum_{x \in ob(\mathcal{L})} H_t(p(-|x))
$$

T.-D. B. and Juan Pablo Vigneaux, in preparation (2024)

Distances satisfy a "**composition rule**." In fact, it is enriched category theory all over again!

 $d(x, y) + d(y, z) \ge d(x, z)$

- **represent** meanings as "vectors" (i.e. enriched functors)
- **combine** those representations using enriched categorical operations

used for **magnitude**

y

 \bullet \bullet

 \bullet

used for **magnitude**

used with **SVD**

$\operatorname{pmi}(x,y)$

used for **magnitude**

y \bullet \bullet \bullet $0,1$ $pmi(x, y)$ *x* \bullet \bullet \bullet

used with **SVD**

used in **formal concept analysis**

and Category Theory

Tai-Danae Bradley, Juan Luis Gastaldi, and John Terilla

Notices of the American Mathematical Society (Feb. 2024)

The Structure of Meaning in Language: Parallel
Narratives in Linear Algebra

and Category Theory

Tai-Danae Bradley, Juan Luis Gastaldi, and John Terilla

Notices of the American Mathematical Society (Feb. 2024)

Thanks

tai.danae@math3ma.com

The Structure of Meaning in Language: Parallel
Narratives in Linear Algebra