
Biology of Computation

Stephanie Forrest Biodesign Institute and School of Computing Arizona State University Nov., 2024

Now 'Tony' will talk to you about intelligence

Naturalistic Approaches to Intelligence The Brain

The Brain

stories.uq.edu.au

- Perceptron \rightarrow Neural Networks \rightarrow Deep Learning \rightarrow "AI"
- Supervised training, reinforcement learning
- Mostly static network structure after learning
 - Neurons don't move

Naturalistic Approaches to Intelligence Social insects and other collectives

Social insects

trustalchemy.com

pxhere.com

<u>argh.com</u>

- Individual agents have limited cognitive capabilities and local communication
- Behavioral rules pre-programmed by evolution
- Emergent collective behavior
- Move through space, Liquid brains

Naturalistic Approaches to Intelligence Social Intelligence

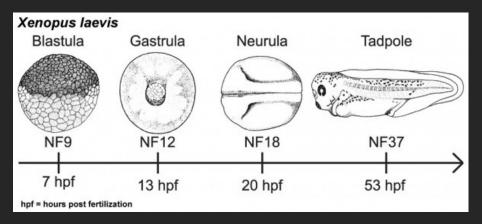
<u>inc.com</u>

thoughtco.com

- Collective problem solving
- Cooperative learning
- Social structure
- Communication/language

Wildlifefaq.com

Naturalistic Approaches to Intelligence The Microbiome



- Digestion
- Gut/brain axis
- Behavior
- Arm of the immune system
- Endocrine regulation

kidsandcompany.com

- Multiple interacting species (300 1000 different species in human colon)
- Complex regulatory logic, important for health and ecosystems
- Dynamic interaction structure

Naturalistic Approaches to Intelligence Embryology

embryology.med.unsw.edu.au


• Nature's build process

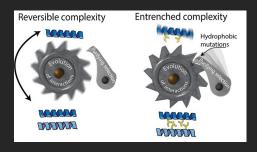
wallup.net

Naturalistic Approaches to Intelligence Immune Systems

vitalplan.com

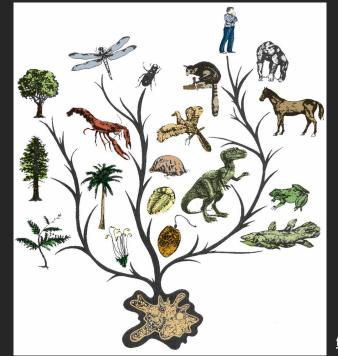
- Endless complexity
 - What is historical accident and what is logically necessary?
 - Computational perspective can help

Information Processing in the Immune System


Immune systems learn to recognize relevant patterns	 Learned distinction between self and other Primary response to new foreign antigen Evolved biases towards common pathogens
They remember patterns see previously	 Secondary response Cross-reactive memory
They use combinatorics to construct pattern detectors	 10¹¹ – 10¹⁶ different foreign patterns from ~25,000 genes
They are massively parallel and distributed	

Edward Jenner's first smallpox vaccine performed on James Phipps in 1796

http://www.history.com/news/vaccines-diseases-forgotten


Cybersecurity Recapitulates Biology

Primary/secondary responses	 Anomaly intrusion detection, signature detection
Heterogeneous defense	 Address space randomization Natural diversity for N-variant systems
Second signals	 Two-factor authentication
Increasing complexity	 Ratchets, constructive neutral evolution Defense-in-depth

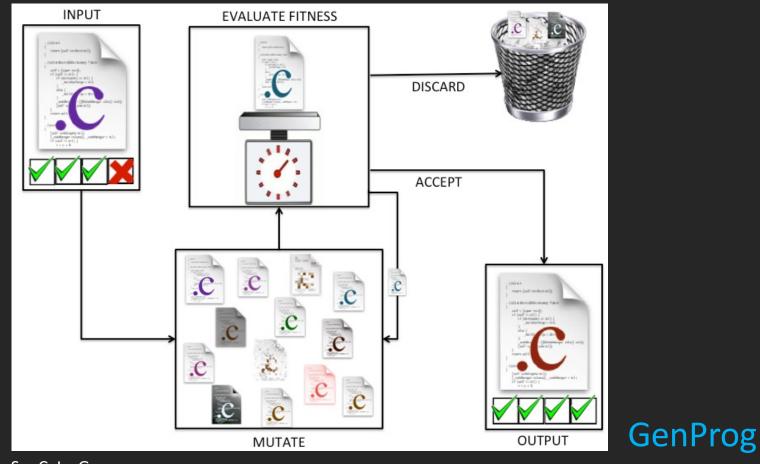
Hochberg et al. Nature, 2020

Naturalistic Approaches to Intelligence *Evolution*

fair-science.blogspot.com

- Nature's design process
- Robustness and diversity

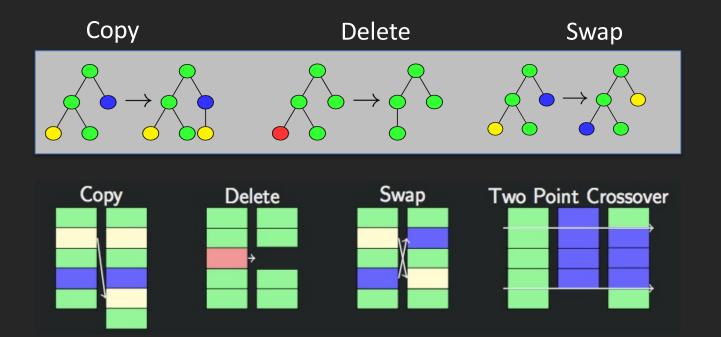
Evolution in Software



Jose-Luis Olivares

networkworld.com

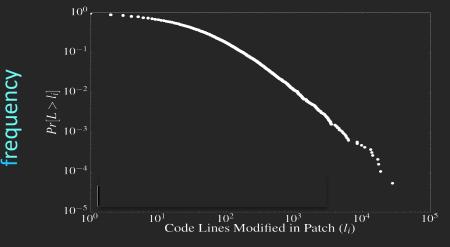
- Micro-level: Evolutionary computation methods
- Macro-level: Inadvertent evolution


Micro-evolution of Software

So: C. Le Goues

ICSE '09: W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding patches using genetic programming. 2019: Award: Most influential paper published at the 2009 I_GSE.

Mutations




- Don't invent new code
- Statement-level operations

How can this possibly be a good idea?

- Why does GenProg succeed?
 - Algorithmic innovations
 - Exploits holes in test cases
 - Most bugs are small

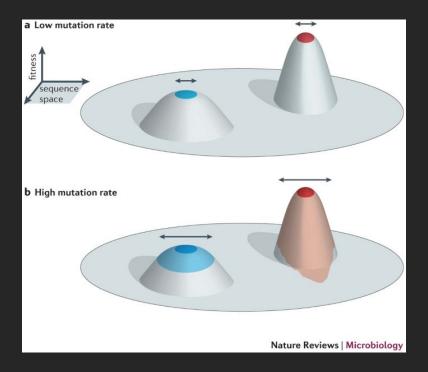
size of repair

Biological Properties of Software

- Mutational robustness
 - Mutation testing considered helpful
- Neutral landscapes
- Fitness distributions
 - Where should we look for repairs
- Epistasis

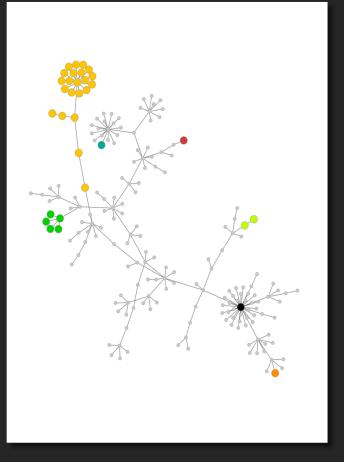
Hypothesis: Software today is the result of many generations of inadvertent evolution

Neutral Mutations



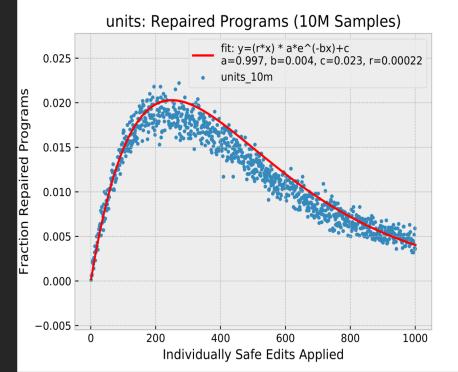
- Many biological mutations leave fitness unchanged
 - Buffering, genetic potential
- A neutral mutation passes the original test suite
 - It may or may not pass held-out failing test cases
 - Plentiful: ~30% of GenProg mutations are neutral!

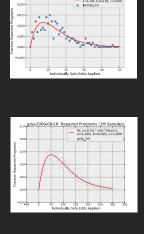
Schulte, et al. Software mutational robustness. *Genet. Program. Evolvable Mach.* **15**, 281–312 (2014). Harrand, et al. A journey among Java neutral program variants. *Genet. Program. Evolvable Mach.* **20**, 531–580 (2019).

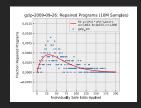

Neutral Mutations Enable Search

- Engineered diversity
- Reducing energy consumption
- For bug repairs
- For reducing GPU run-times

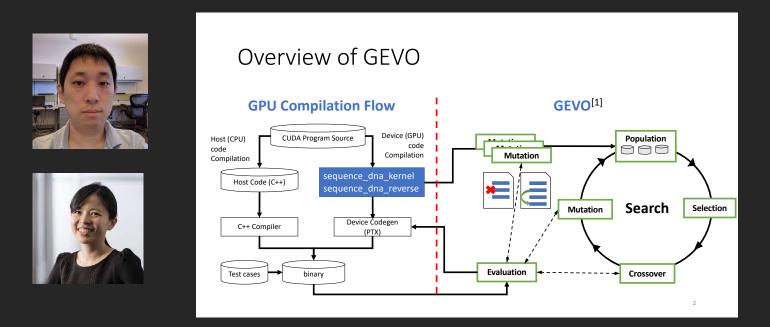
Neutral Landscapes


Buffer overflow repair (look) ICSE GI Workshop, 2018


- Neutral mutations sometimes repair latent bugs
- Many semantically distinct repairs
 - Color indicates unique repairs
- Network connects diverse repairs by neutral intermediate mutations
- Insight: All repairs are neutral wrt original test suite


Fitness Distributions: Where are the repairs in neutral space?

- 1. Generate large pool of neutral edits
- 2. Generate random subsets of pool
- 3. Apply each subset to original program
- 4. Measure repair frequency

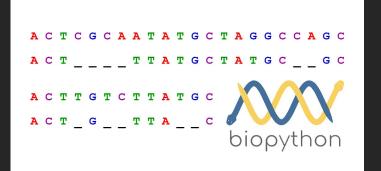


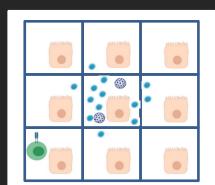
100 times more likely to find a patch at distance 200 than at distance 1

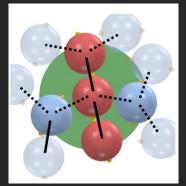
ACM TELO, 2023₂₀

Evolving Faster GPU Code

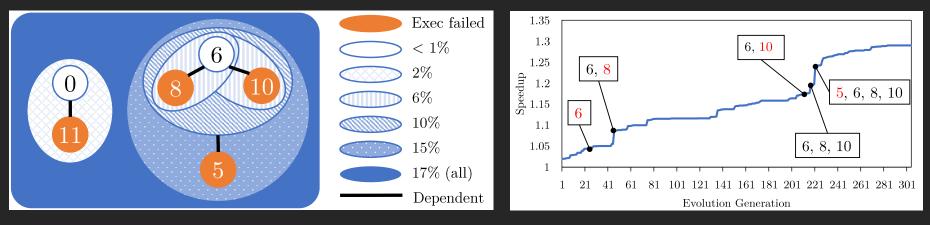
J. Liou, C. Wu and S. Forrest (TACO, 2020)




- GPUs important for ML and HPC, but challenging to optimize
- More complex mutation operators
- 49% average speedup on Rodinia benchmarks (NVIDIA Tesla P100)

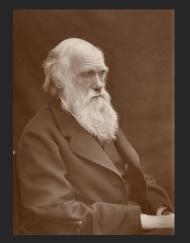

Optimizations: Application logic, architecture-specific, dataset speaific

Optimizing Bioinformatics Applications Liou et al. *TELO, in press*

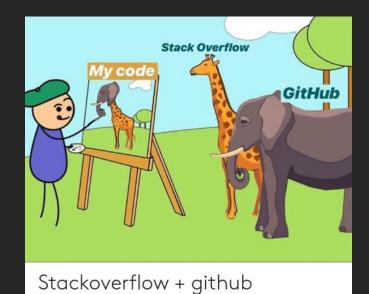

- Rodinia benchmarks are small test-oriented programs
 - What about 'real' programs?
- Optimized 3 GPU-enabled bioinformatics programs
 - Multiple Sequence Alignment (adept): 28.9%
 - Large-scale SARS-CoV-2 infection simulation (SIMCoV): 56%
 - Molecular dynamics (oxDNA): 17.8%

(Some) GEVO optimizations are epistatic

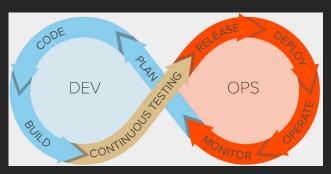
ADEPT-o on P100 GPU.


- Rearrange usage of sub-memory systems on GPU (15%)
 - Use shared memory instead of private registers
- Remove redundant synchronizations (~4%)
 - violates CUDA Programming guide
- Remove unnecessary memory initializations (30X on adept-b)

Epistatic optimizations can be hard for humans to find


The Bigger Picture

- Key ingredients of Darwinian evolution
 - Variation: Mutation and recombination
 - Natural selection
 - Inheritance
- Software
 - Selection and inheritance: Successful genes are copied: libraries, packages, code snippets, etc.
 - Variation: Programmers make small changes and recombine successful genes


Thesis: Software today is the result of many generations of inadvertent evolution

Macro-evolution in Software

Uber Two-factor authentication attack

Arms races

Continuous Integration

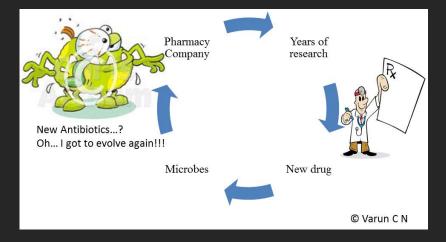
The Tinkerer and the Craftsman

Evolution

- Unplanned and openended
- Survival, relative fitness
- Ongoing process
- Incremental
- Driven by random mutation

Engineering

- Planned, with specifications
- Purposeful, goal-driven
- Clean slate design
- Large jumps
- Conducted by agents with foresight and intent


'Nature is a tinkerer, not an inventor' F. Jacob

Evolution and Engineering

- Antibiotic resistance
- Chemotherapy
- Directed evolution
- Synthetic biology
- Attack fuzzing in cybersecurity
- Randomized algorithms
- Software

The Paradox of Robustness

Frank, S. A. (2023). Robustness and complexity. Cell Systems, 14(12), 1015-1020.

- Evolution discovers robustness mechanisms that improve fitness
 - Regulatory controls
 - Cellular repair mechanisms, homeostasis, apoptotic mechanisms, two-factor
- But, robustness mechanisms add overhead and cost
- Reduced selective pressure on underlying components leads to degradation of components
 - Increased evolutionary drift (neutral mutations)
 - Also, potential for increased evolvability and novel discoveries
- Irreversible
- Can lead to diminishing returns, where cost of next mechanism outweighs the benefit

What are the best practices for engineering systems in the context of evolution?

- Claim: Software is an excellent starting point
- Co-evolution
 - Software interactions with humans
 - Software interactions among software components
 - Software interactions with biology
- Highly optimized tolerance
 - Understanding tradeoffs between performance and robustness (e.g., Carlson and Doyle)
- Rethinking defense-in-depth and technological ratchets
- Adaptive therapy for cancer
 - Manage cancer as a chronic disease and only treat enough to keep it in check

THANK YOU

steph@asu.edu https://profsforrest.github.io

